1932

Abstract

Various technologies and strategies have been proposed to decarbonize the chemical industry. Assessing the decarbonization, environmental, and economic implications of these technologies and strategies is critical to identifying pathways to a more sustainable industrial future. This study reviews recent advancements and integration of systems analysis models, including process analysis, material flow analysis, life cycle assessment, techno-economic analysis, and machine learning. These models are categorized based on analytical methods and application scales (i.e., micro-, meso-, and macroscale) for promising decarbonization technologies (e.g., carbon capture, storage, and utilization, biomass feedstock, and electrification) and circular economy strategies. Incorporating forward-looking, data-driven approaches into existing models allows for optimizing complex industrial systems and assessing future impacts. Although advances in industrial ecology–, economic-, and planetary boundary–based modeling support a more holistic systems-level assessment, more efforts are needed to consider impacts on ecosystems. Effective applications of these advanced, integrated models require cross-disciplinary collaborations across chemical engineering, industrial ecology, and economics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100522-114115
2024-07-24
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100522-114115.html?itemId=/content/journals/10.1146/annurev-chembioeng-100522-114115&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Econ. Consult. Team. 2019.. The global chemical industry: catalyzing growth and addressing our world's sustainability challenges. Rep. , Oxford Econ., Oxford Univ., Cambridge, UK:
    [Google Scholar]
  2. 2.
    Meng F, Wagner A, Kremer AB, Kanazawa D, Leung JJ, et al. 2023.. Planet-compatible pathways for transitioning the chemical industry. . PNAS 120:(8):e2218294120
    [Crossref] [Google Scholar]
  3. 3.
    Int. Energy Agency. 2022.. Tracking industry 2021. Int. Energy Agency, Paris:. https://www.iea.org/energy-system/industry#tracking
    [Google Scholar]
  4. 4.
    Int. Energy Agency. 2022.. Chemicals—analysis. Int. Energy Agency, Paris:. https://www.iea.org/energy-system/industry/chemicals
    [Google Scholar]
  5. 5.
    Stegmann P, Daioglou V, Londo M, van Vuuren DP, Junginger M. 2022.. Plastic futures and their CO2 emissions. . Nature 612:(7939):27276
    [Crossref] [Google Scholar]
  6. 6.
    Bachmann M, Zibunas C, Hartmann J, Tulus V, Suh S, et al. 2023.. Towards circular plastics within planetary boundaries. . Nat. Sustain. 6:(5):599610
    [Crossref] [Google Scholar]
  7. 7.
    Huo J, Wang Z, Oberschelp C, Guillén-Gosálbez G, Hellweg S. 2022.. Net-zero transition of the global chemical industry with CO2-feedstock by 2050: feasible yet challenging. . Green Chem. 25:(1):41530
    [Crossref] [Google Scholar]
  8. 8.
    Woodall CM, Fan Z, Lou Y, Bhardwaj A, Khatri A, et al. 2022.. Technology options and policy design to facilitate decarbonization of chemical manufacturing. . Joule 6:(11):247499
    [Crossref] [Google Scholar]
  9. 9.
    Mallapragada DS, Dvorkin Y, Modestino MA, Esposito DV, Smith WA, et al. 2023.. Decarbonization of the chemical industry through electrification: barriers and opportunities. . Joule 7:(1):2341
    [Crossref] [Google Scholar]
  10. 10.
    Xia R, Overa S, Jiao F. 2022.. Emerging electrochemical processes to decarbonize the chemical industry. . JACS Au 2:(5):105470
    [Crossref] [Google Scholar]
  11. 11.
    Schiffer ZJ, Manthiram K. 2017.. Electrification and decarbonization of the chemical industry. . Joule 1:(1):1014
    [Crossref] [Google Scholar]
  12. 12.
    Chung C, Kim J, Sovacool BK, Griffiths S, Bazilian M, Yang M. 2023.. Decarbonizing the chemical industry: a systematic review of sociotechnical systems, technological innovations, and policy options. . Energy Res. Soc. Sci. 96::102955
    [Crossref] [Google Scholar]
  13. 13.
    Gabrielli P, Rosa L, Gazzani M, Meys R, Bardow A, et al. 2023.. Net-zero emissions chemical industry in a world of limited resources. . One Earth 6::682704
    [Crossref] [Google Scholar]
  14. 14.
