1932

Abstract

The twenty-first century will be the century of biology. This is not only because of breakthrough advances in molecular biology tools but also because we need to reinvent our economy based on the biological principles of energy efficiency and sustainability. Consequently, new tools for production routines must be developed to help produce platform chemicals and energy sources based on sustainable resources. In this context, biofilm-based processes have the potential to impact future production processes, because they can be carried out continuously and with robust stationary biocatalysts embedded in an extracellular matrix with different properties. We review productive biofilm systems used for heterotrophic and lithoautotrophic production and attempt to identify fundamental reasons why they may be particularly suitable as future production systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100522-110939
2024-07-24
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100522-110939.html?itemId=/content/journals/10.1146/annurev-chembioeng-100522-110939&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016.. Biofilms: an emergent form of bacterial life. . Nat. Rev. Microbiol. 14:(9):56375
    [Crossref] [Google Scholar]
  2. 2.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995.. Microbial biofilms. . Annu. Rev. Microbiol. 49::71145
    [Crossref] [Google Scholar]
  3. 3.
    Bouwer EJ, Crowe PB. 1988.. Biological processes in drinking water treatment. . J. Am. Water Works Assoc. 80:(9):8293
    [Crossref] [Google Scholar]
  4. 4.
    Hall-Stoodley L, Costerton JW, Stoodley P. 2004.. Bacterial biofilms: from the natural environment to infectious diseases. . Nat. Rev. Microbiol. 2:(2):95108
    [Crossref] [Google Scholar]
  5. 5.
    Staudt C, Horn H, Hempel DC, Neu TR. 2004.. Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. . Biotechnol. Bioeng. 88:(5):58592
    [Crossref] [Google Scholar]
  6. 6.
    Leonov PS, Flores-Alsina X, Gernaey KV, Sternberg C. 2021.. Microbial biofilms in biorefinery—towards a sustainable production of low-value bulk chemicals and fuels. . Biotechnol. Adv. 50::107766
    [Crossref] [Google Scholar]
  7. 7.
    Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, et al. 2022.. The biofilm life cycle: expanding the conceptual model of biofilm formation. . Nat. Rev. Microbiol. 20:(10):60820
    [Crossref] [Google Scholar]
  8. 8.
    Gilmore KS, Srinivas P, Akins DR, Hatter KL, Gilmore MS. 2003.. Growth, development, and gene expression in a persistent Streptococcus gordonii biofilm. . Infect. Immun. 71:(8):475966
    [Crossref] [Google Scholar]
  9. 9.
    Burne RA, Chen Y-YM, Li Y, Bhagwat S, Wen Z. 2009.. Gene expression in oral biofilms. . In Medical Implications of Biofilms, ed. M Wilson, D Devine , pp. 21228. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  10. 10.
    O'Connor JR, Kuwada NJ, Huangyutitham V, Wiggins PA, Harwood CS. 2012.. Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system leading to c-di-GMP production. . Mol. Microbiol. 86:(3):72029
    [Crossref] [Google Scholar]
  11. 11.
    Hickman JW, Tifrea DF, Harwood CS. 2005.. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. . PNAS 102:(40):1442227
    [Crossref] [Google Scholar]
  12. 12.
    Liu T, Yu YY, Deng XP, Ng CK, Cao B, et al. 2015.. Enhanced Shewanella biofilm promotes bioelectricity generation. . Biotechnol. Bioeng. 112:(10):205159
    [Crossref] [Google Scholar]
  13. 13.
    Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, et al. 2006.. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. . J. Bacteriol. 188:(7):268191
    [Crossref] [Google Scholar]
  14. 14.
    Matsumoto A, Koga R, Kanaly RA, Kouzuma A, Watanabe K. 2021.. Identification of a diguanylate cyclase that facilitates biofilm formation on electrodes by Shewanella oneidensis MR-1. . Appl. Environ. Microbiol. 87:(9):e00201-21
    [Crossref] [Google Scholar]
  15. 15.
    Ng CK, Xu J, Cai Z, Yang L, Thompson IP, et al. 2020.. Elevated intracellular cyclic-di-GMP level in Shewanella oneidensis increases expression of c-type cytochromes. . Microb. Biotechnol. 13:(6):190416
    [Crossref] [Google Scholar]
  16. 16.
    Hengge R. 2009.. Principles of c-di-GMP signalling in bacteria. . Nat. Rev. Microbiol. 7:(4):26373
    [Crossref] [Google Scholar]
  17. 17.
    Rutherford ST, Bassler BL. 2012.. Bacterial quorum sensing: its role in virulence and possibilities for its control. . Cold Spring Harb. Perspect. Med. 2:(11):a012427
    [Crossref] [Google Scholar]
  18. 18.
    Wei Y, Perez LJ, Ng WL, Semmelhack MF, Bassler BL. 2011.. Mechanism of Vibrio cholerae autoinducer-1 biosynthesis. . ACS Chem. Biol. 6:(4):35665
    [Crossref] [Google Scholar]
  19. 19.
