1932

Abstract

Plastic wastes accumulate in the environment, impacting wildlife and human health and representing a significant pool of inexpensive waste carbon that could form feedstock for the sustainable production of commodity chemicals, monomers, and specialty chemicals. Current mechanical recycling technologies are not economically attractive due to the lower-quality plastics that are produced in each iteration. Thus, the development of a plastics economy requires a solution that can deconstruct plastics and generate value from the deconstruction products. Biological systems can provide such value by allowing for the processing of mixed plastics waste streams via enzymatic specificity and using engineered metabolic pathways to produce upcycling targets. We focus on the use of biological systems for waste plastics deconstruction and upcycling. We highlight documented and predicted mechanisms through which plastics are biologically deconstructed and assimilated and provide examples of upcycled products from biological systems. Additionally, we detail current challenges in the field, including the discovery and development of microorganisms and enzymes for deconstructing non–polyethylene terephthalate plastics, the selection of appropriate target molecules to incentivize development of a plastic bioeconomy, and the selection of microbial chassis for the valorization of deconstruction products.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100522-115850
2024-07-24
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100522-115850.html?itemId=/content/journals/10.1146/annurev-chembioeng-100522-115850&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Geyer R, Jambeck JR, Law KL. 2017.. Production, use, and fate of all plastics ever made. . Sci. Adv. 3:(7):e170078
    [Crossref] [Google Scholar]
  2. 2.
    OECD. 2017.. Global plastics outlook: plastic waste in 2019 (edition 2022). Dataset , OECD, Paris:
    [Google Scholar]
  3. 3.
    Li H, Aguirre-Villegas HA, Allen RD, Bai X, Benson CH, et al. 2022.. Expanding plastics recycling technologies: chemical aspects, technology status and challenges. . Green Chem. 24:(23):88999002
    [Crossref] [Google Scholar]
  4. 4.
    Li J, Liu H, Chen JP. 2018.. Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. . Water Res. 137::36274
    [Crossref] [Google Scholar]
  5. 5.
    Katyal D, Kong E, Villanueva J. 2020.. Microplastics in the environment: impact on human health and future mitigation strategies. . Environ. Health Rev. 63:(1):2731
    [Crossref] [Google Scholar]
  6. 6.
    Jaganmohan M. 2024.. Plastic material production worldwide 2022, by region. Doc., Statista, New York:. https://www.statista.com/statistics/281126/global-plastics-production-share-of-various-countries-and-regions/
    [Google Scholar]
  7. 7.
    Ragaert K, Delva L, Van Geem K. 2017.. Mechanical and chemical recycling of solid plastic waste. . Waste Manag. 69::2458
    [Crossref] [Google Scholar]
  8. 8.
    Rosli NA, Ahmad I. 2021.. Mechanical properties of recycled plastics. . In Recent Developments in Plastic Recycling, ed. J Parameswaranpillai, S Mavinkere Rangappa, A Gulihonnehalli Rajkumar, S Siengchin , pp. 23958. Singapore:: Springer
    [Google Scholar]
  9. 9.
    Dogu O, Pelucchi M, Van de Vijver R, Van Steenberge PHM, D'hooge DR, et al. 2021.. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: state-of-the-art, challenges, and future directions. . Progress Energy Combust. Sci. 84::100901
    [Crossref] [Google Scholar]
  10. 10.
    Lopez G, Artetxe M, Amutio M, Bilbao J, Olazar M. 2017.. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals: a review. . Renew. Sustain. Energy Rev. 73::34668
    [Crossref] [Google Scholar]
  11. 11.
    Hinton ZR, Kots PA, Soukaseum M, Vance BC, Vlachos DG, et al. 2022.. Antioxidant-induced transformations of a metal-acid hydrocracking catalyst in the deconstruction of polyethylene waste. . Green Chem. 24:(19):733239
    [Crossref] [Google Scholar]
  12. 12.
    Rahimi A, García JM. 2017.. Chemical recycling of waste plastics for new materials production. . Nat. Rev. Chem. 1::0046
    [Crossref] [Google Scholar]
  13. 13.
    Ellis LD, Rorrer NA, Sullivan KP, Otto M, McGeehan JE, et al. 2021.. Chemical and biological catalysis for plastics recycling and upcycling. . Nat. Catal. 4:(7):53956
    [Crossref] [Google Scholar]
  14. 14.
    Herrero Acero E, Ribitsch D, Steinkellner G, Gruber K, Greimel K, et al. 2011.. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. . Macromolecules 44:(12):463240
    [Crossref] [Google Scholar]
  15. 15.