    Nicholson SR, Rorrer JE, Singh A, Konev MO, Rorrer NA, et al. 2022.. The critical role of process analysis in chemical recycling and upcycling of waste plastics. . Annu. Rev. Chem. Biomol. Eng. 13::30124
    [Crossref] [Google Scholar]
  15. 15.
    Bakshi BR. 2019.. Toward sustainable chemical engineering: the role of process systems engineering. . Annu. Rev. Chem. Biomol. Eng. 10::26588
    [Crossref] [Google Scholar]
  16. 16.
    Kleinekorte J, Fleitmann L, Bachmann M, Kätelhön A, Barbosa-Póvoa A, et al. 2020.. Life cycle assessment for the design of chemical processes, products, and supply chains. . Annu. Rev. Chem. Biomol. Eng. 11::20333
    [Crossref] [Google Scholar]
  17. 17.
    US Dep. Energy. 2022.. Industrial decarbonization roadmap. Rep. DOE/EE-2635 , US Dep. Energy, Washington, DC:. https://www.energy.gov/sites/default/files/2022-09/Industrial%20Decarbonization%20Roadmap.pdf
    [Google Scholar]
  18. 18.
    Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. 2020.. Designing for a green chemistry future. . Science 367:(6476):397400
    [Crossref] [Google Scholar]
  19. 19.
    Ioannou I, D'Angelo SC, Galán-Martín Á, Pozo C, Pérez-Ramírez J, Guillén-Gosálbez G. 2021.. Process modelling and life cycle assessment coupled with experimental work to shape the future sustainable production of chemicals and fuels. . React. Chem. Eng. 6:(7):117994
    [Crossref] [Google Scholar]
  20. 20.
    Farmahini AH, Krishnamurthy S, Friedrich D, Brandani S, Sarkisov L. 2021.. Performance-based screening of porous materials for carbon capture. . Chem. Rev. 121:(17):10666741
    [Crossref] [Google Scholar]
  21. 21.
    Zimmermann AW, Wunderlich J, Müller L, Buchner GA, Marxen A, et al. 2020.. Techno-economic assessment guidelines for CO2 utilization. . Front. Energy Res. 8::5
    [Crossref] [Google Scholar]
  22. 22.
    Di J, Reck BK, Miatto A, Graedel TE. 2021.. United States plastics: large flows, short lifetimes, and negligible recycling. . Resour. Conserv. Recycl. 167::105440
    [Crossref] [Google Scholar]
  23. 23.
    Levi PG, Cullen JM. 2018.. Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. . Environ. Sci. Technol. 52:(4):172534
    [Crossref] [Google Scholar]
  24. 24.
    Chaudhari US, Johnson AT, Reck BK, Handler RM, Thompson VS, et al. 2022.. Material flow analysis and life cycle assessment of polyethylene terephthalate and polyolefin plastics supply chains in the United States. . ACS Sustain. Chem. Eng. 10:(39):1314555
    [Crossref] [Google Scholar]
  25. 25.
    ISO. 2006.. ISO 14044: Environmental management, life cycle assessment, requirements and guidelines. Guidel. 14044 , ISO, Geneva:. https://www.iso.org/standard/38498.html
    [Google Scholar]
  26. 26.
    Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, et al. 2013.. Anthropogenic and natural radiative forcing. . In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al . Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  27. 27.
    Greenhouse Gas Protocol. 2023.. Guidance. https://ghgprotocol.org/guidance-0
    [Google Scholar]
  28. 28.
    Turton R, Bailie RC, Whiting WB, Shaeiwitz JA. 2008.. Analysis, Synthesis and Design of Chemical Processes. London:: Pearson Educ.
    [Google Scholar]
  29. 29.
    Mencarelli L, Chen Q, Pagot A, Grossmann IE. 2020.. A review on superstructure optimization approaches in process system engineering. . Comput. Chem. Eng. 136::106808
    [Crossref] [Google Scholar]
  30. 30.
    Mitchell TM. 1997.. Machine Learning. New York:: McGraw-Hill
    [Google Scholar]
  31. 31.