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998.. The involvement of cell-to-cell signals in the development of a bacterial biofilm. . Science 280:(5361):29598
    [Crossref] [Google Scholar]
  20. 20.
    Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, et al. 2006.. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. . Mol. Microbiol. 59:(4):111428
    [Crossref] [Google Scholar]
  21. 21.
    Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M, Williams P. 2003.. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. . Mol. Microbiol. 50:(1):2943
    [Crossref] [Google Scholar]
  22. 22.
    Zhu J, Huang X, Zhang F, Feng L, Li J. 2015.. Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols. . J. Microbiol. 53:(12):82936
    [Crossref] [Google Scholar]
  23. 23.
    de Carvalho MP, Abraham W-R. 2012.. Antimicrobial and biofilm inhibiting diketopiperazines. . Curr. Med. Chem. 19:(21):356477
    [Crossref] [Google Scholar]
  24. 24.
    Edel M, Sturm G, Sturm-Richter K, Wagner M, Ducassou JN, et al. 2021.. Extracellular riboflavin induces anaerobic biofilm formation in Shewanella oneidensis. . Biotechnol. Biofuels 14::130
    [Crossref] [Google Scholar]
  25. 25.
    Widdel F. 2010.. Cultivation of anaerobic microorganisms with hydrocarbons as growth substrates. . In Handbook of Hydrocarbon and Lipid Microbiology, ed. KN Timmis , pp. 378798. Berlin:: Springer
    [Google Scholar]
  26. 26.
    Lewis VP, Yang S-T. 1992.. Continuous propionic acid fermentation by immobilized Propionibacterium acidipropionici in a novel packed-bed bioreactor. . Biotechnol. Bioeng. 40:(4):46574
    [Crossref] [Google Scholar]
  27. 27.
    Cuny L, Pfaff D, Luther J, Ranzinger F, Ödman P, et al. 2019.. Evaluation of productive biofilms for continuous lactic acid production. . Biotechnol. Bioeng. 116:(10):268797
    [Crossref] [Google Scholar]
  28. 28.
    Manavathu EK, Vazquez JA. 2017.. The functional resistance of biofilms. . In Antimicrobial Drug Resistance, ed. D Mayers, J Sobel, M Ouellette, K Kaye, D Marchaim , pp. 14962. Cham, Switz:.: Springer
    [Google Scholar]
  29. 29.
    Bland RR, Chen HC, Jewell WJ, Bellamy WD, Zall RR. 1982.. Continuous high rate production of ethanol by Zymomonas mobilis in an attached film expanded bed fermentor. . Biotechnol. Lett. 4:(5):32328
    [Crossref] [Google Scholar]
  30. 30.
    Reddy Kunduru M, Pometto AL. 1996.. Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. . J. Ind. Microbiol. Biotechnol. 16:(4):24956
    [Google Scholar]
  31. 31.
    Zhou B, Martin GJO, Pamment NB. 2008.. Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. . Biotechnol. Bioeng. 100:(4):62733
    [Crossref] [Google Scholar]
  32. 32.
    Li XZ, Webb JS, Kjelleberg S, Rosche B. 2006.. Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production. . Appl. Environ. Microbiol. 72:(2):163944
    [Crossref] [Google Scholar]
  33. 33.
    Halan B, Schmid A, Buehler K. 2011.. Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. . Appl. Environ. Microbiol. 77:(5):156371
    [Crossref] [Google Scholar]
  34. 34.
    Schmutzler K, Kupitz K, Schmid A, Buehler K. 2017.. Hyperadherence of Pseudomonas taiwanensis VLB120ΔC increases productivity of (S)-styrene oxide formation. . Microb. Biotechnol. 10:(4):73544
    [Crossref] [Google Scholar]
  35. 35.
    Härrer D, Elreedy A, Ali R, Hille-Reichel A, Gescher J. 2023.. Probing the robustness of Geobacter sulfurreducens against fermentation hydrolysate for uses in bioelectrochemical systems. . Bioresour. Technol. 369::128363
    [Crossref] [Google Scholar]
  36. 36.
    Heuschkel I, Hanisch S, Volke DC, Löfgren E, Hoschek A, et al. 2021.. Pseudomonas taiwanensis biofilms for continuous conversion of cyclohexanone in drip flow and rotating bed reactors. . Eng. Life Sci. 21:(3–4):25869
    [Crossref] [Google Scholar]
  37. 37.
    Setyawati MI, Chien LJ, Lee CK. 2009.. Self-immobilized recombinant Acetobacter xylinum for biotransformation. . Biochem. Eng. J. 43:(1):7884
    [Crossref] [Google Scholar]
  38. 38.
    Zhang Q, Nguyen D, Tai JSB, Xu XJ, Nijjer J, et al. 2022.. Mechanical resilience of biofilms toward environmental perturbations mediated by extracellular matrix. . Adv. Funct. Mater. 32:(23):2110699
    [Crossref] [Google Scholar]
  39. 39.
