1932

Abstract

CO storage in saline aquifers offers a realistic means of achieving globally significant reductions in greenhouse gas emissions at the scale of billions of tonnes per year. We review insights into the processes involved using well-documented industrial-scale projects, supported by a range of laboratory analyses, field studies, and flow simulations. The main topics we address are () the significant physicochemical processes, () the factors limiting CO storage capacity, and () the requirements for global scale-up.Although CO capture and storage (CCS) technology can be considered mature and proven, it requires significant and rapid scale-up to meet the objectives of the Paris Climate Agreement. The projected growth in the number of CO injection wells required is significantly lower than the historic petroleum industry drill rates, indicating that decarbonization via CCS is a highly credible and affordable ambition for modern human society. Several technology developments are needed to reduce deployment costs and to stimulate widespread adoption of this technology, and these should focus on demonstration of long-term retention and safety of CO storage and development of smart ways of handling injection wells and pressure, cost-effective monitoring solutions, and deployment of CCS hubs with associated infrastructure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-093020-091447
2021-06-07
2024-09-09
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-093020-091447.html?itemId=/content/journals/10.1146/annurev-chembioeng-093020-091447&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Metz B 2005. Carbon Dioxide Capture and Storage: Special Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  2. 2. 
    Eide LI, Batum M, Dixon T, Elamin Z, Graue A et al. 2019. Enabling large-scale carbon capture, utilisation, and storage (CCUS) using offshore carbon dioxide (CO2) infrastructure developments—a review. Energies 12:101945
    [Google Scholar]
  3. 3. 
    Harrison B, Falcone G. 2014. Carbon capture and sequestration versus carbon capture utilisation and storage for enhanced oil recovery. Acta Geotech 9:29–38
    [Google Scholar]
  4. 4. 
    Rani S, Padmanabhan E, Prusty BK. 2019. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage. J. Pet. Sci. Eng. 175:634–43
    [Google Scholar]
  5. 5. 
    Godec M, Koperna G, Petrusak R, Oudinot A. 2014. Enhanced gas recovery and CO2 storage in gas shales: a summary review of its status and potential. Energy Procedia 63:5849–57
    [Google Scholar]
  6. 6. 
    Jenkins CR, Cook PJ, Ennis-King J, Undershultz J, Boreham C et al. 2012. Safe storage and effective monitoring of CO2 in depleted gas fields. PNAS 109:2E35–E41
    [Google Scholar]
  7. 7. 
    Godec M, Kuuskraa V, Van Leeuwen T, Melzer TL, Wildgust N. 2011. CO2 storage in depleted oil fields: the worldwide potential for carbon dioxide enhanced oil recovery. Energy Procedia 4:2162–69
    [Google Scholar]
  8. 8. 
    Busch A, Krooss BM, Gensterblum Y, Van Bergen F, Pagnier HJM. 2003. High-pressure adsorption of methane, carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behaviour. J. Geochem. Explor. 78:671–74
    [Google Scholar]
  9. 9. 
    Gislason SR, Oelkers EH. 2014. Carbon storage in basalt. Science 344:6182373–74
    [Google Scholar]
  10. 10. 
    Bentham M, Kirby M. 2005. CO2 storage in saline aquifers. Oil Gas Sci. Technol. 60:3559–67
    [Google Scholar]
  11. 11. 
    Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp TA, Høier L. 2011. Lessons learned from 14 years of CCS operations: Sleipner. Salah and Snøhvit Energy Procedia 4:5541–48
    [Google Scholar]
  12. 12. 
    Ringrose PS. 2018. The CCS hub in Norway: some insights from 22 years of saline aquifer storage. Energy Procedia 146:166–72
    [Google Scholar]
  13. 13. 
    Ringrose PS, Meckel TA. 2019. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions. Sci. Rep. 9:17944
    [Google Scholar]
  14. 14. 
    Int. Energy Agency 2015. Carbon Capture and Storage: The Solution for Deep Emissions Reductions Paris: Int. Energy Agency Publ.
    [Google Scholar]
  15. 15. 
    Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM et al. 2014. Betting on negative emissions. Nat. Climate Change 4:10850–53
    [Google Scholar]
  16. 16. 