    Liao M, Lan K, Yao Y. 2022.. Sustainability implications of artificial intelligence in the chemical industry: a conceptual framework. . J. Ind. Ecol. 26:(1):16482
    [Crossref] [Google Scholar]
  32. 32.
    Ali JM, Hussain MA, Tade MO, Zhang J. 2015.. Artificial intelligence techniques applied as estimator in chemical process systems—a literature survey. . Expert Syst. Appl. 42:(14):591531
    [Crossref] [Google Scholar]
  33. 33.
    Natl. Acad. Sci. Eng. Med. 2022.. Carbon Dioxide Utilization Markets and Infrastructure: Status and Opportunities: A First Report. Washington, DC:: Natl. Acad. Sci. Eng. Med.
    [Google Scholar]
  34. 34.
    Dubey A, Arora A. 2022.. Advancements in carbon capture technologies: a review. . J. Clean. Prod. 373::133932
    [Crossref] [Google Scholar]
  35. 35.
    Cuéllar-Franca RM, Azapagic A. 2015.. Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. . J. CO2 Util. 9::82102
    [Crossref] [Google Scholar]
  36. 36.
    Gabrielli P, Gazzani M, Mazzotti M. 2020.. The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry. . Ind. Eng. Chem. Res. 59:(15):703345
    [Crossref] [Google Scholar]
  37. 37.
    Fernández JR, Garcia S, Sanz-Pérez ES. 2020.. CO2 capture and utilization editorial. . Ind. Eng. Chem. Res. 59:(15):676772
    [Crossref] [Google Scholar]
  38. 38.
    Kothandaraman J, Lopez JS, Jiang Y, Walter ED, Burton SD, et al. 2022.. Integrated capture and conversion of CO2 to methanol in a post-combustion capture solvent: heterogeneous catalysts for selective C-N bond cleavage. . Adv. Energy Mater. 12:(46):2202369
    [Crossref] [Google Scholar]
  39. 39.
    Yao Y, Marano J, Morrow WR, Masanet E. 2018.. Quantifying carbon capture potential and cost of carbon capture technology application in the U.S. refining industry. . Int. J. Greenh. Gas Control 74::8798
    [Crossref] [Google Scholar]
  40. 40.
    Kaiser S, Bringezu S. 2020.. Use of carbon dioxide as raw material to close the carbon cycle for the German chemical and polymer industries. . J. Clean. Prod. 271::122775
    [Crossref] [Google Scholar]
  41. 41.
    Ohno H, Sato H, Fukushima Y. 2018.. Configuration of materially retained carbon in our society: a WIO-MFA-based approach for Japan. . Environ. Sci. Technol. 52:(7):3899907
    [Crossref] [Google Scholar]
  42. 42.
    Roh K, Bardow A, Bongartz D, Burre J, Chung W, et al. 2020.. Early-stage evaluation of emerging CO2 utilization technologies at low technology readiness levels. . Green Chem. 22:(12):384259
    [Crossref] [Google Scholar]
  43. 43.
    Chung W, Lim H, Lee JS, Al-Hunaidy AS, Imran H, et al. 2022.. Computer-aided identification and evaluation of technologies for sustainable carbon capture and utilization using a superstructure approach. . J. CO2 Util. 61::102032
    [Crossref] [Google Scholar]
  44. 44.
    Hasan MMF, Zantye MS, Kazi MK. 2022.. Challenges and opportunities in carbon capture, utilization and storage: a process systems engineering perspective. . Comput. Chem. Eng. 166::107925
    [Crossref] [Google Scholar]
  45. 45.
    Wang K, Xu H, Yang C, Qiu T. 2021.. Machine learning-based ionic liquids design and process simulation for CO2 separation from flue gas. . Green Energy Environ. 6:(3):43243
    [Crossref] [Google Scholar]
  46. 46.
    Rahimi M, Moosavi SM, Smit B, Hatton TA. 2021.. Toward smart carbon capture with machine learning. . Cell Rep. Phys. Sci. 2:(4):100396
    [Crossref] [Google Scholar]
  47. 47.
    Yan Y, Borhani TN, Subraveti SG, Pai KN, Prasad V, et al. 2021.. Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS)—a state-of-the-art review. . Energy Environ. Sci. 14:(12):612257
    [Crossref] [Google Scholar]
  48. 48.