    Doran PM, Bailey JE. 1986.. Effects of immobilization on growth, fermentation properties, and macromolecular composition of Saccharomyces cerevisiae attached to gelatin. . Biotechnol. Bioeng. 28:(1):7387
    [Crossref] [Google Scholar]
  40. 40.
    Zhang X, Bury S, DiBiasio D, Miller JE. 1989.. Effects of immobilization on growth, substrate consumption, β-galactosidase induction, and byproduct formation in Escherichia coli. . J. Ind. Microbiol. 4:(3):23946
    [Crossref] [Google Scholar]
  41. 41.
    Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P. 2014.. Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. . N. Biotechnol. 31:(5):45159
    [Crossref] [Google Scholar]
  42. 42.
    Bond MC, Vidakovic L, Singh PK, Drescher K, Nadell CD. 2021.. Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells. . eLife 10::e65355
    [Crossref] [Google Scholar]
  43. 43.
    Dunsing V, Irmscher T, Barbirz S, Chiantia S. 2019.. Purely polysaccharide-based biofilm matrix provides size-selective diffusion barriers for nanoparticles and bacteriophages. . Biomacromolecules 20:(10):384254
    [Crossref] [Google Scholar]
  44. 44.
    Weuster-Botz D, Aivasidis A, Wandrey C. 1993.. Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor. Part II: process development for the fermentation of hydrolysed B-starch without sterilization. . Appl. Microbiol. Biotechnol. 39:(6):68590
    [Crossref] [Google Scholar]
  45. 45.
    Van Groenestijn JW, Geelhoed JS, Goorissen HP, Meesters KPM, Stams AJM, Claassen PAM. 2009.. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer. . Biotechnol. Bioeng. 102:(5):136167
    [Crossref] [Google Scholar]
  46. 46.
    Young E, Melaugh G, Allen RJ. 2023.. Active layer dynamics drives a transition to biofilm fingering. . NPJ Biofilms Microbiomes 9::17
    [Crossref] [Google Scholar]
  47. 47.
    Woo JKK, Webb JS, Kirov SM, Kjelleberg S, Rice SA. 2012.. Biofilm dispersal cells of a cystic fibrosis Pseudomonas aeruginosa isolate exhibit variability in functional traits likely to contribute to persistent infection. . FEMS Immunol. Med. Microbiol. 66:(2):25164
    [Crossref] [Google Scholar]
  48. 48.
    Jung T, Hackbarth M, Horn H, Gescher J. 2020.. Improving the cathodic biofilm growth capabilities of Kyrpidia spormannii EA-1 by undirected mutagenesis. . Microorganisms 9:(1):77
    [Crossref] [Google Scholar]
  49. 49.
    Yi H, Nevin KP, Kim B-C, Franks AE, Klimes A, et al. 2009.. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. . Biosens. Bioelectron. 24:(12):3498503
    [Crossref] [Google Scholar]
  50. 50.
    Yamamoto K, Kusada H, Kamagata Y, Tamaki H. 2021.. Parallel evolution of enhanced biofilm formation and phage-resistance in Pseudomonas aeruginosa during adaptation process in spatially heterogeneous environments. . Microorganisms 9:(3):569
    [Crossref] [Google Scholar]
  51. 51.
    Riegler P, Bieringer E, Chrusciel T, Stärz M, Löwe H, Weuster-Botz D. 2019.. Continuous conversion of CO2/H2 with Clostridium aceticum in biofilm reactors. . Bioresour. Technol. 291::121760
    [Crossref] [Google Scholar]
  52. 52.
    Shen Y, Brown R, Wen Z. 2014.. Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. . Biochem. Eng. J. 85::2129
    [Crossref] [Google Scholar]
  53. 53.
    Schmeckebier A, Zayed A, Ulber R. 2022.. Productive biofilms: from prokaryotic to eukaryotic systems. . J. Chem. Technol. Biotechnol. 97:(11):304964
    [Crossref] [Google Scholar]
  54. 54.
    Ercan D, Demirci A. 2015.. Current and future trends for biofilm reactors for fermentation processes. . Crit. Rev. Biotechnol. 35:(1):114
    [Crossref] [Google Scholar]
  55. 55.
    Pichardo-Romero D, Garcia-Arce ZP, Zavala-Ramírez A, Castro-Muñoz R. 2020.. Current advances in biofouling mitigation in membranes for water treatment: an overview. . Processes 8:(2):182
    [Crossref] [Google Scholar]
  56. 56.
    Klein E, Weiler J, Wagner M, Čelikić M, Niemeyer CM, et al. 2022.. Enrichment of phosphate-accumulating organisms (PAOs) in a microfluidic model biofilm system by mimicking a typical aerobic granular sludge feast/famine regime. . Appl. Microbiol. Biotechnol. 106:(3):131324
    [Crossref] [Google Scholar]
  57. 57.
