1932

Abstract

In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100522-114706
2024-07-24
2025-02-16
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100522-114706.html?itemId=/content/journals/10.1146/annurev-chembioeng-100522-114706&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nielsen J, Keasling JD. 2016.. Engineering cellular metabolism. . Cell 164:(6):118597
    [Crossref] [Google Scholar]
  2. 2.
    Voigt CA. 2020.. Synthetic biology 2020–2030: six commercially-available products that are changing our world. . Nat. Commun. 11::6379
    [Crossref] [Google Scholar]
  3. 3.
    Cameron DE, Bashor CJ, Collins JJ. 2014.. A brief history of synthetic biology. . Nat. Rev. Microbiol. 12:(5):38190
    [Crossref] [Google Scholar]
  4. 4.
    Flores-Bautista E, Hernandez-Guerrero R, Huerta-Saquero A, Tenorio-Salgado S, Rivera-Gomez N, et al. 2020.. Deciphering the functional diversity of DNA-binding transcription factors in Bacteria and Archaea organisms. . PLOS ONE 15:(8):e0237135
    [Crossref] [Google Scholar]
  5. 5.
    Porto EM, Komor AC, Slaymaker IM, Yeo GW. 2020.. Base editing: advances and therapeutic opportunities. . Nat. Rev. Drug Discov. 19:(12):83959
    [Crossref] [Google Scholar]
  6. 6.
    Wang H, Russa ML, Qi LS. 2016.. CRISPR/Cas9 in genome editing and beyond. . Annu. Rev. Biochem. 85::22764
    [Crossref] [Google Scholar]
  7. 7.
    Gaj T, Gersbach CA, Barbas CF III. 2013.. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. . Trends Biotechnol. 31:(7):397405
    [Crossref] [Google Scholar]
  8. 8.
    Arroyo-Olarte RD, Bravo Rodríguez R, Morales-Ríos E. 2021.. Genome editing in bacteria: CRISPR-Cas and beyond. . Microorganisms 9:(4):844
    [Crossref] [Google Scholar]
  9. 9.
    Vento JM, Crook N, Beisel CL. 2019.. Barriers to genome editing with CRISPR in bacteria. . J. Ind. Microbiol. Biotechnol. 46:(9–10):132741
    [Crossref] [Google Scholar]
  10. 10.
    Vigouroux A, Bikard D. 2020.. CRISPR tools to control gene expression in bacteria. . Microbiol. Mol. Biol. Rev. 84:(2):e00077-19
    [Crossref] [Google Scholar]
  11. 11.
    Volke DC, Martino RA, Kozaeva E, Smania AM, Nikel PI. 2022.. Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. . Nat. Commun. 13::3026
    [Crossref] [Google Scholar]
  12. 12.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. . Science 337:(6096):81621
    [Crossref] [Google Scholar]
  13. 13.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, et al. 2013.. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. . Cell 152:(5):117383
    [Crossref] [Google Scholar]
  14. 14.
    Tou CJ, Orr B, Kleinstiver BP. 2023.. Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. . Nat. Biotechnol. 41:(7):96879
    [Crossref] [Google Scholar]
  15. 15.
    Vo PLH, Ronda C, Klompe SE, Chen EE, Acree C, et al. 2021.. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. . Nat. Biotechnol. 39:(4):48089
    [Crossref] [Google Scholar]
  16. 16.
    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016.. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. . Nature 533:(7603):42024
    [Crossref] [Google Scholar]
  17. 17.
    Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, et al. 2016.. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. . Science 353:(6305):aaf8729
    [Crossref] [Google Scholar]
  18. 18.
    Anzalone AV, Koblan LW, Liu DR. 2020.. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. . Nat. Biotechnol. 38:(7):82444
    [Crossref] [Google Scholar]
  19. 19.
    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, et al. 2014.. Genome-scale CRISPR-mediated control of gene repression and activation. . Cell 159:(3):64761
    [Crossref] [Google Scholar]
  20. 20.
    Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, et al. 2017.. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. . Nat. Microbiol. 2:(4):16274
    [Crossref] [Google Scholar]
  21. 21.
    Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. 2016.. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. . Nature 532:(7600):51721
    [Crossref] [Google Scholar]
  22. 22.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, et al. 2015.. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. . Cell 163:(3):75971
    [Crossref] [Google Scholar]
  23. 23.
    Casas-Mollano JA, Zinselmeier MH, Sychla A, Smanski MJ. 2023.. Efficient gene activation in plants by the MoonTag programmable transcriptional activator. . Nucleic Acids Res. 51:(13):708393
    [Crossref] [Google Scholar]
  24. 24.
    Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, et al. 2015.. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. . Cell 160:(1–2):33950
    [Crossref] [Google Scholar]
  25. 25.
    Fontana J, Dong C, Kiattisewee C, Chavali VP, Tickman BI, et al. 2020.. Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. . Nat. Commun. 11::1618
    [Crossref] [Google Scholar]
  26. 26.
    Fontana J, Sparkman-Yager D, Zalatan JG, Carothers JM. 2020.. Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering. . Curr. Opin. Biotechnol. 64::19098
    [Crossref] [Google Scholar]
  27. 27.
    Call SN, Andrews LB. 2022.. CRISPR-based approaches for gene regulation in non-model bacteria. . Front. Genome Ed. 4::892304
    [Crossref] [Google Scholar]
  28. 28.
    Cho S, Shin J, Cho B-K. 2018.. Applications of CRISPR/Cas system to bacterial metabolic engineering. . Int. J. Mol. Sci. 19:(4):1089
    [Crossref] [Google Scholar]
  29. 29.
    Shi S, Qi N, Nielsen J. 2022.. Microbial production of chemicals driven by CRISPR-Cas systems. . Curr. Opin. Biotechnol. 73::3442
    [Crossref] [Google Scholar]
  30. 30.
    Fackler N, Heffernan J, Juminaga A, Doser D, Nagaraju S, et al. 2021.. Transcriptional control of Clostridium autoethanogenum using CRISPRi. . Synth. Biol. 6:(1):ysab008
    [Crossref] [Google Scholar]
  31. 31.
    Luo Y, Ge M, Wang B, Sun C, Wang J, et al. 2020.. CRISPR/Cas9-deaminase enables robust base editing in Rhodobacter sphaeroides 2.4.1. . Microb. Cell Factories 19::93
    [Crossref] [Google Scholar]
  32. 32.
    Mougiakos I, Orsi E, Ghiffary MR, Post W, de Maria A, et al. 2019.. Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering. . Microb. Cell Factories 18::204
    [Crossref] [Google Scholar]
  33. 33.
    Xiong B, Li Z, Liu L, Zhao D, Zhang X, Bi C. 2018.. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. . Biotechnol. Biofuels 11::172
    [Crossref] [Google Scholar]
  34. 34.
    Bhattarai-Kline S, Lear SK, Fishman CB, Lopez SC, Lockshin ER, et al. 2022.. Recording gene expression order in DNA by CRISPR addition of retron barcodes. . Nature 608:(7921):21725
    [Crossref] [Google Scholar]
  35. 35.
    Jiao C, Reckstadt C, König F, Homberger C, Yu J, et al. 2023.. RNA recording in single bacterial cells using reprogrammed tracrRNAs. . Nat. Biotechnol. 41:(8):110716
    [Crossref] [Google Scholar]
  36. 36.
    Kiga K, Tan X-E, Ibarra-Chávez R, Watanabe S, Aiba Y, et al. 2020.. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. . Nat. Commun. 11::2934
    [Crossref] [Google Scholar]
  37. 37.
    Rodrigues M, McBride SW, Hullahalli K, Palmer KL, Duerkop BA. 2019.. Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant Enterococci. . Antimicrob. Agents Chemother. 63:(11):e01454-19
    [Crossref] [Google Scholar]
  38. 38.
    Schmidt R, Steinhart Z, Layeghi M, Freimer JW, Bueno R, et al. 2022.. CRISPR activation and interference screens decode stimulation responses in primary human T cells. . Science 375:(6580):eabj4008
    [Crossref] [Google Scholar]
  39. 39.
    Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F, Collins JJ. 2021.. CRISPR-based diagnostics. . Nat. Biomed. Eng. 5:(7):64356
    [Crossref] [Google Scholar]
  40. 40.
    Tian T, Zhou X. 2023.. CRISPR-based biosensing strategies: technical development and application prospects. . Annu. Rev. Anal. Chem. 16::31132
    [Crossref] [Google Scholar]
  41. 41.
    Garamella J, Marshall R, Rustad M, Noireaux V. 2016.. The All E. coli TX-TL Toolbox 2.0: a platform for cell-free synthetic biology. . ACS Synth. Biol. 5:(4):34455
    [Crossref] [Google Scholar]
  42. 42.
    Garenne D, Thompson S, Brisson A, Khakimzhan A, Noireaux V. 2021.. The all-E. coli TXTL toolbox 3.0: new capabilities of a cell-free synthetic biology platform. . Synth. Biol. 6:(1):ysab017
    [Crossref] [Google Scholar]
  43. 43.
    Lavickova B, Maerkl SJ. 2019.. A simple, robust, and low-cost method to produce the PURE cell-free system. . ACS Synth. Biol. 8:(2):45562
    [Crossref] [Google Scholar]
  44. 44.
    Marshall R, Maxwell CS, Collins SP, Jacobsen T, Luo ML, et al. 2018.. Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system. . Mol. Cell 69:(1):14657.e3
    [Crossref] [Google Scholar]
  45. 45.
    Tickman BI, Burbano DA, Chavali VP, Kiattisewee C, Fontana J, et al. 2021.. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems. . Cell Syst. 13:(3):21529.e8
    [Crossref] [Google Scholar]
  46. 46.
    Westbrook A, Tang X, Marshall R, Maxwell CS, Chappell J, et al. 2019.. Distinct timescales of RNA regulators enable the construction of a genetic pulse generator. . Biotechnol. Bioeng. 116:(5):113951
    [Crossref] [Google Scholar]
  47. 47.
    Wimmer F, Mougiakos I, Englert F, Beisel CL. 2022.. Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons. . Mol. Cell 82:(6):121024.e6
    [Crossref] [Google Scholar]
  48. 48.
    Alba Burbano D, Cardiff RAL, Tickman BI, Kiattisewee C, Maranas CJ, et al. 2023.. Engineering activatable promoters for scalable and multi-input CRISPRa/i circuits. . PNAS 120:(30):e2220358120
    [Crossref] [Google Scholar]
  49. 49.
    Cui Y, Chen X, Wang Z, Lu Y. 2022.. Cell-free PURE system: evolution and achievements. . BioDesign Res. 2022::9847014
    [Crossref] [Google Scholar]
  50. 50.
    Karim AS, Liew FE, Garg S, Vögeli B, Rasor BJ, et al. 2020.. Modular cell-free expression plasmids to accelerate biological design in cells. . Synth. Biol. 5:(1):ysaa019
    [Crossref] [Google Scholar]
  51. 51.
    Silverman AD, Karim AS, Jewett MC. 2020.. Cell-free gene expression: an expanded repertoire of applications. . Nat. Rev. Genet. 21:(3):15170
    [Crossref] [Google Scholar]
  52. 52.
    Brandt K, Barrangou R. 2019.. Applications of CRISPR technologies across the food supply chain. . Annu. Rev. Food Sci. Technol. 10::13350
    [Crossref] [Google Scholar]
  53. 53.
    McCarty NS, Graham AE, Studená L, Ledesma-Amaro R. 2020.. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. . Nat. Commun. 11::1281
    [Crossref] [Google Scholar]
  54. 54.