    Edenhofer O, Pichs-Madruga R, Sokona Y, Minx JC, Farahani E et al. 2014. Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  17. 17. 
    Masson-Delmotte V 2018. Global warming of 1.5°C Spec. Rep., Intergov. Panel Clim. Change Geneva, Switz:.
    [Google Scholar]
  18. 18. 
    Baklid A, Korbol R, Owren G. 1996. Sleipner vest CO2 disposal, CO2 injection into a shallow underground aquifer Paper presented at the SPE Annual Technical Conference and Exhibition Denver, CO, Oct:.
    [Google Scholar]
  19. 19. 
    Ampomah W, Balch R, Cather M, Rose-Coss D, Dai Z et al. 2016. Evaluation of CO2 storage mechanisms in CO2 enhanced oil recovery sites: application to Morrow sandstone reservoir. Energy Fuels 30:108545–55
    [Google Scholar]
  20. 20. 
    Pearce JM, Holloway S, Wacker H, Nelis MK, Rochelle C, Bateman K 1996. Natural occurrences as analogues for the geological disposal of carbon dioxide. Energy Conv. Manag. 37:6–81123–28
    [Google Scholar]
  21. 21. 
    Sathaye KJ, Hesse MA, Cassidy M, Stockli DF 2014. Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field. PNAS 111:4315332–37
    [Google Scholar]
  22. 22. 
    Gilfillan SM, Ballentine CJ, Holland G, Blagburn D, Lollar BS et al. 2008. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim. Cosmochim. Acta 72:41174–98
    [Google Scholar]
  23. 23. 
    Burnside NM, Shipton ZK, Dockrill B, Ellam RM. 2013. Man-made versus natural CO2 leakage: a 400 ky history of an analogue for engineered geological storage of CO2. Geology 41:4471–74
    [Google Scholar]
  24. 24. 
    Nordbotten JM, Celia MA. 2012. Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  25. 25. 
    Niemi A, Bear J, Bensabat J. 2017. Geological Storage of CO2 in Deep Saline Formations Dordrecht: Springer Neth.
    [Google Scholar]
  26. 26. 
    Ringrose P. 2020. How to Store CO2 Underground: Insights from Early-Mover CCS Projects Cham, Switz: Springer
    [Google Scholar]
  27. 27. 
    Shook M, Li D, Lake LW. 1992. Scaling immiscible flow through permeable media by inspectional analysis. . In Situ 16:4
    [Google Scholar]
  28. 28. 
    Ringrose PS, Sorbie KS, Corbett PWM, Jensen JL. 1993. Immiscible flow behaviour in laminated and cross-bedded sandstones. J. Pet. Sci. Eng. 9:2103–24
    [Google Scholar]
  29. 29. 
    Zhou D, Fayers FJ, Orr FM Jr. 1997. Scaling of multiphase flow in simple heterogeneous porous media. SPE Reserv. Eng. 12:3173–78
    [Google Scholar]
  30. 30. 
    Oldenburg CM, Mukhopadhyay S, Cihan A. 2016. On the use of Darcy's law and invasion-percolation approaches for modeling large-scale geologic carbon sequestration. Greenh. Gases 6:119–33
    [Google Scholar]
  31. 31. 
    Krevor SC, Pini R, Li B, Benson SM 2011. Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions. Geophys. Res. Lett. 38:15 https://doi.org/10.1029/2011GL048239
    [Crossref] [Google Scholar]
  32. 32. 
    Jackson SJ, Krevor S. 2020. Small-scale capillary heterogeneity linked to rapid plume migration during CO2 storage. Geophys. Res. Lett. 47:18e2020GL088616
    [Google Scholar]
  33. 33. 
    Reynolds CA, Krevor S. 2015. Characterizing flow behavior for gas injection: relative permeability of CO-brine and N2-water in heterogeneous rocks. Water Resourc. Res. 51:129464–89
    [Google Scholar]
  34. 34. 