    Pratofiorito G, Hackbarth M, Mandel C, Madlanga S, West S, et al. 2021.. A membrane biofilm reactor for hydrogenotrophic methanation. . Bioresour. Technol. 321::124444
    [Crossref] [Google Scholar]
  58. 58.
    Halan B, Buehler K, Schmid A. 2012.. Biofilms as living catalysts in continuous chemical syntheses. . Trends Biotechnol. 30:(9):45365
    [Crossref] [Google Scholar]
  59. 59.
    Ferone M, Raganati F, Ercole A, Olivieri G, Salatino P, Marzocchella A. 2018.. Continuous succinic acid fermentation by Actinobacillus succinogenes in a packed-bed biofilm reactor. . Biotechnol. Biofuels 11::138
    [Crossref] [Google Scholar]
  60. 60.
    Liu X, Chung YK, Yang ST, Yousef AE. 2005.. Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. . Process Biochem. 40:(1):1324
    [Crossref] [Google Scholar]
  61. 61.
    Lee HK, Maddox IS. 1986.. Continuous production of 2,3-butanediol from whey permeate using Klebsiella pneumoniae immobilized in calcium alginate. . Enzyme Microb. Technol. 8:(7):40911
    [Crossref] [Google Scholar]
  62. 62.
    Lienhardt J, Schripsema J, Qureshi N, Blaschek HP. 2002.. Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor: increase in sugar utilization. . Appl. Biochem. Biotechnol. 100:(1):59198
    [Crossref] [Google Scholar]
  63. 63.
    Kongjan P, Inchan S, Chanthong S, Jariyaboon R, Reungsang A, O-Thong S. 2019.. Hydrogen production from xylose by moderate thermophilic mixed cultures using granules and biofilm up-flow anaerobic reactors. . Int. J. Hydrog. Energy 44:(6):331724
    [Crossref] [Google Scholar]
  64. 64.
    Zhang H, Chen G, Zhang Q, Lee DJ, Zhang Z, et al. 2017.. Photosynthetic hydrogen production by alginate immobilized bacterial consortium. . Bioresour. Technol. 236::4448
    [Crossref] [Google Scholar]
  65. 65.
    Sagir E, Alipour S, Elkahlout K, Koku H, Gunduz U, et al. 2018.. Biological hydrogen production from sugar beet molasses by agar immobilized R. capsulatus in a panel photobioreactor. . Int. J. Hydrog. Energy 43:(32):1498795
    [Crossref] [Google Scholar]
  66. 66.
    Roukas T. 2018.. Modified rotary biofilm reactor: a new tool for enhanced carotene productivity by Blakeslea trispora. . J. Clean. Prod. 174::111421
    [Crossref] [Google Scholar]
  67. 67.
    Arslan K, Bayar B, Nalakath Abubackar H, Veiga MC, Kennes C. 2019.. Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas. . Bioresour. Technol. 292::121941
    [Crossref] [Google Scholar]
  68. 68.
    Devarapalli M, Lewis RS, Atiyeh HK. 2017.. Continuous ethanol production from synthesis gas by Clostridium ragsdalei in a trickle-bed reactor. . Ferment 3:(2):23
    [Crossref] [Google Scholar]
  69. 69.
    Devarapalli M, Atiyeh HK, Phillips JR, Lewis RS, Huhnke RL. 2016.. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. . Bioresour. Technol. 209::5665
    [Crossref] [Google Scholar]
  70. 70.
    Shen Y, Brown RC, Wen Z. 2017.. Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. . Appl. Energy 187::58594
    [Crossref] [Google Scholar]
  71. 71.
    Tsoligkas AN, Winn M, Bowen J, Overton TW, Simmons MJH, Goss RJM. 2011.. Engineering biofilms for biocatalysis. . ChemBioChem 12:(9):139195
    [Crossref] [Google Scholar]
  72. 72.
    Ercan D, Pongtharangkul T, Demirci A, Pometto AL. 2015.. Applications of biofilm reactors for production of value-added products by microbial fermentation. . In Biofilms in the Food Environment, ed. AL Pometto III, A Demirci , pp. 25583. Chicago:: Inst. Food Technol. , 2nd ed..
    [Google Scholar]
  73. 73.
    Tay A, Yang ST. 2002.. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. . Biotechnol. Bioeng. 80:(1):112
    [Crossref] [Google Scholar]
  74. 74.
    Bradfield MFA, Mohagheghi A, Salvachúa D, Smith H, Black BA, et al. 2016.. Continuous succinic acid production from xylose by Actinobacillus succinogenes. . Bioprocess Biosyst. Eng. 39:(2):23344
    [Crossref] [Google Scholar]
  75. 75.
    Gu C, Zhou Y, Liu L, Tan T, Deng L. 2013.. Production of fumaric acid by immobilized Rhizopus arrhizus on net. . Bioresour. Technol. 131::3037
    [Crossref] [Google Scholar]
  76. 76.