    Simeonov DR, Marson A. 2019.. CRISPR-based tools in immunity. . Annu. Rev. Immunol. 37::57197
    [Crossref] [Google Scholar]
  55. 55.
    Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. 2018.. The biology of CRISPR-Cas: backward and forward. . Cell 172:(6):123959
    [Crossref] [Google Scholar]
  56. 56.
    Koonin EV, Makarova KS, Zhang F. 2017.. Diversity, classification and evolution of CRISPR-Cas systems. . Curr. Opin. Microbiol. 37::6778
    [Crossref] [Google Scholar]
  57. 57.
    Anders C, Niewoehner O, Duerst A, Jinek M. 2014.. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. . Nature 513:(7519):56973
    [Crossref] [Google Scholar]
  58. 58.
    Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 2014.. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. . Nature 507:(7490):6267
    [Crossref] [Google Scholar]
  59. 59.
    Anderson EM, Haupt A, Schiel JA, Chou E, Machado HB, et al. 2015.. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity. . J. Biotechnol. 211::5665
    [Crossref] [Google Scholar]
  60. 60.
    Chylinski K, Le Rhun A, Charpentier E. 2013.. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. . RNA Biol. 10:(5):72637
    [Crossref] [Google Scholar]
  61. 61.
    Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain A-L, et al. 2014.. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. . Nucleic Acids Res. 42:(4):257790
    [Crossref] [Google Scholar]
  62. 62.
    Chatterjee P, Lee J, Nip L, Koseki SRT, Tysinger E, et al. 2020.. A Cas9 with PAM recognition for adenine dinucleotides. . Nat. Commun. 11::2474
    [Crossref] [Google Scholar]
  63. 63.
    Horvath P, Romero DA, Coûté-Monvoisin A-C, Richards M, Deveau H, et al. 2008.. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. . J. Bacteriol. 190:(4):140112
    [Crossref] [Google Scholar]
  64. 64.
    Müller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, et al. 2016.. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. . Mol. Ther. 24:(3):63644
    [Crossref] [Google Scholar]
  65. 65.
    Mendoza BJ, Trinh CT. 2018.. In silico processing of the complete CRISPR-Cas spacer space for identification of PAM sequences. . Biotechnol. J. 13:(9):1700595
    [Crossref] [Google Scholar]
  66. 66.
    Rybnicky GA, Fackler NA, Karim AS, Köpke M, Jewett MC. 2022.. Spacer2PAM: a computational framework to guide experimental determination of functional CRISPR-Cas system PAM sequences. . Nucleic Acids Res. 50:(6):352334
    [Crossref] [Google Scholar]
  67. 67.
    Collias D, Beisel CL. 2021.. CRISPR technologies and the search for the PAM-free nuclease. . Nat. Commun. 12::555
    [Crossref] [Google Scholar]
  68. 68.
    Hu JH, Miller SM, Geurts MH, Tang W, Chen L, et al. 2018.. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. . Nature 556:(7699):5763
    [Crossref] [Google Scholar]
  69. 69.
    Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, et al. 2018.. Engineered CRISPR-Cas9 nuclease with expanded targeting space. . Science 361:(6408):125962
    [Crossref] [Google Scholar]
  70. 70.
    Chatterjee P, Jakimo N, Jacobson JM. 2018.. Minimal PAM specificity of a highly similar SpCas9 ortholog. . Sci. Adv. 4:(10):eaau0766
    [Crossref] [Google Scholar]
  71. 71.
    Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, et al. 2019.. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. . Mol. Cell 73:(4):71426.e4
    [Crossref] [Google Scholar]
  72. 72.
    Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, et al. 2015.. In vivo genome editing using Staphylococcus aureus Cas9. . Nature 520:(7546):18691
    [Crossref] [Google Scholar]
  73. 73.
    Schmidheini L, Mathis N, Marquart KF, Rothgangl T, Kissling L, et al. 2024.. Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility. . Nat. Chem. Biol. 20::33343
    [Crossref] [Google Scholar]
  74. 74.
    Hu Z, Wang S, Zhang C, Gao N, Li M, et al. 2020.. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. . PLOS Biol. 18:(3):e3000686
    [Crossref] [Google Scholar]
  75. 75.
    Tóth E, Varga É, Kulcsár PI, Kocsis-Jutka V, Krausz SL, et al. 2020.. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. . Nucleic Acids Res. 48:(7):372233
    [Crossref] [Google Scholar]
  76. 76.
    Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, et al. 2017.. Engineered Cpf1 variants with altered PAM specificities. . Nat. Biotechnol. 35:(8):78992
    [Crossref] [Google Scholar]
  77. 77.
    Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, et al. 2019.. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. . Nat. Biotechnol. 37:(3):27682
    [Crossref] [Google Scholar]
  78. 78.
    Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, et al. 2019.. Engineering of CRISPR-Cas12b for human genome editing. . Nat. Commun. 10::212
    [Crossref] [Google Scholar]
  79. 79.
    Huang CJ, Adler BA, Doudna JA. 2022.. A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. . Mol. Cell 82:(11):214860.e4
    [Crossref] [Google Scholar]
  80. 80.
    Wu WY, Mohanraju P, Liao C, Adiego-Pérez B, Creutzburg SCA, et al. 2022.. The miniature CRISPR-Cas12m effector binds DNA to block transcription. . Mol. Cell 82:(23):4487502.e7
    [Crossref] [Google Scholar]
  81. 81.
    Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, et al. 2017.. New CRISPR-Cas systems from uncultivated microbes. . Nature 542:(7640):23741
    [Crossref] [Google Scholar]
  82. 82.
    Liu J-J, Orlova N, Oakes BL, Ma E, Spinner HB, et al. 2019.. CasX enzymes comprise a distinct family of RNA-guided genome editors. . Nature 566:(7743):21823
    [Crossref] [Google Scholar]
  83. 83.
    Karvelis T, Bigelyte G, Young JK, Hou Z, Zedaveinyte R, et al. 2020.. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. . Nucleic Acids Res. 48:(9):501623
    [Crossref] [Google Scholar]
  84. 84.
    Xu X, Chemparathy A, Zeng L, Kempton HR, Shang S, et al. 2021.. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. . Mol. Cell 81:(20):433345.e4
    [Crossref] [Google Scholar]
  85. 85.
    Sharrar A, de Tacca LA, Collingwood T, Meacham Z, Rabuka D, et al. 2023. μCas, a novel class of miniature type-V Cas12f nucleases with diverse PAM. . bioRxiv 527072. https://doi.org/10.1101/2023.02.03.527072
  86. 86.
    Li Z, Zhang H, Xiao R, Han R, Chang L. 2021.. Cryo-EM structure of the RNA-guided ribonuclease Cas12g. . Nat. Chem. Biol. 17:(4):38793
    [Crossref] [Google Scholar]
  87. 87.
    Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, et al. 2019.. Functionally diverse type V CRISPR-Cas systems. . Science 363:(6422):8891
    [Crossref] [Google Scholar]
  88. 88.
    Pausch P, Al-Shayeb B, Bisom-Rapp E, Tsuchida CA, Li Z, et al. 2020.. CRISPR-CasΦ from huge phages is a hypercompact genome editor. . Science 369:(6501):33337
    [Crossref] [Google Scholar]
  89. 89.
    Wang Y, Qi T, Liu J, Yang Y, Wang Z, et al. A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing. . Sci. Adv. 9:(6):eabo6405
    [Crossref] [Google Scholar]
  90. 90.
    Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, et al. 2019.. RNA-guided DNA insertion with CRISPR-associated transposases. . Science 365:(6448):4853
    [Crossref] [Google Scholar]
  91. 91.
    Sun A, Li C-P, Chen Z, Zhang S, Li D-Y, et al. 2023.. The compact Casπ (Cas12l) ‘bracelet’ provides a unique structural platform for DNA manipulation. . Cell Res. 33:(3):22944
    [Crossref] [Google Scholar]
  92. 92.
    Urbaitis T, Gasiunas G, Young JK, Hou Z, Paulraj S, et al. 2022.. A new family of CRISPR-type V nucleases with C-rich PAM recognition. . EMBO Rep. 23:(12):e55481
    [Crossref] [Google Scholar]
  93. 93.
    Chen W, Ma J, Wu Z, Wang Z, Zhang H, et al. 2023.. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. . Mol. Cell 83:(15):276880.e6
    [Crossref] [Google Scholar]
  94. 94.
    Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, et al. 2017.. RNA targeting with CRISPR-Cas13. . Nature 550:(7675):28084
    [Crossref] [Google Scholar]
  95. 95.
    Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, et al. 2016.. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. . Science 353:(6299):aaf5573
    [Crossref] [Google Scholar]
  96. 96.
    Smargon AA, Cox DBT, Pyzocha NK, Zheng K, Slaymaker IM, et al. 2017.. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. . Mol. Cell 65:(4):61830.e7
    [Crossref] [Google Scholar]
  97. 97.
    Pyzocha NK, Chen S. 2018.. Diverse class 2 CRISPR-Cas effector proteins for genome engineering applications. . ACS Chem. Biol. 13:(2):34756
    [Crossref] [Google Scholar]
  98. 98.
    Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, et al. 2018.. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. . Mol. Cell 70:(2):32739.e5
    [Crossref] [Google Scholar]
  99. 99.
    Xu C, Zhou Y, Xiao Q, He B, Geng G, et al. 2021.. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. . Nat. Methods 18:(5):499506
    [Crossref] [Google Scholar]
  100. 100.
    Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, et al. 2015.. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. . Nature 523:(7561):48185
    [Crossref] [Google Scholar]
  101. 101.
    Legut M, Daniloski Z, Xue X, McKenzie D, Guo X, et al. 2020.. High-throughput screens of PAM-flexible Cas9 variants for gene knockout and transcriptional modulation. . Cell Rep. 30:(9):285968.e5
    [Crossref] [Google Scholar]
  102. 102.
    Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. 2020.. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. . Science 368:(6488):29096
    [Crossref] [Google Scholar]
  103. 103.
    Kim N, Kim HK, Lee S, Seo JH, Choi JW, et al. 2020.. Prediction of the sequence-specific cleavage activity of Cas9 variants. . Nat. Biotechnol. 38:(11):132836
    [Crossref] [Google Scholar]
  104. 104.
    Ma D, Xu Z, Zhang Z, Chen X, Zeng X, et al. 2019.. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. . Nat. Commun. 10::560
    [Crossref] [Google Scholar]
  105. 105.
    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, et al. 2014.. Crystal structure of Cas9 in complex with guide RNA and target DNA. . Cell 156:(5):93549
    [Crossref] [Google Scholar]
  106. 106.
    Teng Y, Wang J, Jiang T, Zou Y, Yan Y. 2023.. Engineering a Streptococcus Cas9 ortholog with an RxQ PAM-binding motif for PAM-free gene control in bacteria. . ACS Synth. Biol. 12:(9):276472
    [Crossref] [Google Scholar]
  107. 107.
    Kiattisewee C, Karanjia AV, Legut M, Daniloski Z, Koplik SE, et al. 2022.. Expanding the scope of bacterial CRISPR activation with PAM-flexible dCas9 variants. . ACS Synth. Biol. 11:(12):410312
    [Crossref] [Google Scholar]
  108. 108.
    Klanschnig M, Cserjan-Puschmann M, Striedner G, Grabherr R. 2022.. CRISPRactivation-SMS, a message for PAM sequence independent gene up-regulation in Escherichia coli. . Nucleic Acids Res. 50:(18):1077284
    [Crossref] [Google Scholar]
  109. 109.