    Trevisan L, Pini R, Cihan A, Birkholzer JT, Zhou Q, Illangasekare TH. 2015. Experimental analysis of spatial correlation effects on capillary trapping of supercritical CO2 at the intermediate laboratory scale in heterogeneous porous media. Water Resourc. Res. 51:118791–805
    [Google Scholar]
  35. 35. 
    Krevor S, Blunt MJ, Benson SM, Pentland CH, Reynolds C et al. 2015. Capillary trapping for geologic carbon dioxide storage—from pore scale physics to field scale implications. Int. J. Greenh. Gas Control 40:221–37
    [Google Scholar]
  36. 36. 
    Meckel TA, Bryant SL, Ganesh PR. 2015. Characterization and prediction of CO2 saturation resulting from modeling buoyant fluid migration in 2D heterogeneous geologic fabrics. Int. J. Greenh. Gas Control 34:85–96
    [Google Scholar]
  37. 37. 
    Benham GP, Bickle MJ, Neufeld JA. 2020. Upscaling multiphase flow through heterogeneous porous media. arXiv. 2007.01540 [phys.flu-dyn]
  38. 38. 
    Riaz A, Hesse M, Tchelepi HA, Orr FM. 2006. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548:87–111
    [Google Scholar]
  39. 39. 
    Soltanian MR, Amooie MA, Gershenzon N, Dai Z, Ritzi R et al. 2017. Dissolution trapping of carbon dioxide in heterogeneous aquifers. Environ. Sci. Technol. 51:137732–41
    [Google Scholar]
  40. 40. 
    Gilmore KA, Neufeld JA, Bickle MJ. 2020. CO2 dissolution trapping rates in heterogeneous porous media. Geophys. Res. Lett. 47:12e2020GL087001
    [Google Scholar]
  41. 41. 
    Alnes H, Eiken O, Nooner S, Sasagawa G, Stenvold T, Zumberge M. 2011. Results from Sleipner gravity monitoring: updated density and temperature distribution of the CO2 plume. Energy Procedia 4:5504–11
    [Google Scholar]
  42. 42. 
    Cavanagh AJ, Haszeldine RS, Nazarian B. 2015. The Sleipner CO2 storage site: using a basin model to understand reservoir simulations of plume dynamics. First Break 33:661–68
    [Google Scholar]
  43. 43. 
    Spycher N, Pruess K. 2009. A phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: application to CO2-enhanced geothermal systems. Transport Porous Media 82:173–96
    [Google Scholar]
  44. 44. 
    Amarasinghe W, Fjelde I, Rydland JA, Guo Y. 2019. Effects of permeability and wettability on CO2 dissolution and convection at realistic saline reservoir conditions: a visualization study Paper presented at the SPE Europec featured at 81st EAGE Conference and Exhibition London: June
    [Google Scholar]
  45. 45. 
    Gilfillan SM, Lollar BS, Holland G, Blagburn D, Stevens S et al. 2009. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458:7238614–18
    [Google Scholar]
  46. 46. 
    Zhou Z, Ballentine CJ, Schoell M, Stevens SH. 2012. Identifying and quantifying natural CO2 sequestration processes over geological timescales: the Jackson Dome CO2 Deposit, USA. Geochim. Cosmochim. Acta 86:257–75
    [Google Scholar]
  47. 47. 
    Lollar BS, Ballentine CJ. 2009. Insights into deep carbon derived from noble gases. Nat. Geosci. 2:8543–47
    [Google Scholar]
  48. 48. 
    Györe D, Gilfillan SM, Stuart FM. 2017. Tracking the interaction between injected CO2 and reservoir fluids using noble gas isotopes in an analogue of large-scale carbon capture and storage. Appl. Geochem. 78:116–28
    [Google Scholar]
  49. 49. 
    Zwahlen CA, Kampman N, Dennis P, Zhou Z, Holland G. 2017. Estimating carbon dioxide residence time scales through noble gas and stable isotope diffusion profiles. Geology 45:11995–98
    [Google Scholar]
  50. 50. 
    Flude S, Johnson G, Gilfillan SM, Haszeldine RS. 2016. Inherent tracers for carbon capture and storage in sedimentary formations: composition and applications. Environ. Sci. Technol. 50:157939–55
    [Google Scholar]
  51. 51. 