    Roth C, Wei R, Oeser T, Then J, Föllner C, et al. 2014.. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. . Appl. Microbiol. Biotechnol. 98:(18):781523
    [Crossref] [Google Scholar]
  16. 16.
    Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J. 2008.. Identification and characterization of bacterial cutinase. . J. Biol. Chem. 283:(38):2585462
    [Crossref] [Google Scholar]
  17. 17.
    Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, et al. 2016.. A bacterium that degrades and assimilates poly(ethylene terephthalate). . Science 351:(6278):119699
    [Crossref] [Google Scholar]
  18. 18.
    Wesołowski J, Płachta K. 2016.. The polyamide market. . Fibres Text. East. Eur. 24:(6):1218
    [Crossref] [Google Scholar]
  19. 19.
    Jin X, Dong J, Guo X, Ding M, Bao R, Luo Y. 2022.. Current advances in polyurethane biodegradation. . Polym. Int. 71:(12):138492
    [Crossref] [Google Scholar]
  20. 20.
    Loredo-Treviño A, Gutiérrez-Sánchez G, Rodríguez-Herrera R, Aguilar CN. 2011.. Microbial enzymes involved in polyurethane biodegradation: a review. . J. Polym. Environ. 20:(1):25865
    [Crossref] [Google Scholar]
  21. 21.
    Urgun-Demirtas M, Singh D, Pagilla K. 2007.. Laboratory investigation of biodegradability of a polyurethane foam under anaerobic conditions. . Polym. Degrad. Stab. 92:(8):1599610
    [Crossref] [Google Scholar]
  22. 22.
    de Souza FM, Kahol PK, Gupta RK. 2021.. Introduction to polyurethane chemistry. . In Polyurethane Chemistry: Renewable Polyols and Isocyanates, ed. RK Gupta, PK Kahol , pp. 124. ACS Symp. Ser. Washington, DC:: Am. Chem. Soc.
    [Google Scholar]
  23. 23.
    Christenson EM, Anderson JM, Hiltner A. 2007.. Biodegradation mechanisms of polyurethane elastomers. . Corros. Eng. Sci. Technol. 42:(4):31223
    [Crossref] [Google Scholar]
  24. 24.
    Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T. 1999.. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. . Appl. Microbiol. Biotechnol. 51:(2):13440
    [Crossref] [Google Scholar]
  25. 25.
    Magnin A, Entzmann L, Pollet E, Avérous L. 2021.. Breakthrough in polyurethane bio-recycling: an efficient laccase-mediated system for the degradation of different types of polyurethanes. . Waste Manag. 132::2330
    [Crossref] [Google Scholar]
  26. 26.
    Yasuhira K, Uedo Y, Takeo M, Kato D-I, Negoro S. 2007.. Genetic organization of nylon-oligomer-degrading enzymes from alkalophilic bacterium, Agromyces sp. KY5R. . J. Biosci. Bioeng. 104:(6):52124
    [Crossref] [Google Scholar]
  27. 27.
    Yasuhira K, Tanaka Y, Shibata H, Kawashima Y, Ohara A, et al. 2007.. 6-Aminohexanoate oligomer hydrolases from the alkalophilic bacteria Agromyces sp. strain KY5R and Kocuria sp. strain KY2. . Appl. Environ. Microbiol. 73:(21):7099102
    [Crossref] [Google Scholar]
  28. 28.
    Heumann S, Eberl A, Fischer-Colbrie G, Pobeheim H, Kaufmann F, et al. 2009.. A novel aryl acylamidase from Nocardia farcinica hydrolyses polyamide. . Biotechnol. Bioeng. 102:(4):100311
    [Crossref] [Google Scholar]
  29. 29.
    Kinoshita S, Kageyama S, Iba K, Yamada Y, Okada H. 1975.. Utilization of a cyclic dimer and linear oligomers of ε-aminocaproic acid by Achrornobacter guttatus KI 72. . Agric. Biol. Chem. 39:(6):121923
    [Google Scholar]
  30. 30.
    Kanehisa M, Goto S. 2000.. KEGG: Kyoto Encyclopedia of Genes and Genomes. . Nucleic Acids Res. 28:(1):2730
    [Crossref] [Google Scholar]
  31. 31.
    Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 2023.. KEGG for taxonomy-based analysis of pathways and genomes. . Nucleic Acids Res. 51:(D1):D58792
    [Crossref] [Google Scholar]
  32. 32.
    Guengerich FP, Yoshimoto FK. 2018.. Formation and cleavage of C-C bonds by enzymatic oxidation-reduction reactions. . Chem. Rev. 118:(14):6573655
    [Crossref] [Google Scholar]
  33. 33.