    Jones DL, Leroy P, Unoson C, Fange D, Ćurić V, et al. 2017.. Kinetics of dCas9 target search in Escherichia coli. . Science 357:(6358):142024
    [Crossref] [Google Scholar]
  110. 110.
    Casini A, Olivieri M, Petris G, Montagna C, Reginato G, et al. 2018.. A highly specific SpCas9 variant is identified by in vivo screening in yeast. . Nat. Biotechnol. 36:(3):26571
    [Crossref] [Google Scholar]
  111. 111.
    Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, et al. 2017.. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. . Nature 550:(7676):40710
    [Crossref] [Google Scholar]
  112. 112.
    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, et al. 2016.. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. . Nature 529:(7587):49095
    [Crossref] [Google Scholar]
  113. 113.
    Kulcsár PI, Tálas A, Huszár K, Ligeti Z, Tóth E, et al. 2017.. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. . Genome Biol. 18::190
    [Crossref] [Google Scholar]
  114. 114.
    Lee JK, Jeong E, Lee J, Jung M, Shin E, et al. 2018.. Directed evolution of CRISPR-Cas9 to increase its specificity. . Nat. Commun. 9::3048
    [Crossref] [Google Scholar]
  115. 115.
    Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. 2016.. Rationally engineered Cas9 nucleases with improved specificity. . Science 351:(6268):8488
    [Crossref] [Google Scholar]
  116. 116.
    Kim D, Bae S, Park J, Kim E, Kim S, et al. 2015.. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. . Nat. Methods 12:(3):23743
    [Crossref] [Google Scholar]
  117. 117.
    Cho S, Choe D, Lee E, Kim SC, Palsson B, Cho B-K. 2018.. High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. . ACS Synth. Biol. 7:(4):108594
    [Crossref] [Google Scholar]
  118. 118.
    Zhang S, Voigt CA. 2018.. Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design. . Nucleic Acids Res. 46:(20):1111525
    [Google Scholar]
  119. 119.
    Adler BA, Trinidad MI, Bellieny-Rabelo D, Zhang E, Karp HM, et al. 2023.. CasPEDIA Database: a functional classification system for class 2 CRISPR-Cas enzymes. . Nucleic Acids Res. 52:(D1):D59096
    [Crossref] [Google Scholar]
  120. 120.
    Swarts DC, van der Oost J, Jinek M. 2017.. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. . Mol. Cell 66:(2):22133.e4
    [Crossref] [Google Scholar]
  121. 121.
    Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, et al. 2015.. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. . Mol. Cell 60:(3):38597
    [Crossref] [Google Scholar]
  122. 122.
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, et al. 2020.. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. . Nat. Rev. Microbiol. 18:(2):6783
    [Crossref] [Google Scholar]
  123. 123.
    Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, et al. 2018.. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. . Science 360:(6387):43639
    [Crossref] [Google Scholar]
  124. 124.
    Al-Shayeb B, Skopintsev P, Soczek KM, Stahl EC, Li Z, et al. 2022.. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. . Cell 185:(24):457486.e16
    [Crossref] [Google Scholar]
  125. 125.
    Wörle E, Jakob L, Schmidbauer A, Zinner G, Grohmann D. 2021.. Decoupling the bridge helix of Cas12a results in a reduced trimming activity, increased mismatch sensitivity and impaired conformational transitions. . Nucleic Acids Res. 49:(9):527893
    [Crossref] [Google Scholar]
  126. 126.
    Ma E, Chen K, Shi H, Stahl EC, Adler B, et al. 2022.. Improved genome editing by an engineered CRISPR-Cas12a. . Nucleic Acids Res. 50:(22):12689701
    [Crossref] [Google Scholar]
  127. 127.
    Nguyen LT, Rananaware SR, Yang LG, Macaluso NC, Ocana-Ortiz JE, et al. 2023.. Engineering highly thermostable Cas12b via de novo structural analyses for one-pot detection of nucleic acids. . Cell Rep. Med. 4:(5):101037
    [Crossref] [Google Scholar]
  128. 128.
    O'Connell MR. 2019.. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR-Cas systems. . J. Mol. Biol. 431:(1):6687
    [Crossref] [Google Scholar]
  129. 129.
    Meeske AJ, Nakandakari-Higa S, Marraffini LA. 2019.. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. . Nature 570:(7760):24145
    [Crossref] [Google Scholar]
  130. 130.
    Bandaru S, Tsuji MH, Shimizu Y, Usami K, Lee S, et al. 2020.. Structure-based design of gRNA for Cas13. . Sci. Rep. 10::11610
    [Crossref] [Google Scholar]
  131. 131.
    East-Seletsky A, O'Connell MR, Burstein D, Knott GJ, Doudna JA. 2017.. RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. . Mol. Cell 66:(3):37383.e3
    [Crossref] [Google Scholar]
  132. 132.
    East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JHD, et al. 2016.. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. . Nature 538:(7624):27073
    [Crossref] [Google Scholar]
  133. 133.
    Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. 2018.. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. . Cell 173:(3):66576.e14
    [Crossref] [Google Scholar]
  134. 134.
    Charles EJ, Kim SE, Knott GJ, Smock D, Doudna J, Savage DF. 2021.. Engineering improved Cas13 effectors for targeted post-transcriptional regulation of gene expression. . bioRxiv 445687. https://doi.org/10.1101/2021.05.26.445687
  135. 135.
    Cardiff R, Faulkner I, Beall J, Carothers J, Zalatan J. 2023.. CRISPR-Cas tools for simultaneous transcription & translation control in bacteria. . bioRxiv 561958. https://doi.org/10.1101/2023.10.11.561958
  136. 136.
    Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. 2019.. SHERLOCK: nucleic acid detection with CRISPR nucleases. . Nat. Protoc. 14:(10):29863012
    [Crossref] [Google Scholar]
  137. 137.
    Adler BA, Hessler T, Cress BF, Lahiri A, Mutalik VK, et al. 2022.. Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. . Nat. Microbiol. 7:(12):196779
    [Crossref] [Google Scholar]
  138. 138.
    Borrajo J, Javanmardi K, Griffin J, Martin SJS, Yao D, et al. 2023.. Programmable multi-kilobase RNA editing using CRISPR-mediated trans-splicing. . bioRxiv 553620. https://doi.org/10.1101/2023.08.18.553620
  139. 139.
    Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, et al. 2017.. RNA editing with CRISPR-Cas13. . Science 358:(6366):101927
    [Crossref] [Google Scholar]
  140. 140.
    Guan J, Oromí-Bosch A, Mendoza SD, Karambelkar S, Berry JD, Bondy-Denomy J. 2022.. Bacteriophage genome engineering with CRISPR-Cas13a. . Nat. Microbiol. 7:(12):195666
    [Crossref] [Google Scholar]
  141. 141.
    Qu L, Yi Z, Zhu S, Wang C, Cao Z, et al. 2019.. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. . Nat. Biotechnol. 37:(9):105969
    [Crossref] [Google Scholar]
  142. 142.
    Liang M, Li Z, Wang W, Liu J, Liu L, et al. 2019.. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. . Nat. Commun. 10::3672
    [Crossref] [Google Scholar]
  143. 143.
    Hildebrand F, Meyer A, Eyre-Walker A. 2010.. Evidence of selection upon genomic GC-content in bacteria. . PLOS Genet. 6:(9):e1001107
    [Crossref] [Google Scholar]
  144. 144.
    Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. 2013.. CRISPR RNA-guided activation of endogenous human genes. . Nat. Methods 10:(10):97779
    [Crossref] [Google Scholar]
  145. 145.
    Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, et al. 2013.. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. . Nat. Methods 10:(10):97376
    [Crossref] [Google Scholar]
  146. 146.
    Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013.. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. . Nucleic Acids Res. 41:(15):742937
    [Crossref] [Google Scholar]
  147. 147.
    Dong C, Fontana J, Patel A, Carothers JM, Zalatan JG. 2018.. Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. . Nat. Commun. 9::2489
    [Crossref] [Google Scholar]
  148. 148.
    Kiattisewee C, Dong C, Fontana J, Sugianto W, Peralta-Yahya P, et al. 2021.. Portable bacterial CRISPR transcriptional activation enables metabolic engineering in Pseudomonas putida. . Metab. Eng. 66::28395
    [Crossref] [Google Scholar]
  149. 149.
    Liu Y, Wan X, Wang B. 2019.. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. . Nat. Commun. 10::3693
    [Crossref] [Google Scholar]
  150. 150.
    Ho H-I, Fang JR, Cheung J, Wang HH. 2020.. Programmable CRISPR-Cas transcriptional activation in bacteria. . Mol. Syst. Biol. 16:(7):e9427
    [Crossref] [Google Scholar]
  151. 151.
    Villegas Kcam MC, Tsong AJ, Chappell J. 2021.. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range. . Nucleic Acids Res. 49:(8):4793802
    [Crossref] [Google Scholar]
  152. 152.
    Ameruoso A, Villegas Kcam MC, Cohen KP, Chappell J. 2022.. Activating natural product synthesis using CRISPR interference and activation systems in Streptomyces. . Nucleic Acids Res. 50:(13):775160
    [Crossref] [Google Scholar]
  153. 153.
    Liu W, Tang D, Wang H, Lian J, Huang L, Xu Z. 2019.. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a. . Appl. Microbiol. Biotechnol. 103:(21):891122
    [Crossref] [Google Scholar]
  154. 154.
    Schilling C, Koffas MAG, Sieber V, Schmid J. 2020.. Novel prokaryotic CRISPR-Cas12a-based tool for programmable transcriptional activation and repression. . ACS Synth. Biol. 9:(12):335363
    [Crossref] [Google Scholar]
  155. 155.
    Villegas Kcam MC, Tsong AJ, Chappell J. 2022.. Uncovering the distinct properties of a bacterial type I-E CRISPR activation system. . ACS Synth. Biol. 11:(2):10003
    [Crossref] [Google Scholar]
  156. 156.
    Lu Z, Yang S, Yuan X, Shi Y, Ouyang L, et al. 2019.. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. . Nucleic Acids Res. 47:(7):e40
    [Crossref] [Google Scholar]
  157. 157.
    Peng R, Wang Y, Feng W, Yue X, Chen J, et al. 2018.. CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus. . Microb. Cell Factories 17:(1):15
    [Crossref] [Google Scholar]
  158. 158.
    Yu L, Su W, Fey PD, Liu F, Du L. 2018.. Yield improvement of the anti-MRSA antibiotics WAP-8294A by CRISPR/dCas9 combined with refactoring self-protection genes in Lysobacter enzymogenes OH11. . ACS Synth. Biol. 7:(1):25866
    [Crossref] [Google Scholar]
  159. 159.
    Chen Y, Niu X, Cheng M, Wang L, Sun P, et al. 2022.. CRISPR/dCas9-RpoD-mediated simultaneous transcriptional activation and repression in Shewanella oneidensis MR-1. . ACS Synth. Biol. 11:(6):218492
    [Crossref] [Google Scholar]
  160. 160.
    Wu Y, Liu Y, Lv X, Li J, Du G, Liu L. 2020.. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis. . Biotechnol. Bioeng. 117:(6):181725
    [Crossref] [Google Scholar]
  161. 161.
    Otoupal PB, Cress BF, Doudna JA, Schoeniger JS. 2022.. CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. . Nucleic Acids Res. 50:(15):898698
    [Crossref] [Google Scholar]
  162. 162.