    Jablonka KM, Charalambous C, Fernandez ES, Wiechers G, Monteiro J, et al. 2023.. Machine learning for industrial processes: forecasting amine emissions from a carbon capture plant. . Sci. Adv. 9:(1):eadc9576
    [Crossref] [Google Scholar]
  49. 49.
    Cormos CC. 2016.. Oxy-combustion of coal, lignite and biomass: a techno-economic analysis for a large scale Carbon Capture and Storage (CCS) project in Romania. . Fuel 169::5057
    [Crossref] [Google Scholar]
  50. 50.
    Xiang D, Yang S, Liu X, Mai Z, Qian Y. 2014.. Techno-economic performance of the coal-to-olefins process with CCS. . Chem. Eng. J. 240::4554
    [Crossref] [Google Scholar]
  51. 51.
    Yang Y, Zhang Q, Yu H, Feng X. 2021.. Tech-economic and environmental analysis of energy-efficient shale gas and flue gas coupling system for chemicals manufacture and carbon capture storage and utilization. . Energy 217::119348
    [Crossref] [Google Scholar]
  52. 52.
    Al-Yaeeshi AA, Govindan R, Al-Ansari T. 2020.. Techno-economic-based dynamic network design for optimum large-scale carbon dioxide utilisation in process industries. . J. Clean. Prod. 275::122974
    [Crossref] [Google Scholar]
  53. 53.
    Tang H, Zhang S, Chen W. 2021.. Assessing representative CCUS layouts for China's power sector toward carbon neutrality. . Environ. Sci. Technol. 55:(16):1122535
    [Crossref] [Google Scholar]
  54. 54.
    van der Spek M, Fout T, Garcia M, Kuncheekanna VN, Matuszewski M, et al. 2020.. Uncertainty analysis in the techno-economic assessment of CO2 capture and storage technologies: critical review and guidelines for use. . Int. J. Greenh. Gas Control 100::103113
    [Crossref] [Google Scholar]
  55. 55.
    Bailera M, Hanak DP, Lisbona P, Romeo LM. 2019.. Techno-economic feasibility of power to gas-oxy-fuel boiler hybrid system under uncertainty. . Int. J. Hydrog. Energy 44:(19):950516
    [Crossref] [Google Scholar]
  56. 56.
    Langhorst T, McCord S, Zimmermann A, Müller L, Cremonese L, et al. 2022.. Techno-economic assessment & life cycle assessment guidelines for CO2 utilization (Version 2.0). Guidel. , Glob. CO2 Initiat., Ann Arbor, MI:
    [Google Scholar]
  57. 57.
    Terlouw T, Bauer C, Rosa L, Mazzotti M. 2021.. Life cycle assessment of carbon dioxide removal technologies: a critical review. . Energy Environ. Sci. 14:(4):170121
    [Crossref] [Google Scholar]
  58. 58.
    US Dep. Energy. 2022.. Best practices for life cycle assessment (LCA) of direct air capture with storage (DACS). Rep. , US Dep. Energy, Washington, DC:
    [Google Scholar]
  59. 59.
    Müller LJ, Kätelhön A, Bringezu S, McCoy S, Suh S, et al. 2020.. The carbon footprint of the carbon feedstock CO2. . Energy Environ. Sci. 13:(9):297992
    [Crossref] [Google Scholar]
  60. 60.
    Zang G, Sun P, Elgowainy A, Bafana A, Wang M. 2021.. Life cycle analysis of electrofuels: Fischer–Tropsch fuel production from hydrogen and corn ethanol byproduct CO2. . Environ. Sci. Technol. 55:(6):388897
    [Crossref] [Google Scholar]
  61. 61.
    Thonemann N, Pizzol M. 2019.. Consequential life cycle assessment of carbon capture and utilization technologies within the chemical industry. . Energy Environ. Sci. 12:(7):225363
    [Crossref] [Google Scholar]
  62. 62.
    Natl. Acad. Sci. Eng. Med. 2022.. Current Methods for Life Cycle Analyses of Low-Carbon Transportation Fuels in the United States. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  63. 63.
    Thonemann N, Schulte A. 2019.. From laboratory to industrial scale: a prospective LCA for electrochemical reduction of CO2 to formic acid. . Environ. Sci. Technol. 53:(21):1232029
    [Crossref] [Google Scholar]
  64. 64.