    Cao N, Du J, Gong CS, Tsao GT. 1996.. Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. . Appl. Environ. Microbiol. 62:(8):292631
    [Crossref] [Google Scholar]
  77. 77.
    Yu B, Zhang X, Sun W, Xi X, Zhao N, et al. 2018.. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam. . J. Biotechnol. 276–77::19
    [Crossref] [Google Scholar]
  78. 78.
    Jianlong W. 2000.. Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). . Bioresour. Technol. 75:(3):24547
    [Crossref] [Google Scholar]
  79. 79.
    Horiuchi JI, Tabata K, Kanno T, Kobayashi M. 2000.. Continuous acetic acid production by a packed bed bioreactor employing charcoal pellets derived from waste mushroom medium. . J. Biosci. Bioeng. 89:(2):12630
    [Crossref] [Google Scholar]
  80. 80.
    Talabardon M, Schwitzguébel JP, Péringer P, Yang ST. 2008.. Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor. . Biotechnol. Prog. 16:(6):100817
    [Crossref] [Google Scholar]
  81. 81.
    Gross R, Buehler K, Schmid A. 2013.. Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. . Biotechnol. Bioeng. 110:(2):42436
    [Crossref] [Google Scholar]
  82. 82.
    Hoschek A, Heuschkel I, Schmid A, Bühler B, Karande R, Bühler K. 2019.. Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol. . Bioresour. Technol. 282::17178
    [Crossref] [Google Scholar]
  83. 83.
    Napoli F, Olivieri G, Russo ME, Marzocchella A, Salatino P. 2010.. Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. . J. Ind. Microbiol. Biotechnol. 37:(6):6038
    [Crossref] [Google Scholar]
  84. 84.
    Qureshi N, Lai LL, Blaschek HP. 2004.. Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. . Food Bioprod. Process. 82:(2):16473
    [Crossref] [Google Scholar]
  85. 85.
    Qureshi N, Karcher P, Cotta M, Blaschek HP. 2004.. High-productivity continuous biofilm reactor for butanol production: effect of acetate, butyrate, and corn steep liquor on bioreactor performance. . Appl. Biochem. Biotechnol. A 114:(1–3):71321
    [Crossref] [Google Scholar]
  86. 86.
    Qureshi N, Schripsema J, Lienhardt J, Blaschek HP. 2000.. Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick. . World J. Microbiol. Biotechnol. 16:(4):37782
    [Crossref] [Google Scholar]
  87. 87.
    Qureshi N, Maddox IS. 1987.. Continuous solvent production from whey permeate using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. . Enzyme Microb. Technol. 9:(11):66871
    [Crossref] [Google Scholar]
  88. 88.
    Hekmat D, Bauer R, Neff V. 2007.. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. . Process Biochem. 42:(1):7176
    [Crossref] [Google Scholar]
  89. 89.
    Naghmouchi K, Fliss I, Drider D, Lacroix C. 2008.. Pediocin PA-1 production during repeated-cycle batch culture of immobilized Pediococcus acidilactici UL5 cells. . J. Biosci. Bioeng. 105:(5):51317
    [Crossref] [Google Scholar]
  90. 90.
    Pongtharangku T, Demirci A. 2007.. Online recovery of nisin during fermentation and its effect on nisin production in biofilm reactor. . Appl. Microbiol. Biotechnol. 74:(3):55562
    [Crossref] [Google Scholar]
  91. 91.
    Srivastava P, Kundu S. 1999.. Studies on cephalosporin-C production in an air lift reactor using different growth modes of Cephalosporium acremonium. . Process Biochem. 34:(4):32933
    [Crossref] [Google Scholar]
  92. 92.
    Ercan D, Demirci A. 2015.. Enhanced human lysozyme production by Kluyveromyces lactis K7 in biofilm reactor coupled with online recovery system. . Biochem. Eng. J. 98::6874
    [Crossref] [Google Scholar]
  93. 93.
    Renaudie M, Dumas C, Vuilleumier S, Ernst B. 2021.. Biohydrogen production in a continuous liquid/gas hollow fiber membrane bioreactor: efficient retention of hydrogen producing bacteria via granule and biofilm formation. . Bioresour. Technol. 319::124203
    [Crossref] [Google Scholar]
  94. 94.
    O-Thong S, Prasertsan P, Karakashev D, Angelidaki I. 2008.. High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules. . Int. J. Hydrog. Energy 33:(22):6498508
    [Crossref] [Google Scholar]
  95. 95.
    Zagrodnik R, Seifert K, Stodolny M, Laniecki M. 2015.. Continuous photofermentative production of hydrogen by immobilized Rhodobacter sphaeroides O.U.001. . Int. J. Hydrog. Energy 40:(15):506273
    [Crossref] [Google Scholar]
  96. 96.
    Zagrodnik R, Thiel M, Seifert K, Włodarczak M, Łaniecki M. 2013.. Application of immobilized Rhodobacter sphaeroides bacteria in hydrogen generation process under semi-continuous conditions. . Int. J. Hydrog. Energy 38:(18):763239
    [Crossref] [Google Scholar]
  97. 97.