    Sugianto W, Altin-Yavuzarslan G, Tickman BI, Kiattisewee C, Yuan S-F, et al. 2023.. Gene expression dynamics in input-responsive engineered living materials programmed for bioproduction. . Mater. Today Bio. 20::100677
    [Crossref] [Google Scholar]
  163. 163.
    Liu Y, Pinto F, Wan X, Yang Z, Peng S, et al. 2022.. Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors. . Nat. Commun. 13::1937
    [Crossref] [Google Scholar]
  164. 164.
    Wang Y, Liu Y, Zheng P, Sun J, Wang M. 2021.. Microbial base editing: a powerful emerging technology for microbial genome engineering. . Trends Biotechnol. 39:(2):16580
    [Crossref] [Google Scholar]
  165. 165.
    Javaid N, Choi S. 2021.. CRISPR/Cas system and factors affecting its precision and efficiency. . Front. Cell Dev. Biol. 9::761709
    [Crossref] [Google Scholar]
  166. 166.
    Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013.. CRISPR-assisted editing of bacterial genomes. . Nat. Biotechnol. 31:(3):23339
    [Crossref] [Google Scholar]
  167. 167.
    Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, et al. 2013.. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. . PLOS Genet. 9:(4):e1003454
    [Crossref] [Google Scholar]
  168. 168.
    Wang L, Xue W, Yan L, Li X, Wei J, et al. 2017.. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. . Cell Res. 27:(10):128992
    [Crossref] [Google Scholar]
  169. 169.
    Zhang S, Feng S, Jiang W, Huang X, Chen J. 2019.. Construction and optimization of a base editor based on the MS2 system. . Anim. Models Exp. Med. 2:(3):18590
    [Crossref] [Google Scholar]
  170. 170.
    Banno S, Nishida K, Arazoe T, Mitsunobu H, Kondo A. 2018.. Deaminase-mediated multiplex genome editing in Escherichia coli. . Nat. Microbiol. 3:(4):42329
    [Crossref] [Google Scholar]
  171. 171.
    Heo YB, Hwang G-H, Kang SW, Bae S, Woo HM. 2022.. High-fidelity cytosine base editing in a GC-rich Corynebacterium glutamicum with reduced DNA off-target editing effects. . Microbiol. Spectr. 10:(6):e03760-22
    [Crossref] [Google Scholar]
  172. 172.
    Kim MS, Kim H-R, Jeong D-E, Choi S-K. 2021.. Cytosine base editor-mediated multiplex genome editing to accelerate discovery of novel antibiotics in Bacillus subtilis and Paenibacillus polymyxa. . Front. Microbiol. 12::691839
    [Crossref] [Google Scholar]
  173. 173.
    Yu S, Price MA, Wang Y, Liu Y, Guo Y, et al. 2020.. CRISPR-dCas9 mediated cytosine deaminase base editing in Bacillus subtilis. . ACS Synth. Biol. 9:(7):178189
    [Crossref] [Google Scholar]
  174. 174.
    Zheng K, Wang Y, Li N, Jiang F-F, Wu C-X, et al. 2018.. Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. . Commun. Biol. 1::32
    [Crossref] [Google Scholar]
  175. 175.
    Sun J, Lu L-B, Liang T-X, Yang L-R, Wu J-P. 2020.. CRISPR-assisted multiplex base editing system in Pseudomonas putida KT2440. . Front. Bioeng. Biotechnol. 8::905
    [Crossref] [Google Scholar]
  176. 176.
    Li X, Wang Y, Liu Y, Yang B, Wang X, et al. 2018.. Base editing with a Cpf1-cytidine deaminase fusion. . Nat. Biotechnol. 36:(4):32427
    [Crossref] [Google Scholar]
  177. 177.
    Zhao Y, Tian J, Zheng G, Chen J, Sun C, et al. 2020.. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. . Sci. China Life Sci. 63:(7):105362
    [Crossref] [Google Scholar]
  178. 178.
    Rodrigues SD, Karimi M, Impens L, Van Lerberge E, Coussens G, et al. 2021.. Efficient CRISPR-mediated base editing in Agrobacterium spp. . PNAS 118:(2):e2013338118
    [Crossref] [Google Scholar]
  179. 179.
    Xin X, Li J, Zhao D, Li S, Xie Q, et al. 2019.. Double-check base editing for efficient A to G conversions. . ACS Synth. Biol. 8:(12):262934
    [Crossref] [Google Scholar]
  180. 180.
    Zhang Y, Zhang H, Wang Z, Wu Z, Wang Y, et al. 2020.. Programmable adenine deamination in bacteria using a Cas9-adenine-deaminase fusion. . Chem. Sci. 11:(6):165764
    [Crossref] [Google Scholar]
  181. 181.
    Abdullah Wang P, Han T, Liu W, Ren W, et al. 2022.. Adenine base editing system for Pseudomonas and prediction workflow for protein dysfunction via ABE. . ACS Synth. Biol. 11:(4):165057
    [Crossref] [Google Scholar]
  182. 182.
    Halperin SO, Tou CJ, Wong EB, Modavi C, Schaffer DV, Dueber JE. 2018.. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. . Nature 560:(7717):24852
    [Crossref] [Google Scholar]
  183. 183.
    Tong Y, Jørgensen TS, Whitford CM, Weber T, Lee SY. 2021.. A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. . Nat. Commun. 12::5206
    [Crossref] [Google Scholar]
  184. 184.
    Yarnall MTN, Ioannidi EI, Schmitt-Ulms C, Krajeski RN, Lim J, et al. 2023.. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. . Nat. Biotechnol. 41:(4):50012
    [Crossref] [Google Scholar]
  185. 185.
    Dandage R, Després PC, Yachie N, Landry CR. 2019.. beditor: a computational workflow for designing libraries of guide RNAs for CRISPR-mediated base editing. . Genetics 212:(2):37785
    [Crossref] [Google Scholar]
  186. 186.
    Hsu JY, Grünewald J, Szalay R, Shih J, Anzalone AV, et al. 2021.. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. . Nat. Commun. 12::1034
    [Crossref] [Google Scholar]
  187. 187.
    Hwang G-H, Park J, Lim K, Kim S, Yu J, et al. 2018.. Web-based design and analysis tools for CRISPR base editing. . BMC Bioinform. 19::542
    [Crossref] [Google Scholar]
  188. 188.
    Standage-Beier K, Tekel SJ, Brafman DA, Wang X. 2021.. Prime editing guide RNA design automation using PINE-CONE. . ACS Synth. Biol. 10:(2):42227
    [Crossref] [Google Scholar]
  189. 189.
    Blin K, Shaw S, Tong Y, Weber T. 2020.. Designing sgRNAs for CRISPR-BEST base editing applications with CRISPy-web 2.0. . Synth. Syst. Biotechnol. 5:(2):99102
    [Crossref] [Google Scholar]
  190. 190.
    Shelake RM, Pramanik D, Kim J-Y. 2022.. In vivo rapid investigation of CRISPR-based base editing components in Escherichia coli (IRI-CCE): a platform for evaluating base editing tools and their components. . Int. J. Mol. Sci. 23:(3):1145
    [Crossref] [Google Scholar]
  191. 191.
    Chen Y, Hysolli E, Chen A, Casper S, Liu S, et al. 2022.. Multiplex base editing to convert TAG into TAA codons in the human genome. . Nat. Commun. 13::4482
    [Crossref] [Google Scholar]
  192. 192.
    Kluesner MG, Nedveck DA, Lahr WS, Garbe JR, Abrahante JE, et al. 2018.. EditR: a method to quantify base editing from Sanger sequencing. . CRISPR J. 1:(3):23950
    [Crossref] [Google Scholar]
  193. 193.
    Rieffer AE, Chen Y, Salamango DJ, Moraes SN, Harris RS. 2023.. APOBEC Reporter Systems for Evaluating diNucleotide Editing Levels. . CRISPR J. 6:(5):43046
    [Crossref] [Google Scholar]
  194. 194.
    Lu L, Shen X, Sun X, Yan Y, Wang J, Yuan Q. 2022.. CRISPR-based metabolic engineering in non-model microorganisms. . Curr. Opin. Biotechnol. 75::102698
    [Crossref] [Google Scholar]
  195. 195.
    Naduthodi MIS, Barbosa MJ, van der Oost J. 2018.. Progress of CRISPR-Cas based genome editing in photosynthetic microbes. . Biotechnol. J. 13:(9):1700591
    [Crossref] [Google Scholar]
  196. 196.
    Volke DC, Orsi E, Nikel PI. 2023.. Emergent CRISPR-Cas-based technologies for engineering non-model bacteria. . Curr. Opin. Microbiol. 75::102353
    [Crossref] [Google Scholar]
  197. 197.
    Bellato M, Frusteri Chiacchiera A, Salibi E, Casanova M, De Marchi D, et al. 2022.. CRISPR interference modules as low-burden logic inverters in synthetic circuits. . Front. Bioeng. Biotechnol. 9::743950
    [Crossref] [Google Scholar]
  198. 198.
    Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O, et al. 2018.. Burden-driven feedback control of gene expression. . Nat. Methods 15:(5):38793
    [Crossref] [Google Scholar]
  199. 199.
    Lian J, HamediRad M, Hu S, Zhao H. 2017.. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. . Nat. Commun. 8::1688
    [Crossref] [Google Scholar]
  200. 200.
    Shaytan AK, Novikov RV, Vinnikov RS, Gribkova AK, Glukhov GS. 2022.. From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems. . Front. Mol. Biosci. 9::1070526
    [Crossref] [Google Scholar]
  201. 201.
    Filippova J, Matveeva A, Zhuravlev E, Stepanov G. 2019.. Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. . Biochimie 167::4960
    [Crossref] [Google Scholar]
  202. 202.
    Moon SB, Kim DY, Ko J-H, Kim J-S, Kim Y-S. 2019.. Improving CRISPR genome editing by engineering guide RNAs. . Trends Biotechnol. 37:(8):87081
    [Crossref] [Google Scholar]
  203. 203.
    Todor H, Silvis MR, Osadnik H, Gross CA. 2021.. Bacterial CRISPR screens for gene function. . Curr. Opin. Microbiol. 59::1029
    [Crossref] [Google Scholar]
  204. 204.
    Hawkins JS, Silvis MR, Koo B-M, Peters JM, Osadnik H, et al. 2020.. Mismatch-CRISPRi reveals the co-varying expression-fitness relationships of essential genes in Escherichia coli and Bacillus subtilis. . Cell Syst. 11:(5):52335.e9
    [Crossref] [Google Scholar]
  205. 205.
    Jost M, Santos DA, Saunders RA, Horlbeck MA, Hawkins JS, et al. 2020.. Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs. . Nat. Biotechnol. 38:(3):35564
    [Crossref] [Google Scholar]
  206. 206.
    Van Hove B, De Wannemaeker L, Missiaen I, Maertens J, De Mey M. 2023.. Taming CRISPRi: dynamic range tuning through guide RNA diversion. . New Biotechnol. 77::5057
    [Crossref] [Google Scholar]
  207. 207.
    Singh D, Sternberg SH, Fei J, Doudna JA, Ha T. 2016.. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. . Nat. Commun. 7::12778
    [Crossref] [Google Scholar]
  208. 208.
    Fontana J, Sparkman-Yager D, Faulkner I, Cardiff R, Kiattisewee C, et al. 2023.. Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling. . bioRxiv 567465. https://doi.org/10.1101/2023.11.17.567465
  209. 209.
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014.. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. . Nat. Biotechnol. 32:(3):27984
    [Crossref] [Google Scholar]
  210. 210.