    Flude S, Györe D, Stuart FM, Zurakowska M, Boyce AJ et al. 2017. The inherent tracer fingerprint of captured CO2. Int. J. Greenh. Gas Control 65:40–54
    [Google Scholar]
  52. 52. 
    Baines SJ, Worden RH. 2004. The long-term fate of CO2 in the subsurface: natural analogues for CO2 storage. Geol. Soc. 233:59–85
    [Google Scholar]
  53. 53. 
    Land LS, Milliken KL, McBride EF. 1987. Diagenetic evolution of Cenozoic sandstones, Gulf of Mexico sedimentary basin. Sediment. Geol. 50:1–3195–225
    [Google Scholar]
  54. 54. 
    Carroll S, Carey JW, Dzombak D, Huerta NJ, Li L et al. 2016. Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments. Int. J. Greenh. Gas Control 49:149–60
    [Google Scholar]
  55. 55. 
    Black JR, Carroll SA, Haese RR. 2015. Rates of mineral dissolution under CO2 storage conditions. Chem. Geol. 399:134–44
    [Google Scholar]
  56. 56. 
    Wilkinson M, Haszeldine RS, Fallick AE, Odling N, Stoker SJ, Gatliff RW. 2009. CO2–mineral reaction in a natural analogue for CO2 storage—implications for modeling. J. Sediment. Res. 79:7486–94
    [Google Scholar]
  57. 57. 
    Busch A, Alles S, Gensterblum Y, Prinz D, Dewhurst DN et al. 2008. Carbon dioxide storage potential of shales. Int. J. Greenh. Gas Control 2:3297–308
    [Google Scholar]
  58. 58. 
    Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T. 2007. Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am. J. Sci. 307:7974–1008
    [Google Scholar]
  59. 59. 
    Carroll SA, McNab WW, Torres SC. 2011. Experimental study of cement-sandstone/shale-brine-CO2 interactions. Geochem. Trans. 12:9
    [Google Scholar]
  60. 60. 
    McNab WW, Carroll SA. 2011. Wellbore integrity at the Krechba Carbon Storage Site. Salah, Algeria: 2. Reactive transport modeling of geochemical interactions near the cement–formation interface Energy Procedia 4:5195–202
    [Google Scholar]
  61. 61. 
    Aradóttir ES, Sigurdardóttir H, Sigfússon B, Gunnlaugsson E. 2011. CarbFix: a CCS pilot project imitating and accelerating natural CO2 sequestration. Greenh. Gases 1:2105–18
    [Google Scholar]
  62. 62. 
    Watson MN, Boreham CJ, Tingate PR. 2004. Carbon dioxide and carbonate cements in the Otway Basin: implications for geological storage of carbon dioxide. APPEA J 44:1703–20
    [Google Scholar]
  63. 63. 
    Li H, Yan J 2009. Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes. Appl. Energy 86:122760–70
    [Google Scholar]
  64. 64. 
    Span R, Gernert J, Jäger A. 2013. Accurate thermodynamic-property models for CO2-rich mixtures. Energy Procedia 37:2914–22
    [Google Scholar]
  65. 65. 
    Van der Meer LGH, Kreft E, Geel C, Hartman J. 2005. K12-B a test site for CO2 storage and enhanced gas recovery. Paper presented at the SPE Europec/EAGE Annual Conference Madrid, Spain: June
    [Google Scholar]
  66. 66. 
    Nazarian B, Thorsen R, Ringrose P. 2018. Storing CO2 in a reservoir under continuous-pressure depletion; a simulation study Presented at the 14th Greenhouse Gas Control Technologies Conference Melbourne, Aust.: Oct 21–26
    [Google Scholar]
  67. 67. 
    Ringrose P, Greenberg S, Whittaker S, Nazarian B, Oye V. 2017. Building confidence in CO2 storage using reference datasets from demonstration projects. Energy Procedia 114:3547–57
    [Google Scholar]
  68. 68. 
    Hansen O, Gilding D, Nazarian B, Osdal B, Ringrose P et al. 2013. Snøhvit: the history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm. Energy Procedia 37:3565–73
    [Google Scholar]
  69. 69. 
