1932

Abstract

Peptide–polymer conjugates are a class of soft materials composed of covalently linked blocks of protein/polypeptides and synthetic/natural polymers. These materials are practically useful in biological applications, such as drug delivery, DNA/gene delivery, and antimicrobial coatings, as well as nonbiological applications, such as electronics, separations, optics, and sensing. Given their broad applicability, there is motivation to understand the molecular and macroscale structure, dynamics, and thermodynamic behavior exhibited by such materials. We focus on the past and ongoing molecular simulation studies aimed at obtaining such fundamental understanding and predicting molecular design rules for the target function. We describe briefly the experimental work in this field that validates or motivates these computational studies. We also describe the various models (e.g., atomistic, coarse-grained, or hybrid) and simulation methods (e.g., stochastic versus deterministic, enhanced sampling) that have been used and the types of questions that have been answered using these computational approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092319-083243
2020-06-07
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-092319-083243.html?itemId=/content/journals/10.1146/annurev-chembioeng-092319-083243&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Russell AJ, Baker SL, Colina CM, Figg CA, Kaar JL et al. 2018. Next generation protein-polymer conjugates. AIChE J 64:3230–45
    [Google Scholar]
  2. 2. 
    Paik BA, Mane SR, Jia XQ, Kiick KL 2017. Responsive hybrid (poly)peptide–polymer conjugates. J. Mater. Chem. B 5:8274–88
    [Google Scholar]
  3. 3. 
    Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski L et al. 2017. Thermoresponsive polymer-peptide/protein conjugates. Progress Polymer Sci 68:35–76
    [Google Scholar]
  4. 4. 
    Pelegri-O'Day EM, Lin E-W, Maynard HD 2014. Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc. 136:14323–32
    [Google Scholar]
  5. 5. 
    Shu JY, Panganiban B, Xu T 2013. Peptide-polymer conjugates: from fundamental science to application. Annu. Rev. Phys. Chem. 64:631–57
    [Google Scholar]
  6. 6. 
    Dehn S, Chapman R, Jolliffe KA, Perrier S 2011. Synthetic strategies for the design of peptide/polymer conjugates. Polymer Rev 51:214–34
    [Google Scholar]
  7. 7. 
    Borner HG. 2011. Precision polymers—modern tools to understand and program macromolecular interactions. Macromol. Rapid Commun. 32:115–26
    [Google Scholar]
  8. 8. 
    Rabotyagova OS, Cebe P, Kaplan DL 2011. Protein-based block copolymers. Biomacromolecules 12:269–89
    [Google Scholar]
  9. 9. 
    Grover GN, Maynard HD. 2010. Protein-polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications. Curr. Opin. Chem. Biol. 14:818–27
    [Google Scholar]
  10. 10. 
    Klok HA. 2009. Peptide/protein-synthetic polymer conjugates. quo vadis. Macromolecules 42:7990–8000
    [Google Scholar]
  11. 11. 
    Robson Marsden H, Kros A 2009. Polymer-peptide block copolymers—an overview and assessment of synthesis methods. Macromol. Biosci. 9:939–51
    [Google Scholar]
  12. 12. 
    Gauthier MA, Klok HA. 2008. Peptide/protein–polymer conjugates: synthetic strategies and design concepts. Chem. Commun. 23:2591–611
    [Google Scholar]
  13. 13. 
    Hoffman AS, Stayton PS. 2007. Conjugates of stimuli-responsive polymers and proteins. Progress Polymer Sci 32:922–32
    [Google Scholar]
  14. 14. 
    Castelletto V, McKendrick JE, Hamley IW, Olsson U, Cenker C 2010. PEGylated amyloid peptide nanocontainer delivery and release system. Langmuir 26:11624–27
    [Google Scholar]
  15. 15. 
    Ang J, Ma D, Lund R, Keten S, Xu T 2016. Internal structure of 15 nm 3-helix micelle revealed by small-angle neutron scattering and coarse-grained MD simulation. Biomacromolecules 17:3262–67
    [Google Scholar]
  16. 16. 
    Dong H, Dube N, Shu JY, Seo JW, Mahakian LM et al. 2012. Long-circulating 15 nm micelles based on amphiphilic 3-helix peptide-PEG conjugates. ACS Nano 6:5320–29
    [Google Scholar]
  17. 17. 