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, et al. 2015.. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. . Nat. Biotechnol. 33:(2):18797
    [Crossref] [Google Scholar]
  211. 211.
    Tsai SQ, Joung JK. 2016.. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. . Nat. Rev. Genet. 17:(5):30012
    [Crossref] [Google Scholar]
  212. 212.
    Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. 2019.. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. . Nat. Biotechnol. 37:(6):65766
    [Crossref] [Google Scholar]
  213. 213.
    Mullally G, van Aelst K, Naqvi MM, Diffin FM, Karvelis T, et al. 2020.. 5′ modifications to CRISPR-Cas9 gRNA can change the dynamics and size of R-loops and inhibit DNA cleavage. . Nucleic Acids Res. 48:(12):681123
    [Crossref] [Google Scholar]
  214. 214.
    Li Y, Teng X, Zhang K, Deng R, Li J. 2019.. RNA strand displacement responsive CRISPR/Cas9 system for mRNA sensing. . Anal. Chem. 91:(6):398996
    [Crossref] [Google Scholar]
  215. 215.
    Lin J, Liu Y, Lai P, Ye H, Xu L. 2020.. Conditional guide RNA through two intermediate hairpins for programmable CRISPR/Cas9 function: building regulatory connections between endogenous RNA expressions. . Nucleic Acids Res. 48:(20):1177384
    [Crossref] [Google Scholar]
  216. 216.
    Siu K-H, Chen W. 2019.. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function. . Nat. Chem. Biol. 15:(3):21720
    [Crossref] [Google Scholar]
  217. 217.
    Tang W, Hu JH, Liu DR. 2017.. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. . Nat. Commun. 8::15939
    [Crossref] [Google Scholar]
  218. 218.
    Kundert K, Lucas JE, Watters KE, Fellmann C, Ng AH, et al. 2019.. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs. . Nat. Commun. 10::2127
    [Crossref] [Google Scholar]
  219. 219.
    Liu Y, Zhan Y, Chen Z, He A, Li J, et al. 2016.. Directing cellular information flow via CRISPR signal conductors. . Nat. Methods 13:(11):93844
    [Crossref] [Google Scholar]
  220. 220.
    Collins SP, Rostain W, Liao C, Beisel CL. 2021.. Sequence-independent RNA sensing and DNA targeting by a split domain CRISPR-Cas12a gRNA switch. . Nucleic Acids Res. 49:(5):298599
    [Crossref] [Google Scholar]
  221. 221.
    Oesinghaus L, Simmel FC. 2019.. Switching the activity of Cas12a using guide RNA strand displacement circuits. . Nat. Commun. 10::2092
    [Crossref] [Google Scholar]
  222. 222.
    Wang Y, Wang Y, Pan D, Yu H, Zhang Y, et al. 2022.. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. . Cell Rep. 40:(13):111418
    [Crossref] [Google Scholar]
  223. 223.
    Liu G, Zhang Y, Zhang T. 2020.. Computational approaches for effective CRISPR guide RNA design and evaluation. . Comput. Struct. Biotechnol. J. 18::3544
    [Crossref] [Google Scholar]
  224. 224.
    Corsi GI, Qu K, Alkan F, Pan X, Luo Y, Gorodkin J. 2022.. CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context. . Nat. Commun. 13::3006
    [Crossref] [Google Scholar]
  225. 225.
    Jensen KT, Fløe L, Petersen TS, Huang J, Xu F, et al. 2017.. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. . FEBS Lett. 591:(13):1892901
    [Crossref] [Google Scholar]
  226. 226.
    Weiss T, Crisp PA, Rai KM, Song M, Springer NM, Zhang F. 2022.. Epigenetic features drastically impact CRISPR-Cas9 efficacy in plants. . Plant Physiol. 190:(2):115364
    [Crossref] [Google Scholar]
  227. 227.
    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, et al. 2016.. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. . Nat. Biotechnol. 34:(2):18491
    [Crossref] [Google Scholar]
  228. 228.
    Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK, et al. 2015.. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. . Nat. Methods 12:(10):98288
    [Crossref] [Google Scholar]
  229. 229.
    Wang L, Zhang J. 2019.. Prediction of sgRNA on-target activity in bacteria by deep learning. . BMC Bioinform 20::517
    [Crossref] [Google Scholar]
  230. 230.
    Yu Y, Gawlitt S, de Andrade e Sousa LB, Merdivan E, Piraud M, et al. 2024.. Improved prediction of bacterial CRISPRi guide efficiency from depletion screens through mixed-effect modeling and data integration. . Genome Biol. 25::13
    [Crossref] [Google Scholar]
  231. 231.
    Elowitz MB, Leibler S. 2000.. A synthetic oscillatory network of transcriptional regulators. . Nature 403:(6767):33538
    [Crossref] [Google Scholar]
  232. 232.
    Gardner TS, Cantor CR, Collins JJ. 2000.. Construction of a genetic toggle switch in Escherichia coli. . Nature 403:(6767):33942
    [Crossref] [Google Scholar]
  233. 233.
    English MA, Gayet RV, Collins JJ. 2021.. Designing biological circuits: synthetic biology within the operon model and beyond. . Annu. Rev. Biochem. 90::22144
    [Crossref] [Google Scholar]
  234. 234.
    Hasty J, McMillen D, Collins JJ. 2002.. Engineered gene circuits. . Nature 420:(6912):22430
    [Crossref] [Google Scholar]
  235. 235.
    Jeong D, Klocke M, Agarwal S, Kim J, Choi S, et al. 2019.. Cell-free synthetic biology platform for engineering synthetic biological circuits and systems. . Methods Protoc. 2:(2):39
    [Crossref] [Google Scholar]
  236. 236.
    Brophy JAN, Voigt CA. 2014.. Principles of genetic circuit design. . Nat. Methods 11:(5):50820
    [Crossref] [Google Scholar]
  237. 237.
    Gander MW, Vrana JD, Voje WE, Carothers JM, Klavins E. 2017.. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. . Nat. Commun. 8::15459
    [Crossref] [Google Scholar]
  238. 238.
    Lucks JB, Qi L, Whitaker WR, Arkin AP. 2008.. Toward scalable parts families for predictable design of biological circuits. . Curr. Opin. Microbiol. 11:(6):56773
    [Crossref] [Google Scholar]
  239. 239.
    Qian Y, Huang H-H, Jiménez JI, Del Vecchio D. 2017.. Resource competition shapes the response of genetic circuits. . ACS Synth. Biol. 6:(7):126372
    [Crossref] [Google Scholar]
  240. 240.
    Jin M, Garreau de Loubresse N, Kim Y, Kim J, Yin P. 2019.. Programmable CRISPR-Cas repression, activation, and computation with sequence-independent targets and triggers. . ACS Synth. Biol. 8:(7):158389
    [Crossref] [Google Scholar]
  241. 241.
    Santos-Moreno J, Tasiudi E, Stelling J, Schaerli Y. 2020.. Multistable and dynamic CRISPRi-based synthetic circuits. . Nat. Commun. 11::2746
    [Crossref] [Google Scholar]
  242. 242.
    Kim SK, Kim H, Woo SG, Kim TH, Rha E, et al. 2022.. CRISPRi-based programmable logic inverter cascade for antibiotic-free selection and maintenance of multiple plasmids. . Nucleic Acids Res. 50:(22):1315571
    [Crossref] [Google Scholar]
  243. 243.
    Clamons S, Murray R. 2019.. Modeling predicts that CRISPR-based activators, unlike CRISPR-based repressors, scale well with increasing gRNA competition and dCas9 bottlenecking. . bioRxiv 719278. https://doi.org/10.1101/719278
  244. 244.
    Kim H, Bojar D, Fussenegger M. 2019.. A CRISPR/Cas9-based central processing unit to program complex logic computation in human cells. . PNAS 116:(15):721419
    [Crossref] [Google Scholar]
  245. 245.
    Wang Y-H, McKeague M, Hsu TM, Smolke CD. 2016.. Design and construction of generalizable RNA-protein hybrid controllers by level-matched genetic signal amplification. . Cell Syst. 3:(6):54962.e7
    [Crossref] [Google Scholar]
  246. 246.
    Khakimzhan A, Garenne D, Tickman B, Fontana J, Carothers J, Noireaux V. 2021.. Complex dependence of CRISPR-Cas9 binding strength on guide RNA spacer lengths. . Phys. Biol. 18:(5):056003
    [Crossref] [Google Scholar]
  247. 247.
    Banerjee D, Eng T, Lau AK, Sasaki Y, Wang B, et al. 2020.. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. . Nat. Commun. 11::5385
    [Crossref] [Google Scholar]
  248. 248.
    McCarty NS, Shaw WM, Ellis T, Ledesma-Amaro R. 2019.. Rapid assembly of gRNA arrays via modular cloning in yeast. . ACS Synth. Biol. 8:(4):90610
    [Crossref] [Google Scholar]
  249. 249.
    Liao C, Ttofali F, Slotkowski RA, Denny SR, Cecil TD, et al. 2019.. Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. . Nat. Commun. 10::2948
    [Crossref] [Google Scholar]
  250. 250.
    Reis AC, Halper SM, Vezeau GE, Cetnar DP, Hossain A, et al. 2019.. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. . Nat. Biotechnol. 37:(11):1294301
    [Crossref] [Google Scholar]
  251. 251.
    Martynov A, Severinov K, Ispolatov I. 2017.. Optimal number of spacers in CRISPR arrays. . PLOS Comput. Biol. 13:(12):e1005891
    [Crossref] [Google Scholar]
  252. 252.
    Huang H-H, Bellato M, Qian Y, Cárdenas P, Pasotti L, et al. 2021.. dCas9 regulator to neutralize competition in CRISPRi circuits. . Nat. Commun. 12::1692
    [Crossref] [Google Scholar]
  253. 253.
    Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, et al. 2020.. CRISPR-Cas12-based detection of SARS-CoV-2. . Nat. Biotechnol. 38:(7):87074
    [Crossref] [Google Scholar]
  254. 254.
    Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, et al. 2018.. Field-deployable viral diagnostics using CRISPR-Cas13. . Science 360:(6387):44448
    [Crossref] [Google Scholar]
  255. 255.
    Qiu M, Zhou X-M, Liu L. 2022.. Improved strategies for CRISPR-Cas12-based nucleic acids detection. . J. Anal. Test. 6:(1):4452
    [Crossref] [Google Scholar]
  256. 256.
    Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. 2018.. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. . Science 360:(6387):43944
    [Crossref] [Google Scholar]
  257. 257.
    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, et al. 2017.. Nucleic acid detection with CRISPR-Cas13a/C2c2. . Science 356:(6336):43842
    [Crossref] [Google Scholar]
  258. 258.
    Li S-Y, Cheng Q-X, Wang J-M, Li X-Y, Zhang Z-L, et al. 2018.. CRISPR-Cas12a-assisted nucleic acid detection. . Cell Discov. 4::20
    [Crossref] [Google Scholar]
  259. 259.
    Patchsung M, Jantarug K, Pattama A, Aphicho K, Suraritdechachai S, et al. 2020.. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. . Nat. Biomed. Eng. 4:(12):114049
    [Crossref] [Google Scholar]
  260. 260.
    Nguyen PQ, Soenksen LR, Donghia NM, Angenent-Mari NM, de Puig H, et al. 2021.. Wearable materials with embedded synthetic biology sensors for biomolecule detection. . Nat. Biotechnol. 39:(11):136674
    [Crossref] [Google Scholar]
  261. 261.