    Hansen H, Eiken O, Aasum TA. 2005. Tracing the path of carbon dioxide from a gas-condensate reservoir, through an amine plant and back into a subsurface aquifer—Case study: the Sleipner area, Norwegian North Sea Paper presented at the SPE Offshore Europe Oil and Gas Exhibition and Conference Aberdeen, UK, Sept:.
    [Google Scholar]
  70. 70. 
    Huerta NJ, Cantrell KJ, White SK, Brown CF. 2020. Hydraulic fracturing to enhance injectivity and storage capacity of CO2 storage reservoirs: benefits and risks. Int. J. Greenh. Gas Control 100:103105
    [Google Scholar]
  71. 71. 
    Bachu S, Bonijoly D, Bradshaw J, Burruss R, Holloway S et al. 2007. CO2 storage capacity estimation: methodology and gaps. Int. J. Greenh. Gas Control 1:4430–43
    [Google Scholar]
  72. 72. 
    Vangkilde-Pedersen T, Anthonsen KL, Smith N, Kirk K, van der Meer B et al. 2009. Assessing European capacity for geological storage of carbon dioxide—the EU GeoCapacity project. Energy Procedia 1:12663–70
    [Google Scholar]
  73. 73. 
    Wright R, Mourits F, Rodríguez LB, Serrano MD 2013. The first North American carbon storage atlas. Energy Procedia 37:5280–89
    [Google Scholar]
  74. 74. 
    Riis F, Halland E. 2014. CO2 storage atlas of the Norwegian Continental Shelf: methods used to evaluate capacity and maturity of the CO2 storage potential. Energy Procedia 63:5258–65
    [Google Scholar]
  75. 75. 
    Frailey SM, Tucker O, Koperna GJ 2017. The genesis of the CO2 storage resources management system (SRMS). Energy Procedia 114:4262–69
    [Google Scholar]
  76. 76. 
    Thibeau S, Seldon L, Masserano F, Canal Vila J, Ringrose P 2018. Revisiting the Utsira saline aquifer CO2 storage resources using the SRMS Classification Framework Presented at the 14th Greenhouse Gas Control Technologies Conference Melbourne: Aust., Oct 21–26
    [Google Scholar]
  77. 77. 
    Van der Meer LGH. 1995. The CO2 storage efficiency of aquifers. Energy Convers. Manag. 36:6513–18
    [Google Scholar]
  78. 78. 
    Trevisan L, Krishnamurthy PG, Meckel TA. 2017. Impact of 3D capillary heterogeneity and bedform architecture at the sub-meter scale on CO2 saturation for buoyant flow in clastic aquifers. Int. J. Greenh. Gas Control 56:237–49
    [Google Scholar]
  79. 79. 
    Krishnamurthy PG, Meckel TA, DiCarlo D. 2019. Mimicking geologic depositional fabrics for multiphase flow experiments. Water Resourc. Res. 55:9623–38
    [Google Scholar]
  80. 80. 
    Nazarian B, Held R, Høier L, Ringrose P. 2013. Reservoir management of CO2 injection: pressure control and capacity enhancement. Energy Procedia 37:4533–43
    [Google Scholar]
  81. 81. 
    Birkholzer JT, Cihan A, Zhou Q. 2012. Impact-driven pressure management via targeted brine extraction—conceptual studies of CO2 storage in saline formations. Int. J. Greenh. Gas Control 7:168–80
    [Google Scholar]
  82. 82. 
    Santibanez-Borda E, Govindan R, Elahi N, Korre A, Durucan S. 2019. Maximising the dynamic CO2 storage capacity through the optimisation of CO2 injection and brine production rates. Int. J. Greenh. Gas Control 80:76–95
    [Google Scholar]
  83. 83. 
    Anderson ST, Jahediesfanjani H. 2020. Estimating the net costs of brine production and disposal to expand pressure-limited dynamic capacity for basin-scale CO2 storage in a saline formation. Int. J. Greenh. Gas Control 102:103161
    [Google Scholar]
  84. 84. 