    Xie G-J, Liu B-F, Ding J, Xing D-F, Ren H-Y, et al. 2012.. Enhanced photo-H2 production by Rhodopseudomonas faecalis RLD-53 immobilization on activated carbon fibers. . Biomass Bioenergy 44::12229
    [Crossref] [Google Scholar]
  98. 98.
    Tian X, Liao Q, Zhu X, Wang Y, Zhang P, et al. 2010.. Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. . Bioresour. Technol. 101:(3):97783
    [Crossref] [Google Scholar]
  99. 99.
    Gross R, Lang K, Bühler K, Schmid A. 2010.. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. . Biotechnol. Bioeng. 105:(4):70517
    [Crossref] [Google Scholar]
  100. 100.
    Halan B, Schmid A, Buehler K. 2010.. Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. . Biotechnol. Bioeng. 106:(4):51627
    [Crossref] [Google Scholar]
  101. 101.
    Zhang S, Norrlöw O, Wawrzynczyk J, Dey ES. 2004.. Poly(3-hydroxybutyrate) biosynthesis in the biofilm of Alcaligenes eutrophus, using glucose enzymatically released from pulp fiber sludge. . Appl. Environ. Microbiol. 70:(11):677682
    [Crossref] [Google Scholar]
  102. 102.
    Perni S, Hackett L, Goss RJM, Simmons MJ, Overton TW. 2013.. Optimisation of engineered Escherichia coli biofilms for enzymatic biosynthesis of l-halotryptophans. . AMB Express 3::66
    [Crossref] [Google Scholar]
  103. 103.
    Logan BE. 2009.. Exoelectrogenic bacteria that power microbial fuel cells. . Nat. Rev. Microbiol. 7:(5):37581
    [Crossref] [Google Scholar]
  104. 104.
    Richter K, Schicklberger M, Gescher J. 2012.. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. . Appl. Environ. Microbiol. 78:(4):91321
    [Crossref] [Google Scholar]
  105. 105.
    Kerisit S, Rosso KM, Dupuis M, Valiev M. 2007.. Molecular computational investigation of electron-transfer kinetics across cytochrome−iron oxide interfaces. . J. Phys. Chem. C 111:(30):1136375
    [Crossref] [Google Scholar]
  106. 106.
    Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. 2005.. Extracellular electron transfer via microbial nanowires. . Nature 435:(7045):1098101
    [Crossref] [Google Scholar]
  107. 107.
    Sure S, Ackland ML, Torriero AAJ, Adholeya A, Kochar M. 2016.. Microbial nanowires: an electrifying tale. . Microbiology 162:(12):201728
    [Crossref] [Google Scholar]
  108. 108.
    Lovley DR, Walker DJF. 2019.. Geobacter protein nanowires. . Front. Microbiol. 10::474567
    [Crossref] [Google Scholar]
  109. 109.
    Rousseau R, Etcheverry L, Roubaud E, Basséguy R, Délia ML, Bergel A. 2020.. Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint. . Appl. Energy 257::113938
    [Crossref] [Google Scholar]
  110. 110.
    Philipp L-A, Edel M, Gescher J. 2020.. Genetic engineering for enhanced productivity in bioelectrochemical systems. . Adv. Appl. Microbiol. 111::131
    [Crossref] [Google Scholar]
  111. 111.
    Li F, Li Y, Sun L, Chen X, An X, et al. 2018.. Modular engineering intracellular NADH regeneration boosts extracellular electron transfer of Shewanella oneidensis MR-1. . ACS Synth. Biol. 7:(3):88595
    [Crossref] [Google Scholar]
  112. 112.
    Vellingiri A, Song YE, Munussami G, Kim C, Park C, et al. 2019.. Overexpression of c-type cytochrome, CymA in Shewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell. . J. Chem. Technol. Biotechnol. 94:(7):211522
    [Crossref] [Google Scholar]
  113. 113.
    Delgado VP, Paquete CM, Sturm G, Gescher J. 2019.. Improvement of the electron transfer rate in Shewanella oneidensis MR-1 using a tailored periplasmic protein composition. . Bioelectrochemistry 129::1825
    [Crossref] [Google Scholar]
  114. 114.
    Min D, Cheng L, Zhang F, Huang XN, Li DB, et al. 2017.. Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. . Environ. Sci. Technol. 51:(9):508289
    [Crossref] [Google Scholar]
  115. 115.
    Leang C, Malvankar NS, Franks AE, Nevin KP, Lovley DR. 2013.. Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. . Energy Environ. Sci. 6:(6):19018
    [Crossref] [Google Scholar]
  116. 116.
    Amikam D, Galperin MY. 2006.. PilZ domain is part of the bacterial c-di-GMP binding protein. . Bioinformatics 22:(1):36
    [Crossref] [Google Scholar]
  117. 117.