    Zhang C, Zhang P, Ren H, Jia P, Ji J, et al. 2022.. Synthetic biology-powered biosensors based on CRISPR/Cas mediated cascade signal amplification for precise RNA detection. . Chem. Eng. J. 446::136864
    [Crossref] [Google Scholar]
  262. 262.
    Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, et al. 2014.. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. . Nat. Biotechnol. 32:(11):114650
    [Crossref] [Google Scholar]
  263. 263.
    Cobb LH, Park J, Swanson EA, Beard MC, McCabe EM, et al. 2019.. CRISPR-Cas9 modified bacteriophage for treatment of Staphylococcus aureus induced osteomyelitis and soft tissue infection. . PLOS ONE 14:(11):e0220421
    [Crossref] [Google Scholar]
  264. 264.
    Neil K, Allard N, Roy P, Grenier F, Menendez A, et al. 2021.. High-efficiency delivery of CRISPR-Cas9 by engineered probiotics enables precise microbiome editing. . Mol. Syst. Biol. 17:(10):e10335
    [Crossref] [Google Scholar]
  265. 265.
    Ram G, Ross HF, Novick RP, Rodriguez-Pagan I, Jiang D. 2018.. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. . Nat. Biotechnol. 36:(10):97176
    [Crossref] [Google Scholar]
  266. 266.
    Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. 2023.. CRISPR-Cas-based antimicrobials: design, challenges, and bacterial mechanisms of resistance. . ACS Infect. Dis. 9:(7):1283302
    [Crossref] [Google Scholar]
  267. 267.
    Uribe RV, Rathmer C, Jahn LJ, Ellabaan MMH, Li SS, Sommer MOA. 2021.. Bacterial resistance to CRISPR-Cas antimicrobials. . Sci. Rep. 11::17267
    [Crossref] [Google Scholar]
  268. 268.
    Wan X, Li Q, Olsen RH, Meng H, Zhang Z, et al. 2022.. Engineering a CRISPR interference system targeting AcrAB-TolC efflux pump to prevent multidrug resistance development in Escherichia coli. . J. Antimicrob. Chemother. 77:(8):215866
    [Crossref] [Google Scholar]
  269. 269.
    Jiao C, Sharma S, Dugar G, Peeck NL, Bischler T, et al. 2021.. Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. . Science 372:(6545):94148
    [Crossref] [Google Scholar]
  270. 270.
    Dai Y, Somoza RA, Wang L, Welter JF, Li Y, et al. 2019.. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. . Angew. Chem. Int. Ed. 58:(48):17399405
    [Crossref] [Google Scholar]
  271. 271.
    Iwasaki RS, Batey RT. 2020.. SPRINT: a Cas13a-based platform for detection of small molecules. . Nucleic Acids Res. 48:(17):e101
    [Crossref] [Google Scholar]
  272. 272.
    Mahas A, Wang Q, Marsic T, Mahfouz MM. 2022.. Development of Cas12a-based cell-free small-molecule biosensors via allosteric regulation of CRISPR array expression. . Anal. Chem. 94:(11):461726
    [Crossref] [Google Scholar]
  273. 273.
    Chen K, Shen Z, Wang G, Gu W, Zhao S, et al. 2022.. Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis. . Front. Bioeng. Biotechnol. 10::986233
    [Crossref] [Google Scholar]
  274. 274.
    Kadam US, Cho Y, Park TY, Hong JC. 2023.. Aptamer-based CRISPR-Cas powered diagnostics of diverse biomarkers and small molecule targets. . Appl. Biol. Chem. 66::13
    [Crossref] [Google Scholar]
  275. 275.
    Cunningham-Bryant D, Sun J, Fernandez B, Zalatan JG. 2019.. CRISPR-Cas-mediated chemical control of transcriptional dynamics in yeast. . ChemBioChem 20:(12):151923
    [Crossref] [Google Scholar]
  276. 276.
    Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, et al. 2021.. Membrane augmented cell-free systems: a new frontier in biotechnology. . ACS Synth. Biol. 10:(4):67081
    [Crossref] [Google Scholar]
  277. 277.
    Sachse R, Dondapati SK, Fenz SF, Schmidt T, Kubick S. 2014.. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes. . FEBS Lett. 588:(17):277481
    [Crossref] [Google Scholar]
  278. 278.
    Kipniss NH, Dingal PCDP, Abbott TR, Gao Y, Wang H, et al. 2017.. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. . Nat. Commun. 8::2212
    [Crossref] [Google Scholar]
  279. 279.
    Burke CR, Sparkman-Yager D, Carothers JM. 2017.. Multi--state design of kinetically--controlled RNA aptamer ribosensors. . bioRxiv 213538. https://doi.org/10.1101/213538
  280. 280.
    Hwang C, Carothers JM. 2016.. Label-free selection of RNA aptamers for metabolic engineering. . Vitro Sel. Evol. 106::3741
    [Google Scholar]
  281. 281.
    Chien T, Harimoto T, Kepecs B, Gray K, Coker C, et al. 2022.. Enhancing the tropism of bacteria via genetically programmed biosensors. . Nat. Biomed. Eng. 6::94104
    [Crossref] [Google Scholar]
  282. 282.
    Jung JK, Alam KK, Verosloff MS, Capdevila DA, Desmau M, et al. 2020.. Cell-free biosensors for rapid detection of water contaminants. . Nat. Biotechnol. 38:(12):145159
    [Crossref] [Google Scholar]
  283. 283.
    Karbelkar AA, Reynolds EE, Ahlmark R, Furst AL. 2021.. A microbial electrochemical technology to detect and degrade organophosphate pesticides. . ACS Cent. Sci. 7:(10):171827
    [Crossref] [Google Scholar]
  284. 284.
    Patterson AG, Jackson SA, Taylor C, Evans GB, Salmond GPC, et al. 2016.. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. . Mol. Cell 64:(6):11028
    [Crossref] [Google Scholar]
  285. 285.
    Patterson AG, Chang JT, Taylor C, Fineran PC. 2015.. Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. . Nucleic Acids Res. 43:(12):603848
    [Crossref] [Google Scholar]
  286. 286.
    Perez-Rodriguez R, Haitjema C, Huang Q, Nam KH, Bernardis S, et al. 2011.. Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. . Mol. Microbiol. 79:(3):58499
    [Crossref] [Google Scholar]
  287. 287.
    Nielsen AA, Voigt CA. 2014.. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. . Mol. Syst. Biol. 10:(11):763
    [Crossref] [Google Scholar]
  288. 288.
    Baeumler TA, Ahmed AA, Fulga TA. 2017.. Engineering synthetic signaling pathways with programmable dCas9-based chimeric receptors. . Cell Rep. 20:(11):263953
    [Crossref] [Google Scholar]
  289. 289.
    Shao J, Wang M, Yu G, Zhu S, Yu Y, et al. 2018.. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. . PNAS 115:(29):E672230
    [Crossref] [Google Scholar]
  290. 290.
    Jiang F, Liu J-J, Osuna BA, Xu M, Berry JD, et al. 2019.. Temperature-responsive competitive inhibition of CRISPR-Cas9. . Mol. Cell 73:(3):60110.e5
    [Crossref] [Google Scholar]
  291. 291.
    Richter F, Fonfara I, Bouazza B, Schumacher CH, Bratovič M, et al. 2016.. Engineering of temperature- and light-switchable Cas9 variants. . Nucleic Acids Res. 44:(20):gkw930
    [Crossref] [Google Scholar]
  292. 292.
    Rottinghaus AG, Ferreiro A, Fishbein SRS, Dantas G, Moon TS. 2022.. Genetically stable CRISPR-based kill switches for engineered microbes. . Nat. Commun. 13::672
    [Crossref] [Google Scholar]
  293. 293.
    Wu P, Chen Y, Liu M, Xiao G, Yuan J. 2021.. Engineering an optogenetic CRISPRi platform for improved chemical production. . ACS Synth. Biol. 10:(1):12531
    [Crossref] [Google Scholar]
  294. 294.
    Moser F, Espah Borujeni A, Ghodasara AN, Cameron E, Park Y, Voigt CA. 2018.. Dynamic control of endogenous metabolism with combinatorial logic circuits. . Mol. Syst. Biol. 14:(11):e8605
    [Crossref] [Google Scholar]
  295. 295.
    Stirling F, Naydich A, Bramante J, Barocio R, Certo M, et al. 2020.. Synthetic cassettes for pH-mediated sensing, counting, and containment. . Cell Rep. 30:(9):313948.e4
    [Crossref] [Google Scholar]
  296. 296.
    Chen Y, Ho JML, Shis DL, Gupta C, Long J, et al. 2018.. Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. . Nat. Commun. 9::64
    [Crossref] [Google Scholar]
  297. 297.
    Liu X, Gupta STP, Bhimsaria D, Reed JL, Rodríguez-Martínez JA, et al. 2019.. De novo design of programmable inducible promoters. . Nucleic Acids Res. 47:(19):1045263
    [Crossref] [Google Scholar]
  298. 298.
    Fontana J, Dong C, Ham JY, Zalatan JG, Carothers JM. 2018.. Regulated expression of sgRNAs tunes CRISPRi in E. coli. . Biotechnol. J. 13:(9):e1800069
    [Crossref] [Google Scholar]
  299. 299.
    Shaw WM, Studená L, Roy K, Hapeta P, McCarty NS, et al. 2022.. Inducible expression of large gRNA arrays for multiplexed CRISPRai applications. . Nat. Commun. 13::4984
    [Crossref] [Google Scholar]
  300. 300.
    Ramachandran G, Bikard D. 2019.. Editing the microbiome the CRISPR way. . Philos. Trans. R. Soc. B 374:(1772):20180103
    [Crossref] [Google Scholar]
  301. 301.
    Rasor BJ, Yi X, Brown H, Alper HS, Jewett MC. 2021.. An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. . Nat. Commun. 12::5139
    [Crossref] [Google Scholar]
  302. 302.
    Roberts A, Barrangou R. 2020.. Applications of CRISPR-Cas systems in lactic acid bacteria. . FEMS Microbiol. Rev. 44:(5):52337
    [Crossref] [Google Scholar]
  303. 303.
    Teng Y, Jiang T, Yan Y. 2023.. The expanded CRISPR toolbox for constructing microbial cell factories. . Trends Biotechnol. 42:(1):10418
    [Crossref] [Google Scholar]
  304. 304.
    Fatma Z, Schultz JC, Zhao H. 2020.. Recent advances in domesticating non-model microorganisms. . Biotechnol. Prog. 36:(5):e3008
    [Crossref] [Google Scholar]
  305. 305.
    Yan Q, Fong SS. 2017.. Challenges and advances for genetic engineering of non-model bacteria and uses in consolidated bioprocessing. . Front. Microbiol. 8::2060
    [Crossref] [Google Scholar]
  306. 306.
    Lian J, Schultz C, Cao M, HamediRad M, Zhao H. 2019.. Multi-functional genome-wide CRISPR system for high throughput genotype-phenotype mapping. . Nat. Commun. 10::5794
    [Crossref] [Google Scholar]
  307. 307.
    Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF. 2015.. Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters. . Nat. Commun. 6::8101
    [Crossref] [Google Scholar]
  308. 308.
    Kang H-S, Charlop-Powers Z, Brady SF. 2016.. Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. . ACS Synth. Biol. 5:(9):100210
    [Crossref] [Google Scholar]
  309. 309.