    Okwen RT, Stewart MT, Cunningham JA. 2010. Analytical solution for estimating storage efficiency of geologic sequestration of CO2. Int. J. Greenh. Gas Control 4:1102–7
    [Google Scholar]
  85. 85. 
    Chadwick A, Arts R, Bernstone C, May F, Thibeau S, Zweigel P. 2008. Best Practice for the Storage of CO2 in Saline Aquifers: Observations and Guidelines from the SACS and CO2STORE Projects 14 Nottingham, UK: Br. Geol. Surv.
    [Google Scholar]
  86. 86. 
    Jenkins C, Chadwick A, Hovorka SD 2015. The state of the art in monitoring and verification—ten years on. Int. J. Greenh. Gas Control 40:312–49
    [Google Scholar]
  87. 87. 
    Davis TL, Landrø M, Wilson M 2019. Geophysics and Geosequestration Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  88. 88. 
    Furre AK, Eiken O, Alnes H, Vevatne JN, Kiær AF. 2017. 20 years of monitoring CO2-injection at Sleipner. Energy Procedia 114:3916–26
    [Google Scholar]
  89. 89. 
    Ringrose PS, Mathieson AS, Wright IW, Selama F, Hansen O et al. 2013. The In Salah CO2 storage project: lessons learned and knowledge transfer. Energy Procedia 37:6226–36
    [Google Scholar]
  90. 90. 
    Huang F, Bergmann P, Juhlin C, Ivandic M, Lüth S et al. 2018. The first post-injection seismic monitor survey at the Ketzin pilot CO2 storage site: results from time-lapse analysis. Geophys. Prospect. 66:162–84
    [Google Scholar]
  91. 91. 
    Tanase D, Saito H, Sasaki T, Tanaka Y, Tanaka J. 2018. Progress of CO2 injection and monitoring of the Tomakomai CCS Demonstration Project Presented at the 14th Greenhouse Gas Control Technologies Conference Melbourne: Aust., Oct 21–26
    [Google Scholar]
  92. 92. 
    Bourne S, Crouch S, Smith M. 2014. A risk-based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada. Int. J. Greenh. Gas Control 26:109–26
    [Google Scholar]
  93. 93. 
    White D, Harris K, Roach L, Roberts B, Worth K et al. 2017. Monitoring results after 36 ktonnes of deep CO2 injection at the Aquistore CO2 storage site, Saskatchewan, Canada. Energy Procedia 114:4056–61
    [Google Scholar]
  94. 94. 
    Gilfillan S, Haszedline S, Stuart F, Gyore D, Kilgallon R, Wilkinson M. 2014. The application of noble gases and carbon stable isotopes in tracing the fate, migration and storage of CO2. Energy Procedia 63:4123–33
    [Google Scholar]
  95. 95. 
    Roberts JJ, Gilfillan SM, Stalker L, Naylor M. 2017. Geochemical tracers for monitoring offshore CO2 stores. Int. J. Greenh. Gas Control 65:218–34
    [Google Scholar]
  96. 96. 
    Ghaderi A, Landrø M. 2009. Estimation of thickness and velocity changes of injected carbon dioxide layers from pre-stack time-lapse seismic data. Geophysics 74:O17–28
    [Google Scholar]
  97. 97. 
    Furre AK, Kiær A, Eiken O. 2015. CO2-induced seismic time shifts at Sleipner. Interpretation 3:3SS23–35
    [Google Scholar]
  98. 98. 
    White J, Williams G, Chadwick AR, Furre A-K, Kiær A. 2018. Sleipner: the ongoing challenge to determine the thickness of a thin CO2 layer. Int. J. Greenh. Gas Control 69:81–95
    [Google Scholar]
  99. 99. 
    Chadwick RA, Williams GA, Falcon-Suarez I. 2019. Forensic mapping of seismic velocity heterogeneity in a CO2 layer at the Sleipner CO2 storage operation, North Sea, using time-lapse seismics. Int. J. Greenh. Gas Control 90:102793
    [Google Scholar]
  100. 100. 
    Williams GA, Chadwick RA, Vosper H. 2018. Some thoughts on Darcy-type flow simulation for modelling underground CO2 storage, based on the Sleipner CO2 storage operation. Int. J. Greenh. Gas Control 68:164–75
    [Google Scholar]
  101. 101. 