    Wang Z, Hu Y, Dong Y, Shi L, Jiang Y. 2023.. Enhancing electrical outputs of the fuel cells with Geobacter sulferreducens by overexpressing nanowire proteins. . Microb. Biotechnol. 16:(3):53445
    [Crossref] [Google Scholar]
  118. 118.
    Chen M, Zhou X, Liu X, Zeng RJ, Zhang F, et al. 2018.. Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles. . Biosens. Bioelectron. 108::2026
    [Crossref] [Google Scholar]
  119. 119.
    Knoll MT, Fuderer E, Gescher J. 2022.. Sprayable biofilm—agarose hydrogels as 3D matrix for enhanced productivity in bioelectrochemical systems. . Biofilm 4::100077
    [Crossref] [Google Scholar]
  120. 120.
    Mier AA, Olvera-Vargas H, Mejía-López M, Longoria A, Verea L, et al. 2021.. A review of recent advances in electrode materials for emerging bioelectrochemical systems: from biofilm-bearing anodes to specialized cathodes. . Chemosphere 283::131138
    [Crossref] [Google Scholar]
  121. 121.
    Zhang C, Liang P, Jiang Y, Huang X. 2015.. Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode. . J. Power Sources 273::58083
    [Crossref] [Google Scholar]
  122. 122.
    Liu P, Zhang C, Liang P, Jiang Y, Zhang X, Huang X. 2019.. Enhancing extracellular electron transfer efficiency and bioelectricity production by vapor polymerization poly (3,4-ethylenedioxythiophene)/MnO2 hybrid anode. . Bioelectrochemistry 126::7278
    [Crossref] [Google Scholar]
  123. 123.
    Cui HF, Du L, Guo PB, Zhu B, Luong JHT. 2015.. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. . J. Power Sources 283::4653
    [Crossref] [Google Scholar]
  124. 124.
    Hackbarth M, Gescher J, Horn H, Reiner JE. 2023.. A scalable, rotating disc bioelectrochemical reactor (RDBER) suitable for the cultivation of both cathodic and anodic biofilms. . Bioresour. Technol. Rep. 21::101357
    [Crossref] [Google Scholar]
  125. 125.
    Liu SH, Lee KY. 2022.. Performance of a packed-bed anode bio-electrochemical reactor for power generation and for removal of gaseous acetone. . J. Environ. Manag. 314::115062
    [Crossref] [Google Scholar]
  126. 126.
    Werpy T, Petersen G. 2004.. Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas. Rep. , US Natl. Renew. Energy Lab., Golden, CO:
    [Google Scholar]
  127. 127.
    Zhang L, Liu Q, Ge Y, Li L, Gao C, et al. 2015.. Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. . Green Chem. 18:(6):156070
    [Crossref] [Google Scholar]
  128. 128.
    Cui Z, Wang Z, Zheng M, Chen T. 2022.. Advances in biological production of acetoin: a comprehensive overview. . Crit. Rev. Biotechnol. 42:(8):113556
    [Crossref] [Google Scholar]
  129. 129.
    Bursac T, Gralnick JA, Gescher J. 2017.. Acetoin production via unbalanced fermentation in Shewanella oneidensis. . Biotechnol. Bioeng. 114:(6):128389
    [Crossref] [Google Scholar]
  130. 130.
    Kong S, Zhao J, Luo J, Yuan Q, Chen T, et al. 2023.. Coproduction of bioelectricity and acetoin by unbalanced fermentation of glycerol in Shewanella oneidensis based on a genome-scale metabolic network. . ACS Sustain. Chem. Eng. 11:(32):1189099
    [Crossref] [Google Scholar]
  131. 131.
    Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA. 2010.. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. . mBio 1:(5):190200
    [Crossref] [Google Scholar]
  132. 132.
    Flexer V, Jourdin L. 2020.. Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide. . Acc. Chem. Res. 53:(2):31121
    [Crossref] [Google Scholar]
  133. 133.
    Wang G, Huang Q, Song TS, Xie J. 2020.. Enhancing microbial electrosynthesis of acetate and butyrate from CO2 reduction involving engineered Clostridium ljungdahlii with a nickel-phosphide-modified electrode. . Energy Fuels 34:(7):866675
    [Crossref] [Google Scholar]
  134. 134.
    Ye J, Ren G, Wang C, Hu A, Li F, et al. 2021.. A facile and fast strategy for cathodic electroactive-biofilm assembly via magnetic nanoparticle bioconjugation. . Biosens. Bioelectron. 190::113464
    [Crossref] [Google Scholar]
  135. 135.
    Boto ST, Bardl B, Harnisch F, Rosenbaum MA. 2023.. Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products. . Green Chem. 25:(11):437586
    [Crossref] [Google Scholar]
  136. 136.
    Mayer F, Enzmann F, Lopez AM, Holtmann D. 2019.. Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide. . Bioresour. Technol. 289::121706
    [Crossref] [Google Scholar]
  137. 137.
    Ning X, Lin R, O'Shea R, Wall D, Deng C, et al. 2021.. Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems. . iScience 24:(9):102998
    [Crossref] [Google Scholar]
  138. 138.