    Dube N, Seo JW, Dong H, Shu JY, Lund R et al. 2014. Effect of alkyl length of peptide–polymer amphiphile on cargo encapsulation stability and pharmacokinetics of 3-helix micelles. Biomacromolecules 15:2963–70
    [Google Scholar]
  18. 18. 
    Sun H, Hong YX, Xi YJ, Zou YJ, Gao JY, Du JZ 2018. Synthesis, self-assembly, and biomedical applications of antimicrobial peptide–polymer conjugates. Biomacromolecules 19:1701–20
    [Google Scholar]
  19. 19. 
    ten Cate MGJ, Borner HG 2007. Synthesis of ABC-triblock peptide-polymer conjugates for the positioning of peptide segments within block copolymer aggregates. Macromol. Chem. Phys. 208:1437–46
    [Google Scholar]
  20. 20. 
    Kukula H, Schlaad H, Antonietti M, Förster S 2002. The formation of polymer vesicles or “peptosomes” by polybutadiene-block-poly(l-glutamate)s in dilute aqueous solution. J. Am. Chem. Soc. 124:1658–63
    [Google Scholar]
  21. 21. 
    Kumar P, Takayesu A, Abbasi U, Kalathottukaren MT, Abbina S et al. 2017. Antimicrobial peptide–polymer conjugates with high activity: influence of polymer molecular weight and peptide sequence on antimicrobial activity, proteolysis, and biocompatibility. ACS Appl. Mater. Interfaces 9:37575–86
    [Google Scholar]
  22. 22. 
    Ho D, Chu B, Schmidt JJ, Brooks EK, Montemagno CD 2004. Hybrid protein-polymer biomimetic membranes. IEEE Trans. Nanotechnol. 3:256–63
    [Google Scholar]
  23. 23. 
    Ayyagari MS, Pande R, Kamtekar S, Gao H, Marx KA et al. 1995. Molecular assembly of proteins and conjugated polymers—toward development of biosensors. Biotechnol. Bioeng. 45:116–21
    [Google Scholar]
  24. 24. 
    Pokorski JK, Hore MJA. 2019. Structural characterization of protein–polymer conjugates for biomedical applications with small-angle scattering. Curr. Opin. Colloid Interface Sci. 42:157–68
    [Google Scholar]
  25. 25. 
    Lin P, Colina CM. 2019. Molecular simulation of protein–polymer conjugates. Curr. Opin. Chem. Eng. 23:44–50
    [Google Scholar]
  26. 26. 
    Jain A, Ashbaugh HS. 2011. Helix stabilization of poly(ethylene glycol)–peptide conjugates. Biomacromolecules 12:2729–34
    [Google Scholar]
  27. 27. 
    Hamed E, Xu T, Keten S 2013. Poly(ethylene glycol) conjugation stabilizes the secondary structure of α-helices by reducing peptide solvent accessible surface area. Biomacromolecules 14:4053–60
    [Google Scholar]
  28. 28. 
    Hamed E, Ma D, Keten S 2015. Multiple PEG chains attached onto the surface of a helix bundle: conformations and implications. ACS Biomater. Sci. Eng. 1:79–84
    [Google Scholar]
  29. 29. 
    Sousa SF, Peres J, Coelho M, Vieira TF 2018. Analyzing PEGylation through molecular dynamics simulations. ChemistrySelect 3:8415–27
    [Google Scholar]
  30. 30. 
    Shaytan AK, Schillinger E-K, Khalatur PG, Mena-Osteritz E, Hentschel J et al. 2011. Self-assembling nanofibers from thiophene–peptide diblock oligomers: a combined experimental and computer simulations study. ACS Nano 5:6894–909
    [Google Scholar]
  31. 31. 
    Catrouillet S, Brendel JC, Larnaudie S, Barlow T, Jolliffe KA, Perrier S 2016. Tunable length of cyclic peptide–polymer conjugate self-assemblies in water. ACS Macro Lett 5:1119–23
    [Google Scholar]
  32. 32. 
    Shu JY, Huang Y-J, Tan C, Presley AD, Chang J, Xu T 2010. Amphiphilic peptide–polymer conjugates based on the coiled-coil helix bundle. Biomacromolecules 11:1443–52
    [Google Scholar]
  33. 33. 
    Hannink JM, Cornelissen JJLM, Farrera JA, Foubert P, De Schryver FC et al. 2001. Protein–polymer hybrid amphiphiles. Angew. Chem. Int. Ed. 40:4732–34
    [Google Scholar]
  34. 34. 