    Hoppe W, Thonemann N, Bringezu S. 2018.. Life cycle assessment of carbon dioxide-based production of methane and methanol and derived polymers. . J. Ind. Ecol. 22:(2):32740
    [Crossref] [Google Scholar]
  65. 65.
    Ravikumar D, Keoleian GA, Miller SA, Sick V. 2021.. Assessing the relative climate impact of carbon utilization for concrete, chemical, and mineral production. . Environ. Sci. Technol. 55:(17):1201931
    [Crossref] [Google Scholar]
  66. 66.
    De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. 2019.. What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science 364:(6438):eaav3506
    [Crossref] [Google Scholar]
  67. 67.
    Ioannou I, Javaloyes-Antón J, Caballero JA, Guillén-Gosálbez G. 2023.. Economic and environmental performance of an integrated CO2 refinery. . ACS Sustain. Chem. Eng. 11:(5):194961
    [Crossref] [Google Scholar]
  68. 68.
    Batchu SP, Hernandez B, Malhotra A, Fang H, Ierapetritou M, Vlachos DG. 2022.. Accelerating manufacturing for biomass conversion via integrated process and bench digitalization: a perspective. . React. Chem. Eng. 7:(4):81332
    [Crossref] [Google Scholar]
  69. 69.
    Baliban RC, Elia JA, Floudas CA. 2013.. Biomass to liquid transportation fuels (BTL) systems: process synthesis and global optimization framework. . Energy Environ. Sci. 6:(1):26787
    [Crossref] [Google Scholar]
  70. 70.
    Moncada B J, Aristizábal MV, Cardona ACA. 2016.. Design strategies for sustainable biorefineries. . Biochem. Eng. J. 116::12234
    [Crossref] [Google Scholar]
  71. 71.
    Liao M, Yao Y. 2021.. Applications of artificial intelligence-based modeling for bioenergy systems: a review. . GCB Bioenergy 13:(5):774802
    [Crossref] [Google Scholar]
  72. 72.
    Velidandi A, Gandam PK, Chinta ML, Konakanchi S, Bhavanam AR, et al. 2023.. State-of-the-art and future directions of machine learning for biomass characterization and for sustainable biorefinery. . J. Energy Chem. 81::4263
    [Crossref] [Google Scholar]
  73. 73.
    Liao M, Kelley SS, Yao Y. 2019.. Artificial neural network based modeling for the prediction of yield and surface area of activated carbon from biomass. . Biofuels Bioprod. Biorefining 13:(4):101527
    [Crossref] [Google Scholar]
  74. 74.
    Huntington T, Baral NR, Yang M, Sundstrom E, Scown CD. 2023.. Machine learning for surrogate process models of bioproduction pathways. . Bioresour. Technol. 370::128528
    [Crossref] [Google Scholar]
  75. 75.
    Fajardy M, Mac Dowell N. 2017.. Can BECCS deliver sustainable and resource efficient negative emissions?. Energy Environ. Sci. 10:(6):1389426
    [Crossref] [Google Scholar]
  76. 76.
    Prussi M, Lee U, Wang M, Malina R, Valin H, et al. 2021.. CORSIA: the first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. . Renew. Sustain. Energy Rev. 150::111398
    [Crossref] [Google Scholar]
  77. 77.
    Dornburg V, Lewandowski I, Patel M. 2003.. Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergy: an analysis and system extension of life-cycle assessment studies. . J. Ind. Ecol. 7:(3–4):93116
    [Crossref] [Google Scholar]
  78. 78.
    Sheldon RA, Sanders JPM. 2015.. Toward concise metrics for the production of chemicals from renewable biomass. . Catal. Today 239::36
    [Crossref] [Google Scholar]
  79. 79.
    Eerhart AJJE, Faaij APC, Patel MK. 2012.. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. . Energy Environ. Sci. 5:(4):640722
    [Crossref] [Google Scholar]
  80. 80.
    Liang C, Gracida-Alvarez UR, Hawkins TR, Dunn JB. 2023.. Life-cycle assessment of biochemicals with clear near-term market potential. . ACS Sustain. Chem. Eng. 11:(7):277383
    [Crossref] [Google Scholar]
  81. 81.