    Li S-Y, Zhao G-P, Wang J. 2016.. C-Brick: a new standard for assembly of biological parts using Cpf1. . ACS Synth. Biol. 5:(12):138388
    [Crossref] [Google Scholar]
  310. 310.
    Christie KA, Guo JA, Silverstein RA, Doll RM, Mabuchi M, et al. 2023.. Precise DNA cleavage using CRISPR-SpRYgests. . Nat. Biotechnol. 41:(3):40916
    [Crossref] [Google Scholar]
  311. 311.
    Biggs BW, Bedore SR, Arvay E, Huang S, Subramanian H, et al. 2020.. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. . Nucleic Acids Res. 48:(9):516982
    [Crossref] [Google Scholar]
  312. 312.
    Collias D, Vialetto E, Yu J, Co K, Almási ÉdH, et al. 2023.. Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria. . Nat. Commun. 14::680
    [Crossref] [Google Scholar]
  313. 313.
    Cook TB, Rand JM, Nurani W, Courtney DK, Liu SA, Pfleger BF. 2018.. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. . J. Ind. Microbiol. Biotechnol. 45:(7):51727
    [Crossref] [Google Scholar]
  314. 314.
    Wirth NT, Kozaeva E, Nikel PI. 2019.. Accelerated genome engineering of Pseudomonas putida by I-SceI-mediated recombination and CRISPR-Cas9 counterselection. . Microb. Biotechnol. 13:(1):23349
    [Crossref] [Google Scholar]
  315. 315.
    Enghiad B, Huang C, Guo F, Jiang G, Wang B, et al. 2021.. Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination. . Nat. Commun. 12::1171
    [Crossref] [Google Scholar]
  316. 316.
    Liang M, Liu L, Xu F, Zeng X, Wang R, et al. 2022.. Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach. . Nucleic Acids Res. 50:(6):358192
    [Crossref] [Google Scholar]
  317. 317.
    Shola DTN, Yang C, Kewaldar V-S, Kar P, Bustos V. 2020.. New additions to the CRISPR toolbox: CRISPR-CLONInG and CRISPR-CLIP for donor construction in genome editing. . CRISPR J. 3:(2):10922
    [Crossref] [Google Scholar]
  318. 318.
    Wen X, Zhang Y, Cheng H, An J, Guo Y, et al. 2021.. A CRISPR/dCas9-assisted system to clone toxic genes in Escherichia coli. . Biochim. Biophys. Acta BBA 1865:(11):129994
    [Crossref] [Google Scholar]
  319. 319.
    Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, et al. 2017.. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. . Nat. Biotechnol. 35::4855
    [Crossref] [Google Scholar]
  320. 320.
    Ronda C, Pedersen LE, Sommer MOA, Nielsen AT. 2016.. CRMAGE: CRISPR optimized MAGE recombineering. . Sci. Rep. 6:(1):19452
    [Crossref] [Google Scholar]
  321. 321.
    Liang L, Liu R, Foster KEO, AlakshChoudhury, Cook S, et al. 2020.. Genome engineering of E. coli for improved styrene production. . Metab. Eng. 57::7484
    [Crossref] [Google Scholar]
  322. 322.
    Liu R, Liang L, Choudhury A, Bassalo MC, Garst AD, et al. 2018.. Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production. . Metab. Eng. 47::30313
    [Crossref] [Google Scholar]
  323. 323.
    Liu R, Liang L, Garst AD, Choudhury A, Sànchez i Nogué V, et al. 2018.. Directed combinatorial mutagenesis of Escherichia coli for complex phenotype engineering. . Metab. Eng. 47::1020
    [Crossref] [Google Scholar]
  324. 324.
    Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, et al. 2016.. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. . Cell 165:(6):1493506
    [Crossref] [Google Scholar]
  325. 325.
    Garg D, Samota MK, Kontis N, Patel N, Bala S, Rosado AS. 2023.. Revolutionizing biofuel generation: unleashing the power of CRISPR-Cas mediated gene editing of extremophiles. . Microbiol. Res. 274::127443
    [Crossref] [Google Scholar]
  326. 326.
    Ke J, Robinson D, Wu Z-Y, Kuftin A, Louie K, et al. 2022.. CRAGE-CRISPR facilitates rapid activation of secondary metabolite biosynthetic gene clusters in bacteria. . Cell Chem. Biol. 29:(4):696710.e4
    [Crossref] [Google Scholar]
  327. 327.
    Trujillo Rodríguez L, Ellington AJ, Reisch CR, Chevrette MG. 2023.. CRISPR-associated transposase for targeted mutagenesis in diverse Proteobacteria. . ACS Synth. Biol. 12:(7):19892003
    [Crossref] [Google Scholar]
  328. 328.
    Yang S, Zhu J, Zhou X, Zhang J, Li Q, et al. 2023.. RNA-guided DNA transposition in Corynebacterium glutamicum and Bacillus subtilis. . ACS Synth. Biol. 12:(7):2198202
    [Crossref] [Google Scholar]
  329. 329.
    Heinsch SC, Das SR, Smanski MJ. 2018.. Simulation modeling to compare high-throughput, low-iteration optimization strategies for metabolic engineering. . Front. Microbiol. 9::313
    [Crossref] [Google Scholar]
  330. 330.
    Perfeito L, Ghozzi S, Berg J, Schnetz K, Lässig M. 2011.. Nonlinear fitness landscape of a molecular pathway. . PLOS Genet. 7:(7):e1002160
    [Crossref] [Google Scholar]
  331. 331.
    Jones JA, Vernacchio VR, Lachance DM, Lebovich M, Fu L, et al. 2015.. ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. . Sci. Rep. 5::11301
    [Crossref] [Google Scholar]
  332. 332.
    Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. 2003.. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. . Nat. Biotechnol. 21:(7):796802
    [Crossref] [Google Scholar]
  333. 333.
    Abdullah, Jiang Z, Hong X, Zhang S, Yao R, Xiao Y. 2020.. CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. . Synth. Syst. Biotechnol. 5:(4):27792
    [Crossref] [Google Scholar]
  334. 334.
    Zhang Y, Yuan J. 2021.. CRISPR/Cas12a-mediated genome engineering in the photosynthetic bacterium Rhodobacter capsulatus. . Microb. Biotechnol. 14:(6):270010
    [Crossref] [Google Scholar]
  335. 335.
    Li H, Shen CR, Huang C-H, Sung L-Y, Wu M-Y, Hu Y-C. 2016.. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. . Metab. Eng. 38::293302
    [Crossref] [Google Scholar]
  336. 336.
    Niu T-C, Lin G-M, Xie L-R, Wang Z-Q, Xing W-Y, et al. 2019.. Expanding the potential of CRISPR-Cpf1-based genome editing technology in the cyanobacterium Anabaena PCC 7120. . ACS Synth. Biol. 8:(1):17080
    [Crossref] [Google Scholar]
  337. 337.
    Wang S-Y, Li X, Wang S-G, Xia P-F. 2023.. Base editing for reprogramming cyanobacterium Synechococcus elongatus. . Metab. Eng. 75::9199
    [Crossref] [Google Scholar]
  338. 338.
    McAllister KN, Sorg JA. 2019.. CRISPR genome editing systems in the genus Clostridium: a timely advancement. . J. Bacteriol. 201:(16):e00219
    [Crossref] [Google Scholar]
  339. 339.
    Choi SY, Woo HM. 2020.. CRISPRi-dCas12a: a dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in Cyanobacteria. . ACS Synth. Biol. 9:(9):235161
    [Crossref] [Google Scholar]
  340. 340.
    Shin J, Bae J, Lee H, Kang S, Jin S, et al. 2023.. Genome-wide CRISPRi screen identifies enhanced autolithotrophic phenotypes in acetogenic bacterium Eubacterium limosum. . PNAS 120:(6):e2216244120
    [Crossref] [Google Scholar]
  341. 341.
    Yunus IS, Anfelt J, Sporre E, Miao R, Hudson EP, Jones PR. 2022.. Synthetic metabolic pathways for conversion of CO2 into secreted short-to medium-chain hydrocarbons using cyanobacteria. . Metab. Eng. 72::1423
    [Crossref] [Google Scholar]
  342. 342.
    Wang Y, Yue X, Yuan S, Hong Y, Hu W, Li Y. 2021.. Internal promoters and their effects on the transcription of operon genes for epothilone production in Myxococcus xanthus. . Front. Bioeng. Biotechnol. 9::758561
    [Crossref] [Google Scholar]
  343. 343.
    Bhokisham N, VanArsdale E, Stephens KT, Hauk P, Payne GF, Bentley WE. 2020.. A redox-based electrogenetic CRISPR system to connect with and control biological information networks. . Nat. Commun. 11::2427
    [Crossref] [Google Scholar]
  344. 344.
    Fang L, Fan J, Luo S, Chen Y, Wang C, et al. 2021.. Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. . Nat. Commun. 12::4976
    [Crossref] [Google Scholar]
  345. 345.
    Tian T, Kang JW, Kang A, Lee TS. 2019.. Redirecting metabolic flux via combinatorial multiplex CRISPRi-mediated repression for isopentenol production in Escherichia coli. . ACS Synth. Biol. 8:(2):391402
    [Crossref] [Google Scholar]
  346. 346.
    Wang Y, Cheng H, Liu Y, Liu Y, Wen X, et al. 2021.. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. . Nat. Commun. 12::678
    [Crossref] [Google Scholar]
  347. 347.
    Martin HG, Radivojevic T, Zucker J, Bouchard K, Sustarich J, et al. 2023.. Perspectives for self-driving labs in synthetic biology. . Curr. Opin. Biotechnol. 79::102881
    [Crossref] [Google Scholar]
  348. 348.
    Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, et al. 2021.. Microbial single-cell RNA sequencing by split-pool barcoding. . Science 371:(6531):eaba5257
    [Crossref] [Google Scholar]
  349. 349.
    Fenster JA, Werner AZ, Tay JW, Gillen M, Schirokauer L, et al. 2022.. Dynamic and single cell characterization of a CRISPR-interference toolset in Pseudomonas putida KT2440 for β-ketoadipate production from p-coumarate. . Metab. Eng. Commun. 15::e00204
    [Crossref] [Google Scholar]
  350. 350.
    Liu J, Liu M, Shi T, Sun G, Gao N, et al. 2022.. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an l-proline exporter for l-proline hyperproduction. . Nat. Commun. 13::891
    [Crossref] [Google Scholar]
  351. 351.
    Wang J, Li C, Jiang T, Yan Y. 2023.. Biosensor-assisted titratable CRISPRi high-throughput (BATCH) screening for over-production phenotypes. . Metab. Eng. 75::5867
    [Crossref] [Google Scholar]
  352. 352.
    Bat-Erdene U, Billingsley JM, Turner WC, Lichman BR, Ippoliti FM, et al. 2021.. Cell-free total biosynthesis of plant terpene natural products using an orthogonal cofactor regeneration system. . ACS Catal. 11:(15):9898903
    [Crossref] [Google Scholar]
  353. 353.
    Fessner W-D. 2015.. Systems biocatalysis: development and engineering of cell-free “artificial metabolisms” for preparative multi-enzymatic synthesis. . Eur. Congr. Biotechnol. 32:(6):65864
    [Google Scholar]
  354. 354.
    Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS, Erb TJ. 2016.. A synthetic pathway for the fixation of carbon dioxide in vitro. . Science 354:(6314):9004
    [Crossref] [Google Scholar]
  355. 355.