    Bickle M, Chadwick A, Huppert HE, Hallworth M, Lyle S 2007. Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet. Sci. Lett. 255:1–2164–76
    [Google Scholar]
  102. 102. 
    Cavanagh AJ, Haszeldine RS. 2014. The Sleipner storage site: capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation. Int. J. Greenh. Gas Control 21:101–12
    [Google Scholar]
  103. 103. 
    Zadeh HM, Landrø M. 2011. Monitoring a shallow subsurface gas flow by time-lapse refraction analysis. Geophysics 76:O35–O43
    [Google Scholar]
  104. 104. 
    Raknes EB, Arntsen B, Weibull W. 2015. Three-dimensional elastic full waveform inversion using seismic data from the Sleipner area. Geophys. J. Int. 202:31877–94
    [Google Scholar]
  105. 105. 
    Mispel J, Furre A, Sollid A, Maaø FA. 2019. High frequency 3D FWI at Sleipner: a closer look at the CO2 plume Presented at the 81st EAGE Conference and Exhibition 2019 London: June 3–6
    [Google Scholar]
  106. 106. 
    Landrø M. 2001. Discrimination between pressure and fluid saturation changes from time-lapse seismic data. Geophysics 66:836–44
    [Google Scholar]
  107. 107. 
    Grude S, Landrø M, Osdal B. 2013. Time-lapse pressure-saturation discrimination for CO2 storage at the Snøhvit field. Int. J. Greenh. Gas Control 19:369–78
    [Google Scholar]
  108. 108. 
    Landrø M, Zumberge M. 2017. Estimating saturation and density changes caused by CO2 injection at Sleipner—using time-lapse seismic amplitude-variation-with-offset and time-lapse gravity. Interpretation 5:2T243–57
    [Google Scholar]
  109. 109. 
    Zumberge M, Alnes H, Eiken O, Sasagawa G, Stenvold T. 2008. Precision of seafloor gravity and pressure measurements for reservoir monitoring. Geophysics 73:6WA133–41
    [Google Scholar]
  110. 110. 
    Mateeva A, Lopez J, Potters H, Mestayer J, Cox B et al. 2014. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophys. Prospect. 62:4679–92
    [Google Scholar]
  111. 111. 
    Ringrose P, Furre AK, Bakke R, Dehghan Niri R, Paasch B et al. 2018. Developing optimised and cost-effective solutions for monitoring CO2 injection from subsea wells Presented at the 14th Greenhouse Gas Control Technologies Conference Melbourne: Aust., Oct 21–26
    [Google Scholar]
  112. 112. 
    Glob. CCS Inst 2018. Global Status of CCS: 2018 Melbourne, Aust: Glob. CCS Inst https://indd.adobe.com/view/2dab1be7-edd0-447d-b020-06242ea2cf3b
    [Google Scholar]
  113. 113. 
    Zahasky C, Krevor S. 2020. Global geologic carbon storage requirements of climate change mitigation scenarios. Energy Environ. Sci. 13:1561–67
    [Google Scholar]
  114. 114. 
    Bachmann TM. 2020. Considering environmental costs of greenhouse gas emissions for setting a CO2 tax: a review. Sci. Total Environ 720:137524
    [Google Scholar]
  115. 115. 
    EIA 2020. The distribution of U.S. oil and natural gas wells by production rate Press Rel., Dec. https://www.eia.gov/petroleum/wells/
    [Google Scholar]
  116. 116. 
    Rubin ES, Davison JE, Herzog HJ. 2015. The cost of CO2 capture and storage. Int. J. Greenh. Gas Control 40:378–400
    [Google Scholar]
  117. 117. 
    Wu L, Thorsen R, Ottesen S, Meneguolo R, Hartvedt K et al. 2021. Significance of fault seal in assessing CO2 storage capacity and containment risks—an example from the Horda Platform, northern North Sea. Pet. Geosci https://doi.org/10.1144/petgeo2020-102
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-093020-091447
Loading
/content/journals/10.1146/annurev-chembioeng-093020-091447
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error