    Liska AJ, Yang H, Milner M, Goddard S, Blanco-Canqui H, et al. 2014.. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. . Nat. Clim. Change 4:(5):398401
    [Crossref] [Google Scholar]
  82. 82.
    Sánchez M, Amores E, Abad D, Rodríguez L, Clemente-Jul C. 2020.. Aspen Plus model of an alkaline electrolysis system for hydrogen production. . Int. J. Hydrog. Energy 45:(7):391629
    [Crossref] [Google Scholar]
  83. 83.
    Ishaq H, Dincer I. 2021.. Comparative assessment of renewable energy-based hydrogen production methods. . Renew. Sustain. Energy Rev. 135::110192
    [Crossref] [Google Scholar]
  84. 84.
    Shaner MR, Atwater HA, Lewis NS, McFarland EW. 2016.. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. . Energy Environ. Sci. 9:(7):235471
    [Crossref] [Google Scholar]
  85. 85.
    Wu N, Lan K, Yao Y. 2023.. An integrated techno-economic and environmental assessment for carbon capture in hydrogen production by biomass gasification. . Resour. Conserv. Recycl. 188::106693
    [Crossref] [Google Scholar]
  86. 86.
    Lin PY, Whang LM, Wu YR, Ren WJ, Hsiao CJ, et al. 2007.. Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. . Int. J. Hydrog. Energy 32:(12):172835
    [Crossref] [Google Scholar]
  87. 87.
    Ozbas EE, Aksu D, Ongen A, Aydin MA, Ozcan HK. 2019.. Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms. . Int. J. Hydrog. Energy 44:(32):1726068
    [Crossref] [Google Scholar]
  88. 88.
    Lee J, Hong S, Cho H, Lyu B, Kim M, et al. 2021.. Machine learning-based energy optimization for on-site SMR hydrogen production. . Energy Convers. Manag. 244::114438
    [Crossref] [Google Scholar]
  89. 89.
    Farsi A, Dincer I, Naterer GF. 2020.. Multi-objective optimization of an experimental integrated thermochemical cycle of hydrogen production with an artificial neural network. . Int. J. Hydrog. Energy. 45:(46):2435569
    [Crossref] [Google Scholar]
  90. 90.
    Saadetnejad D, Oral B, Can E, Yıldırım R. 2022.. Machine learning analysis of gas phase photocatalytic CO2 reduction for hydrogen production. . Int. J. Hydrog. Energy 47:(45):1965568
    [Crossref] [Google Scholar]
  91. 91.
    Zhao S, Li J, Chen C, Yan B, Tao J, Chen G. 2021.. Interpretable machine learning for predicting and evaluating hydrogen production via supercritical water gasification of biomass. . J. Clean. Prod. 316::128244
    [Crossref] [Google Scholar]
  92. 92.
    Ozbilen A, Aydin M, Dincer I, Rosen MA. 2013.. Life cycle assessment of nuclear-based hydrogen production via a copper-chlorine cycle: a neural network approach. . Int. J. Hydrog. Energy 38:(15):631422
    [Crossref] [Google Scholar]
  93. 93.
    Sarp S, Gonzalez Hernandez S, Chen C, Sheehan SW. 2021.. Alcohol production from carbon dioxide: methanol as a fuel and chemical feedstock. . Joule 5:(1):5976
    [Crossref] [Google Scholar]
  94. 94.
    Parigi D, Giglio E, Soto A, Santarelli M. 2019.. Power-to-fuels through carbon dioxide re-utilization and high-temperature electrolysis: a technical and economical comparison between synthetic methanol and methane. . J. Clean. Prod. 226::67991
    [Crossref] [Google Scholar]
  95. 95.
    Liu CM, Sandhu NK, McCoy ST, Bergerson JA. 2020.. A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer-Tropsch fuel production. . Sustain. Energy Fuels 4:(6):312942
    [Crossref] [Google Scholar]
  96. 96.
    Chisalita DA, Petrescu L, Cormos CC. 2020.. Environmental evaluation of European ammonia production considering various hydrogen supply chains. . Renew. Sustain. Energy Rev. 130::109964
    [Crossref] [Google Scholar]
  97. 97.