    Luo TZ, Kiick KL. 2013. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials. Eur. Polymer J. 49:2998–3009
    [Google Scholar]
  35. 35. 
    Suguri T, Olsen BD. 2019. Topology effects on protein–polymer block copolymer self-assembly. Polymer Chem 10:1751–61
    [Google Scholar]
  36. 36. 
    Lam CN, Chang D, Wang M, Chen W-R, Olsen BD 2016. The shape of protein–polymer conjugates in dilute solution. J. Polymer Sci. A 54:292–302
    [Google Scholar]
  37. 37. 
    Gartner TE, Jayaraman A. 2019. Modeling and simulations of polymers: a roadmap. Macromolecules 52:755–86
    [Google Scholar]
  38. 38. 
    Gooneie A, Schuschnigg S, Holzer C 2017. A review of multiscale computational methods in polymeric materials. Polymers 9:16
    [Google Scholar]
  39. 39. 
    Brini E, Algaer EA, Ganguly P, Li C, Rodríguez-Ropero F, van der Vegt NFA 2013. Systematic coarse-graining methods for soft matter simulations—a review. Soft Matter 9:2108–19
    [Google Scholar]
  40. 40. 
    de Pablo JJ. 2011. Coarse-grained simulations of macromolecules: from DNA to nanocomposites. Annu. Rev. Phys. Chem. 62:555–74
    [Google Scholar]
  41. 41. 
    Nielsen SO, Bulo RE, Moore PB, Ensing B 2010. Recent progress in adaptive multiscale molecular dynamics simulations of soft matter. Phys. Chem. Chem. Phys. 12:12401–14
    [Google Scholar]
  42. 42. 
    Peter C, Kremer K. 2009. Multiscale simulation of soft matter systems—from the atomistic to the coarse-grained level and back. Soft Matter 5:4357–66
    [Google Scholar]
  43. 43. 
    Zhou HX. 2004. Polymer models of protein stability, folding, and interactions. Biochemistry 43:2141–54
    [Google Scholar]
  44. 44. 
    Müller-Plathe F. 2002. Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3:754–69
    [Google Scholar]
  45. 45. 
    Baschnagel J, Binder K, Doruker P, Gusev AA, Hahn O et al. 2000. Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives. In. Advances in Polymer Science, Vol. 152: Viscoelasticity, Atomistic Models, Statistical Chemistry A Abe 41–156 Berlin: Springer-Verlag
    [Google Scholar]
  46. 46. 
    Binder K, Paul W. 1997. Monte Carlo simulations of polymer dynamics: recent advances. J. Polymer Sci. B 35:1–31
    [Google Scholar]
  47. 47. 
    Peter C, Kremer K. 2010. Multiscale simulation of soft matter systems. Faraday Discuss 144:9–24
    [Google Scholar]
  48. 48. 
    Dill KA, MacCallum JL. 2012. The protein-folding problem, 50 years on. Science 338:1042–46
    [Google Scholar]
  49. 49. 
    Childers MC, Daggett V. 2017. Insights from molecular dynamics simulations for computational protein design. Mol. Syst. Des. Eng. 2:9–33
    [Google Scholar]
  50. 50. 
    Carballo-Pacheco M, Strodel B. 2016. Advances in the simulation of protein aggregation at the atomistic scale. J. Phys. Chem. B 120:2991–99
    [Google Scholar]
  51. 51. 
    Bertran O, Curcó D, Zanuy D, Alemán C 2013. Atomistic organization and characterization of tube-like assemblies comprising peptide–polymer conjugates: computer simulation studies. Faraday Discuss 166:59–82
    [Google Scholar]
  52. 52. 
    Gus'kova O, Schillinger E, Khalatur P, Bäuerle P, Khokhlov A 2009. Bioinspired hybrid systems based on oligothiophenes and peptides (ALA-GLY)n: computer-aided simulation of adsorption layers. J. Polymer Sci. A 51:430–45
    [Google Scholar]
  53. 53. 
    Hwang M, Stockfisch T, Hagler A 1994. Derivation of class II force fields. 2. Derivation and characterization of a class II force field, CFF93, for the alkyl functional group and alkane molecules. J. Am. Chem. Soc. 116:2515–25
    [Google Scholar]
  54. 54. 
    Peng Z, Ewig CS, Hwang M-J, Waldman M, Hagler AT 1997. Derivation of class II force fields. 4. Van der Waals parameters of Alkali metal cations and halide anions. J. Phys. Chem. A 101:7243–52
    [Google Scholar]
  55. 55. 