    Jourdin L, Raes SMT, Buisman CJN, Strik DPBTB. 2018.. Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. . Front. Energy Res. 6::341742
    [Crossref] [Google Scholar]
  139. 139.
    Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. 2013.. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. . Environ. Sci. Technol. 47:(11):602329
    [Crossref] [Google Scholar]
  140. 140.
    Schlegel HG, Lafferty R. 1965.. Growth of ‘knallgas’ bacteria (Hydrogenomonas) using direct electrolysis of the culture medium. . Nature 205:(4968):3089
    [Crossref] [Google Scholar]
  141. 141.
    Li Z, Li G, Chen X, Xia Z, Yao J, et al. 2018.. Water splitting–biosynthetic hybrid system for CO2 conversion using nickel nanoparticles embedded in N-doped carbon nanotubes. . ChemSusChem 11:(14):238287
    [Crossref] [Google Scholar]
  142. 142.
    Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colón B, et al. 2015.. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. . PNAS 112:(8):233742
    [Crossref] [Google Scholar]
  143. 143.
    Krieg T, Sydow A, Faust S, Huth I, Holtmann D. 2018.. CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with Cupriavidus necator. . Angew. Chem. Int. Ed. 57:(7):187982
    [Crossref] [Google Scholar]
  144. 144.
    Wu H, Pan H, Li Z, Liu T, Liu F, et al. 2022.. Efficient production of lycopene from CO2 via microbial electrosynthesis. . Chem. Eng. J. 430::132943
    [Crossref] [Google Scholar]
  145. 145.
    Reiner JE, Jung T, Lapp CJ, Siedler M, Bunk B, et al. 2018.. Kyrpidia spormannii sp. nov., a thermophilic, hydrogenoxidizing, facultative autotroph, isolated from hydrothermal systems at São Miguel Island, and emended description of the genus Kyrpidia. . Int. J. Syst. Evol. Microbiol. 68:(12):373540
    [Crossref] [Google Scholar]
  146. 146.
    Reiner JE, Geiger K, Hackbarth M, Fink M, Lapp CJ, et al. 2020.. From an extremophilic community to an electroautotrophic production strain: identifying a novel Knallgas bacterium as cathodic biofilm biocatalyst. . ISME J. 14:(5):112540
    [Crossref] [Google Scholar]
  147. 147.
    Pillot G, Sunny S, Comes V, Kerzenmacher S. 2022.. Optimization of growth and electrosynthesis of PolyHydroxyAlkanoates by the thermophilic bacterium Kyrpidia spormannii. . Bioresour. Technol. Rep. 17::100949
    [Crossref] [Google Scholar]
  148. 148.
    Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS. 2005.. Biofilm reactors for industrial bioconversion process: employing potential of enhanced reaction rates. . Microb. Cell Fact. 4::24
    [Crossref] [Google Scholar]
  149. 149.
    Morgan-Sagastume F. 2018.. Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (MBBRs) for wastewater treatment. . Crit. Rev. Environ. Sci. Technol. 48:(5):43970
    [Crossref] [Google Scholar]
  150. 150.
    Jo J, Price-Whelan A, Dietrich LEP. 2022.. Gradients and consequences of heterogeneity in biofilms. . Nat. Rev. Microbiol. 20:(10):593607
    [Crossref] [Google Scholar]
  151. 151.
    Rumbaugh KP, Sauer K. 2020.. Biofilm dispersion. . Nat. Rev. Microbiol. 18:(10):57186
    [Crossref] [Google Scholar]
  152. 152.
    Cheng KC, Demirci A, Catchmark JM. 2010.. Advances in biofilm reactors for production of value-added products. . Appl. Microbiol. Biotechnol. 87:(2):44556
    [Crossref] [Google Scholar]
  153. 153.
    Klein EM, Knoll MT, Gescher J. 2023.. Microbe-anode interactions: comparing the impact of genetic and material engineering approaches to improve the performance of microbial electrochemical systems (MES). . Microb. Biotechnol. 16:(6):1179202
    [Crossref] [Google Scholar]
  154. 154.
    Ayol A, Peixoto L, Keskin T, Abubackar HN, Zhao Y, et al. 2021.. Reactor designs and configurations for biological and bioelectrochemical C1 gas conversion: a review. . Int. J. Environ. Res. Public Health 18:(21):11683
    [Crossref] [Google Scholar]
  155. 155.
    Neu TR, Lawrence JR. 2015.. Innovative techniques, sensors, and approaches for imaging biofilms at different scales. . Trends Microbiol. 23:(4):23342
    [Crossref] [Google Scholar]
  156. 156.
    Wagner M, Horn H. 2017.. Optical coherence tomography in biofilm research: a comprehensive review. . Biotechnol. Bioeng. 114:(7):1386402
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100522-110939
Loading
/content/journals/10.1146/annurev-chembioeng-100522-110939
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error