    Ibrahim Y, Al-Mohannadi DM. 2023.. Optimization of low-carbon hydrogen supply chain networks in industrial clusters. . Int. J. Hydrog. Energy 48:(36):1332542
    [Crossref] [Google Scholar]
  98. 98.
    Li L, Manier H, Manier MA. 2019.. Hydrogen supply chain network design: an optimization-oriented review. . Renew. Sustain. Energy Rev. 103::34260
    [Crossref] [Google Scholar]
  99. 99.
    Chen C, Lu Y, Banares-Alcantara R. 2019.. Direct and indirect electrification of chemical industry using methanol production as a case study. . Appl. Energy 243::7190
    [Crossref] [Google Scholar]
  100. 100.
    Schoeneberger C, Zhang J, McMillan C, Dunn JB, Masanet E. 2022.. Electrification potential of U.S. industrial boilers and assessment of the GHG emissions impact. . Adv. Appl. Energy 5::100089
    [Crossref] [Google Scholar]
  101. 101.
    Jabarivelisdeh B, Jin E, Christopher P, Masanet E. 2022.. Model-based analysis of ammonia production processes for quantifying energy use, emissions, and reduction potentials. . ACS Sustain. Chem. Eng. 10:(49):1628089
    [Crossref] [Google Scholar]
  102. 102.
    Weyand J, Habermeyer F, Dietrich RU. 2023.. Process design analysis of a hybrid power-and-biomass-to-liquid process—an approach combining life cycle and techno-economic assessment. . Fuel 342::127763
    [Crossref] [Google Scholar]
  103. 103.
    Liu Z, Chakraborty A, He T, Karimi IA. 2023.. Technoeconomic and environmental optimization of combined heat and power systems with renewable integration for chemical plants. . Appl. Therm. Eng. 219::119474
    [Crossref] [Google Scholar]
  104. 104.
    Statista. 2023.. Plastics use in the United States in 2019, with projections to 2060. https://www.statista.com/statistics/1339006/us-plastics-use-outlook/
    [Google Scholar]
  105. 105.
    Lau WWY, Shiran Y, Bailey RM, Cook E, Stuchtey MR, et al. 2020.. Evaluating scenarios toward zero plastic pollution. . Science 369:(6509):145561
    [Crossref] [Google Scholar]
  106. 106.
    Van der Hoeven M, Kobayashi Y, Diercks R. 2013.. Technology roadmap: energy and GHG reductions in the chemical industry via catalytic processes. Rep. , Int. Energy Agency, Paris:
    [Google Scholar]
  107. 107.
    van der Giesen C, Cucurachi S, Guinée J, Kramer GJ, Tukker A. 2020.. A critical view on the current application of LCA for new technologies and recommendations for improved practice. . J. Clean. Prod. 259::120904
    [Crossref] [Google Scholar]
  108. 108.
    Yao Y, Graziano DJ, Riddle M, Cresko J, Masanet E. 2016.. Prospective energy analysis of emerging technology options for the United States ethylene industry. . Ind. Eng. Chem. Res. 55:(12):3493505
    [Crossref] [Google Scholar]
  109. 109.
    Griffin PW, Hammond GP, Norman JB. 2018.. Industrial energy use and carbon emissions reduction in the chemicals sector: a UK perspective. . Appl. Energy. 227::587602
    [Crossref] [Google Scholar]
  110. 110.
    Katelhön A, Bardow A, Suh S. 2016.. Stochastic technology choice model for consequential life cycle assessment. . Environ. Sci. Technol. 50:(23):1257583
    [Crossref] [Google Scholar]
  111. 111.
    Meys R, Bachmann M, Winter B, Zibunas C, Suh S. 2021.. Plastics by a circular carbon economy. . Science 76::7176
    [Crossref] [Google Scholar]
  112. 112.
    Yang F, Meerman JC, Faaij APC. 2021.. Carbon capture and biomass in industry: a techno-economic analysis and comparison of negative emission options. . Renew. Sustain. Energy Rev. 144::111028
    [Crossref] [Google Scholar]
  113. 113.
    Intergov. Panel Clim. Change Work. Group III. 2022.. Climate change 2022: mitigation of climate change. . In Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva:: Intergov. Panel Clim. Change
    [Google Scholar]
  114. 114.