    Sun H. 1994. Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J. Comput. Chem. 15:752–68
    [Google Scholar]
  56. 56. 
    Lee OS, Stupp SI, Schatz GC 2011. Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers. J. Am. Chem. Soc. 133:3677–83
    [Google Scholar]
  57. 57. 
    Wu R, Liu J, Qiu X, Deng M 2017. Molecular dynamics simulation of the nanofibrils formed by amyloid-based peptide amphiphiles. Mol. Simul. 43:1227–39
    [Google Scholar]
  58. 58. 
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G et al. 2003. A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. J. Comput. Chem. 24:1999–2012
    [Google Scholar]
  59. 59. 
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA 2004. Development and testing of a general amber force field. J. Comput. Chem. 25:1157–74
    [Google Scholar]
  60. 60. 
    Ksenofontova O. 2014. Investigation of conformational mobility of insulin superfamily peptides: use of SPC/E and TIP4P water models. Mol. Biol. 48:432–38
    [Google Scholar]
  61. 61. 
    Kremer K, Grest GS. 1990. Dynamics of entangled linear polymer melts: a molecular‐dynamics simulation. J. Chem. Phys. 92:5057–86
    [Google Scholar]
  62. 62. 
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH 2007. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111:7812–24
    [Google Scholar]
  63. 63. 
    Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J 2008. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4:819–34
    [Google Scholar]
  64. 64. 
    Ramezanghorbani F, Lin P, Colina CM 2018. Optimizing protein–polymer interactions in a poly(ethylene glycol) coarse-grained model. J. Phys. Chem. B 122:7997–8005
    [Google Scholar]
  65. 65. 
    Ueda Y, Taketomi H, N 1978. Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A. Three‐dimensional lattice model of lysozyme. Biopolymers Orig. Res. Biomol. 17:1531–48
    [Google Scholar]
  66. 66. 
    Tozzini V. 2005. Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15:144–50
    [Google Scholar]
  67. 67. 
    Karanicolas J, Brooks CL III 2002. The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci 11:2351–61
    [Google Scholar]
  68. 68. 
    Karanicolas J, Brooks CL III 2003. Improved Gō-like models demonstrate the robustness of protein folding mechanisms towards non-native interactions. J. Mol. Biol. 334:309–25
    [Google Scholar]
  69. 69. 
    Ma D, DeBenedictis EP, Lund R, Keten S 2016. Design of polymer conjugated 3-helix micelles as nanocarriers with tunable shapes. Nanoscale 8:19334–42
    [Google Scholar]
  70. 70. 
    Mansbach RA, Ferguson AL. 2017. Coarse-grained molecular simulation of the hierarchical self-assembly of π-conjugated optoelectronic peptides. J. Phys. Chem. B 121:1684–706
    [Google Scholar]
  71. 71. 
    Mansbach RA, Ferguson AL. 2017. Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow. Org. Biomol. Chem. 15:5484–502
    [Google Scholar]
  72. 72. 
    Mansbach RA, Ferguson AL. 2018. Patchy particle model of the hierarchical self-assembly of π-conjugated optoelectronic peptides. J. Phys. Chem. B 122:10219–36
    [Google Scholar]
  73. 73. 
    Noid WG. 2013. Perspective: coarse-grained models for biomolecular systems. J. Chem. Phys. 139:090901
    [Google Scholar]
  74. 74. 
    McCullagh M, Prytkova T, Tonzani S, Winter ND, Schatz GC 2008. Modeling self-assembly processes driven by nonbonded interactions in soft materials. J. Phys. Chem. B 112:10388–98
    [Google Scholar]
  75. 75. 
    Lee OS, Cho V, Schatz GC 2012. Modeling the self-assembly of peptide amphiphiles into fibers using coarse-grained molecular dynamics. Nano Lett 129:4907–13
    [Google Scholar]
  76. 76. 
    Velichko YS, Stupp SI, de la Cruz MO 2008. Molecular simulation study of peptide amphiphile self-assembly. J. Phys. Chem. B 112:2326–34
    [Google Scholar]
  77. 77. 
    Nuhn H, Klok H-A. 2008. Secondary structure formation and LCST behavior of short elastin-like peptides. Biomacromolecules 9:2755–63
    [Google Scholar]
  78. 78. 