    Richardson KN, Black WB, Li H. 2020.. Aldehyde production in crude lysate- and whole cell-based biotransformation using a noncanonical redox cofactor system. . ACS Catal. 10:(15):8898903
    [Crossref] [Google Scholar]
  356. 356.
    Stark JC, Jaroentomeechai T, Moeller TD, Hershewe JM, Warfel KF, et al. 2021.. On-demand biomanufacturing of protective conjugate vaccines. . Sci. Adv. 7:(6):eabe9444
    [Crossref] [Google Scholar]
  357. 357.
    Vögeli B, Schulz L, Garg S, Tarasava K, Clomburg JM, et al. 2022.. Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria. . Nat. Commun. 13::3058
    [Crossref] [Google Scholar]
  358. 358.
    Claassens NJ, Burgener S, Vögeli B, Erb TJ, Bar-Even A. 2019.. A critical comparison of cellular and cell-free bioproduction systems. . Curr. Opin. Biotechnol. 60::22129
    [Crossref] [Google Scholar]
  359. 359.
    Kelwick RJR, Webb AJ, Freemont PS. 2020.. Biological materials: the next frontier for cell-free synthetic biology. . Front. Bioeng. Biotechnol. 8::399
    [Crossref] [Google Scholar]
  360. 360.
    Moritz C, Sundaram S, Diehl C, Adam D, Borkowski O, Pandi A. 2021.. Chapter 21 - advances and applications of cell-free systems for metabolic production. . In Microbial Cell Factories Engineering for Production of Biomolecules, ed. V Singh , pp. 40720. London:: Academic
    [Google Scholar]
  361. 361.
    Miguez AM, McNerney MP, Styczynski MP. 2019.. Metabolic profiling of Escherichia coli-based cell-free expression systems for process optimization. . Ind. Eng. Chem. Res. 58:(50):2247282
    [Crossref] [Google Scholar]
  362. 362.
    Wagner L, Jules M, Borkowski O. 2023.. What remains from living cells in bacterial lysate-based cell-free systems. . Comput. Struct. Biotechnol. J. 21::317382
    [Crossref] [Google Scholar]
  363. 363.
    Contreras-Llano LE, Meyer C, Liu Y, Sarker M, Lim S, et al. 2020.. Holistic engineering of cell-free systems through proteome-reprogramming synthetic circuits. . Nat. Commun. 11::3138
    [Crossref] [Google Scholar]
  364. 364.
    Dinglasan JLN, Doktycz MJ. 2023.. Rewiring cell-free metabolic flux in E. coli lysates using a block—push—pull approach. . Synth. Biol. 8:(1):ysad007
    [Crossref] [Google Scholar]
  365. 365.
    Yi X, Rasor BJ, Boadi N, Louie K, Northen TR, et al. 2023.. Establishing a versatile toolkit of flux enhanced strains and cell extracts for pathway prototyping. . Metab. Eng. 80::24153
    [Crossref] [Google Scholar]
  366. 366.
    Krüger A, Mueller AP, Rybnicky GA, Engle NL, Yang ZK, et al. 2020.. Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. . Metab. Eng. 62::95105
    [Crossref] [Google Scholar]
  367. 367.
    Moore SJ, MacDonald JT, Wienecke S, Ishwarbhai A, Tsipa A, et al. 2018.. Rapid acquisition and model-based analysis of cell-free transcription-translation reactions from nonmodel bacteria. . PNAS 115:(19):E434049
    [Crossref] [Google Scholar]
  368. 368.
    Amrofell MB, Rottinghaus AG, Moon TS. 2020.. Engineering microbial diagnostics and therapeutics with smart control. . Tissue Cell Pathw. Eng. 66::1117
    [Google Scholar]
  369. 369.
    Omer R, Mohsin MZ, Mohsin A, Mushtaq BS, Huang X, et al. 2022.. Engineered bacteria-based living materials for biotherapeutic applications. . Front. Bioeng. Biotechnol. 10::870675
    [Crossref] [Google Scholar]
  370. 370.
    Schmidt F, Zimmermann J, Tanna T, Farouni R, Conway T, et al. 2022.. Noninvasive assessment of gut function using transcriptional recording sentinel cells. . Science 376:(6594):eabm6038
    [Crossref] [Google Scholar]
  371. 371.
    Chan CTY, Lee JW, Cameron DE, Bashor CJ, Collins JJ. 2016.. “ Deadman” and “Passcode” microbial kill switches for bacterial containment. . Nat. Chem. Biol. 12:(2):8286
    [Crossref] [Google Scholar]
  372. 372.
    Stirling F, Bitzan L, O'Keefe S, Redfield E, Oliver JWK, et al. 2017.. Rational design of evolutionarily stable microbial kill switches. . Mol. Cell 68:(4):68697.e3
    [Crossref] [Google Scholar]
  373. 373.
    Hartline CJ, Schmitz AC, Han Y, Zhang F. 2021.. Dynamic control in metabolic engineering: theories, tools, and applications. . Tools Strateg. Metab. Eng. 63::12640
    [Crossref] [Google Scholar]
  374. 374.
    Wu Y, Chen T, Liu Y, Tian R, Lv X, et al. 2020.. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. . Nucleic Acids Res. 48:(2):9961009
    [Crossref] [Google Scholar]
  375. 375.
    Gao C, Guo L, Hu G, Liu J, Chen X, et al. 2021.. Engineering a CRISPRi circuit for autonomous control of metabolic flux in Escherichia coli. . ACS Synth. Biol. 10:(10):266171
    [Crossref] [Google Scholar]
  376. 376.
    Lv Y, Qian S, Du G, Chen J, Zhou J, Xu P. 2019.. Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction. . Metab. Eng. 54::10916
    [Crossref] [Google Scholar]
  377. 377.
    Li S, Ye Z, Moreb EA, Hennigan JN, Castellanos DB, et al. 2021.. Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli. . Metab. Eng. 64::2640
    [Crossref] [Google Scholar]
  378. 378.
    Ye Z, Li S, Hennigan JN, Lebeau J, Moreb EA, et al. 2021.. Two-stage dynamic deregulation of metabolism improves process robustness & scalability in engineered E. coli. . Metab. Eng. 68::10618
    [Crossref] [Google Scholar]
  379. 379.
    Dinh CV, Prather KLJ. 2019.. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli. . PNAS 116:(51):2556268
    [Crossref] [Google Scholar]
  380. 380.
    Tian J, Yang G, Gu Y, Sun X, Lu Y, Jiang W. 2020.. Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces. . Nucleic Acids Res. 48:(14):8188202
    [Crossref] [Google Scholar]
  381. 381.
    Liu Y, Chen J, Crisante D, Jaramillo Lopez JM, Mahadevan R. 2020.. Dynamic cell programming with quorum sensing-controlled CRISPRi circuit. . ACS Synth. Biol. 9:(6):128491
    [Crossref] [Google Scholar]
  382. 382.
    Banerjee D, Yunus IS, Wang X, Kim J, Srinivasan A, et al. 2023.. Genome-scale and pathway engineering for the sustainable aviation fuel precursor isoprenol production in Pseudomonas putida. . bioRxiv 538800. https://doi.org/10.1101/2023.04.29.538800
  383. 383.
    Kozaeva E, Volkova S, Matos MRA, Mezzina MP, Wulff T, et al. 2021.. Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A-dependent bioproduction in rewired Pseudomonas putida. . Metab. Eng. 67::37386
    [Crossref] [Google Scholar]
  384. 384.
    Shabestary K, Anfelt J, Ljungqvist E, Jahn M, Yao L, Hudson EP. 2018.. Targeted repression of essential genes to arrest growth and increase carbon partitioning and biofuel titers in cyanobacteria. . ACS Synth. Biol. 7:(7):166975
    [Crossref] [Google Scholar]
  385. 385.
    Shabestary K, Hernández HP, Miao R, Ljungqvist E, Hallman O, et al. 2021.. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. . Metab. Eng. 68::13141
    [Crossref] [Google Scholar]
  386. 386.
    Rodrigo-Navarro A, Sankaran S, Dalby MJ, del Campo A, Salmeron-Sanchez M. 2021.. Engineered living biomaterials. . Nat. Rev. Mater. 6:(12):117590
    [Crossref] [Google Scholar]
  387. 387.
    Bao T, Qian Y, Xin Y, Collins JJ, Lu T. 2023.. Engineering microbial division of labor for plastic upcycling. . Nat. Commun. 14::5712
    [Crossref] [Google Scholar]
  388. 388.
    Brooks SM, Marsan C, Reed KB, Yuan S-F, Nguyen D-D, et al. 2023.. A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids. . Nat. Commun. 14::4448
    [Crossref] [Google Scholar]
  389. 389.
    Johnston TG, Yuan S-F, Wagner JM, Yi X, Saha A, et al. 2020.. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation. . Nat. Commun. 11::563
    [Crossref] [Google Scholar]
  390. 390.
    Lawson CE, Martí JM, Radivojevic T, Jonnalagadda SVR, Gentz R, et al. 2021.. Machine learning for metabolic engineering: a review. . Tools Strateg. Metab. Eng. 63::3460
    [Crossref] [Google Scholar]
  391. 391.
    Radivojević T, Costello Z, Workman K, Garcia Martin H. 2020.. A machine learning automated recommendation tool for synthetic biology. . Nat. Commun. 11::4879
    [Crossref] [Google Scholar]
  392. 392.
    Roohani Y, Huang K, Leskovec J. 2023.. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. . Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01905-6
    [Google Scholar]
  393. 393.
    Hao N, Shearwin KE, Dodd IB. 2017.. Programmable DNA looping using engineered bivalent dCas9 complexes. . Nat. Commun. 8::1628
    [Crossref] [Google Scholar]
  394. 394.
    Hu C, van Beljouw SPB, Nam KH, Schuler G, Ding F, et al. 2022.. Craspase is a CRISPR RNA-guided, RNA-activated protease. . Science 377:(6612):127885
    [Crossref] [Google Scholar]
  395. 395.
    Joshi SH-N, Yong C, Gyorgy A. 2022.. Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains. . Nat. Commun. 13::6691
    [Crossref] [Google Scholar]
  396. 396.
    Li C, Zou Y, Jiang T, Zhang J, Yan Y. 2022.. Harnessing plasmid replication mechanism to enable dynamic control of gene copy in bacteria. . Metab. Eng. 70::6778
    [Crossref] [Google Scholar]
  397. 397.
    Mao X, Ma Q, Liu B, Chen X, Zhang H, Xu Y. 2015.. Revisiting operons: an analysis of the landscape of transcriptional units in E. coli. . BMC Bioinform. 16::356
    [Crossref] [Google Scholar]
  398. 398.
    Bar-Yaacov D, Pilpel Y, Dahan O. 2018.. RNA editing in bacteria: occurrence, regulation and significance. . RNA Biol. 15:(7):86367
    [Crossref] [Google Scholar]
  399. 399.
    Pan C, Li G, Malzahn AA, Cheng Y, Leyson B, et al. 2022.. Boosting plant genome editing with a versatile CRISPR-Combo system. . Nat. Plants 8:(5):51325
    [Crossref] [Google Scholar]
  400. 400.
    Kirkpatrick RL, Lewis K, Langan RA, Lajoie MJ, Boyken SE, et al. 2020.. Conditional recruitment to a DNA-bound CRISPR-Cas complex using a colocalization-dependent protein switch. . ACS Synth. Biol. 9:(9):231623
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100522-114706
Loading
/content/journals/10.1146/annurev-chembioeng-100522-114706
Loading

Data & Media loading...

  • Article Type: Review Article