    Shao T, Pan X, Li X, Zhou S, Zhang S, Chen W. 2022.. China's industrial decarbonization in the context of carbon neutrality: a sub-sectoral analysis based on integrated modelling. . Renew. Sustain. Energy Rev. 170::112992
    [Crossref] [Google Scholar]
  115. 115.
    Yu S, Horing J, Liu Q, Dahowski R, Davidson C, et al. 2019.. CCUS in China's mitigation strategy: insights from integrated assessment modeling. . Int. J. Greenh. Gas Control 84::20418
    [Crossref] [Google Scholar]
  116. 116.
    Pauliuk S, Arvesen A, Stadler K, Hertwich EG. 2017.. Industrial ecology in integrated assessment models. . Nat. Clim. Change 7::1320
    [Crossref] [Google Scholar]
  117. 117.
    Lamers P, Ghosh T, Upasani S, Sacchi R, Daioglou V. 2023.. Linking life cycle and integrated assessment modeling to evaluate technologies in an evolving system context: a power-to-hydrogen case study for the United States. . Environ. Sci. Technol. 57:(6):246473
    [Crossref] [Google Scholar]
  118. 118.
    Watanabe MDB, Cherubini F, Tisserant A, Cavalett O. 2022.. Drop-in and hydrogen-based biofuels for maritime transport: country-based assessment of climate change impacts in Europe up to 2050. . Energy Convers. Manag. 273::116403
    [Crossref] [Google Scholar]
  119. 119.
    Pehl M, Arvesen A, Humpenöder F, Popp A, Hertwich EG, Luderer G. 2017.. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. . Nat. Energy 2:(12):93945
    [Crossref] [Google Scholar]
  120. 120.
    McDowall W, Solano Rodriguez B, Usubiaga A, Acosta Fernández J. 2018.. Is the optimal decarbonization pathway influenced by indirect emissions? Incorporating indirect life-cycle carbon dioxide emissions into a European TIMES model. . J. Clean. Prod. 170::26068
    [Crossref] [Google Scholar]
  121. 121.
    Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, et al. 2015.. Planetary boundaries: Guiding human development on a changing planet. . Science 347:(6223):1259855
    [Crossref] [Google Scholar]
  122. 122.
    Tulus V, Pérez-Ramírez J, Guillén-Gosálbez G. 2021.. Planetary metrics for the absolute environmental sustainability assessment of chemicals. . Green Chem. 23:(24):988193
    [Crossref] [Google Scholar]
  123. 123.
    Xue Y, Bakshi BR. 2022.. Metrics for a nature-positive world: a multiscale approach for absolute environmental sustainability assessment. . Sci. Total Environ. 846::157373
    [Crossref] [Google Scholar]
  124. 124.
    Bakshi BR, Ziv G, Lepech MD. 2015.. Techno-ecological synergy: a framework for sustainable engineering. . Environ. Sci. Technol. 49:(3):175260
    [Crossref] [Google Scholar]
  125. 125.
    Martinez-Hernandez E, Leung Pah Hang MY, Leach M, Yang A. 2017.. A framework for modeling local production systems with techno-ecological interactions. . J. Ind. Ecol. 21:(4):81528
    [Crossref] [Google Scholar]
  126. 126.
    Liu X, Bakshi BR. 2019.. Ecosystem services in life cycle assessment while encouraging techno-ecological synergies. . J. Ind. Ecol. 23:(2):34760
    [Crossref] [Google Scholar]
  127. 127.
    Thomassen G, Van Dael M, Van Passel S, You F. 2019.. How to assess the potential of emerging green technologies? Towards a prospective environmental and techno-economic assessment framework. . Green Chem. 21:(18):486886
    [Crossref] [Google Scholar]
  128. 128.
    Moni SM, Mahmud R, High K, Carbajales-Dale M. 2020.. Life cycle assessment of emerging technologies: a review. . J. Ind. Ecol. 24:(1):5263
    [Crossref] [Google Scholar]
  129. 129.
    Petti L, Serreli M, Di Cesare S. 2018.. Systematic literature review in social life cycle assessment. . Int. J. Life Cycle Assess. 23:(3):42231
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100522-114115
Loading
/content/journals/10.1146/annurev-chembioeng-100522-114115
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error