    Prhashanna A, Taylor PA, Qin J, Kiick KL, Jayaraman A 2019. Effect of peptide sequence on the LCST-like transition of elastin-like peptides and elastin-like peptide–collagen-like peptide conjugates: simulations and experiments. Biomacromolecules 20:1178–89
    [Google Scholar]
  79. 79. 
    Condon JE, Jayaraman A. 2018. Development of a coarse-grained model of collagen-like peptide (CLP) for studies of CLP triple helix melting. J. Phys. Chem. B 122:1929–39
    [Google Scholar]
  80. 80. 
    Renevey A, Riniker S. 2017. Improved accuracy of hybrid atomistic/coarse-grained simulations using reparametrised interactions. J. Chem. Phys. 146:124131
    [Google Scholar]
  81. 81. 
    Praprotnik M, Site LD, Kremer K 2005. Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. J. Chem. Phys. 123:224106
    [Google Scholar]
  82. 82. 
    Ensing B, Nielsen SO, Moore PB, Klein ML, Parrinello M 2007. Energy conservation in adaptive hybrid atomistic/coarse-grain molecular dynamics. J. Chem. Theory Comput. 3:1100–5
    [Google Scholar]
  83. 83. 
    Wang H, Schütte C, Delle Site L 2012. Adaptive resolution simulation (AdResS): a smooth thermodynamic and structural transition from atomistic to coarse grained resolution and vice versa in a grand canonical fashion. J. Chem. Theory Comput. 8:2878–87
    [Google Scholar]
  84. 84. 
    Zavadlav J, Praprotnik M. 2017. Adaptive resolution simulations coupling atomistic water to dissipative particle dynamics. J. Chem. Phys. 147:114110
    [Google Scholar]
  85. 85. 
    Warshel A, Levitt M. 1976. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103:227–49
    [Google Scholar]
  86. 86. 
    Krajniak J, Pandiyan S, Nies E, Samaey G 2016. Generic adaptive resolution method for reverse mapping of polymers from coarse-grained to atomistic descriptions. J. Chem. Theory Comput. 12:5549–62
    [Google Scholar]
  87. 87. 
    Kuhn AB, Gopal SM, Schafer LV 2015. On using atomistic solvent layers in hybrid all-atom/coarse-grained molecular dynamics simulations. J. Chem. Theory Comput. 11:4460–72
    [Google Scholar]
  88. 88. 
    Zavadlav J, Nuno Melo M, Marrink S, Praprotnik M 2014. Adaptive resolution simulation of an atomistic protein in MARTINI water. J. Chem. Phys. 140:054114
    [Google Scholar]
  89. 89. 
    Stanzione F, Jayaraman A. 2016. Hybrid atomistic and coarse-grained molecular dynamics simulations of polyethylene glycol (PEG) in explicit water. J. Phys. Chem. B 120:4160–73
    [Google Scholar]
  90. 90. 
    Ghobadi AF, Jayaraman A. 2016. Effects of polymer conjugation on hybridization thermodynamics of oligonucleic acids. J. Phys. Chem. B 120:9788–99
    [Google Scholar]
  91. 91. 
    Leech J, Prins JF, Hermans J 1996. SMD: visual steering of molecular dynamics for protein design. IEEE Comput. Sci. 3:38–45
    [Google Scholar]
  92. 92. 
    Hukushima K, Nemoto K. 1996. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65:1604–8
    [Google Scholar]
  93. 93. 
    Laio A, Parrinello M. 2002. Escaping free-energy minima. PNAS 99:12562–66
    [Google Scholar]
  94. 94. 
    Karayiannis NC, Mavrantzas VG, Theodorou DN 2002. A novel Monte Carlo scheme for the rapid equilibration of atomistic model polymer systems of precisely defined molecular architecture. Phys. Rev. Lett. 88:105503
    [Google Scholar]
  95. 95. 
    Urbic T, Dias CL. 2019. Thermodynamic properties of amyloid fibrils: a simple model of peptide aggregation. Fluid Phase Equilib 489:104–10
    [Google Scholar]
  96. 96. 
    Yu T, Lee OS, Schatz GC 2013. Steered molecular dynamics studies of the potential of mean force for peptide amphiphile self-assembly into cylindrical nanofibers. J. Phys. Chem. A 117:7453–60
    [Google Scholar]
  97. 97. 
    Debenedictis EP, Hamed E, Keten S 2016. Mechanical reinforcement of proteins with polymer conjugation. ACS Nano 10:2259–67
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092319-083243
Loading
/content/journals/10.1146/annurev-chembioeng-092319-083243
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error