    Santo M, Weitsman R, Sivan A. 2013.. The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. . Int. Biodeterior. Biodegrad. 84::20410
    [Crossref] [Google Scholar]
  34. 34.
    Sanluis-Verdes A, Colomer-Vidal P, Rodriguez-Ventura F, Bello-Villarino M, Spinola-Amilibia M, et al. 2022.. Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. . Nat. Commun. 13::5568
    [Crossref] [Google Scholar]
  35. 35.
    Kim HR, Lee HM, Yu HC, Jeon E, Lee S, et al. 2020.. Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). . Environ. Sci. Technol. 54:(11):698796
    [Crossref] [Google Scholar]
  36. 36.
    Brandon AM, Gao SH, Tian R, Ning D, Yang SS, et al. 2018.. Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. . Environ. Sci. Technol. 52:(11):652633
    [Crossref] [Google Scholar]
  37. 37.
    Jin L, Feng P, Cheng Z, Wang D. 2023.. Effect of biodegrading polyethylene, polystyrene, and polyvinyl chloride on the growth and development of yellow mealworm (Tenebrio molitor) larvae. . Environ. Sci. Pollut. Res. 30::3711826
    [Crossref] [Google Scholar]
  38. 38.
    Khyade VB. 2018.. Review on biodegradation of plastic through waxworm (order: Lepidoptera; family: Pyralidae). . Int. Acad. J. Econ. 05:(1):8491
    [Crossref] [Google Scholar]
  39. 39.
    Kim HR, Lee C, Shin H, Koh HY, Lee S, Choi D. 2023.. Interplay between superworm and its gut microbiome in facilitating polyethylene biodegradation by host transcriptomic analysis: insights from xenobiotic metabolism. . Res. Square preprint. https://doi.org/10.21203/rs.3.rs-2815027/v1
    [Google Scholar]
  40. 40.
    Rojo F. 2009.. Degradation of alkanes by bacteria. . Environ. Microbiol. 11:(10):247790
    [Crossref] [Google Scholar]
  41. 41.
    Ji Y, Mao G, Wang Y, Bartlam M. 2013.. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. . Front. Microbiol. 4::58
    [Crossref] [Google Scholar]
  42. 42.
    Van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B. 2003.. Diversity of alkane hydroxylase systems in the environment. . Oil Gas Sci. Technol. 58:(4):42740
    [Crossref] [Google Scholar]
  43. 43.
    Cui Y, Chen Y, Liu X, Dong S, Tian Y, et al. 2021.. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. . ACS Catal. 11:(3):134050
    [Crossref] [Google Scholar]
  44. 44.
    Jeon J-M, Park S-J, Choi T-R, Park J-H, Yang Y-H, Yoon J-J. 2021.. Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. . Polym. Degrad. Stab. 191::109662
    [Crossref] [Google Scholar]
  45. 45.
    Rana AK, Thakur MK, Saini AK, Mokhta SK, Moradi O, et al. 2022.. Recent developments in microbial degradation of polypropylene: integrated approaches towards a sustainable environment. . Sci. Total Environ. 826::154056
    [Crossref] [Google Scholar]
  46. 46.
    Zhang Z, Peng H, Yang D, Zhang G, Zhang J, Feng J. 2022.. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. . Nat. Commun. 13::5360
    [Crossref] [Google Scholar]
  47. 47.
    Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K. 1995.. Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. . J. Appl. Polym. Sci. 56:(13):178996
    [Crossref] [Google Scholar]
  48. 48.
    Ho BT, Roberts TK, Lucas S. 2017.. An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. . Crit. Rev. Biotechnol. 38:(2):30820
    [Crossref] [Google Scholar]
  49. 49.
    Bollinger A, Thies S, Knieps-Grünhagen E, Gertzen C, Kobus S, et al. 2020.. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri—structural and functional insights. . Front. Microbiol. 11::114
    [Crossref] [Google Scholar]
  50. 50.
    Zak JC, Willig MR, Moorhead DL, Wildman HG. 1994.. Functional diversity of microbial communities: a quantitative approach. . Soil Biol. Biochem. 26:(9):11018
    [Crossref] [Google Scholar]
  51. 51.
    Baculi R. 2017.. Biodegradation of high density polyethylene by bacteria isolated from root nodules of Phaseolus vulgaris. . Philipp. Agric. Sci. 100::2131
    [Google Scholar]
  52. 52.
    Ali MI, Ahmed S, Robson G, Javed I, Ali N, et al. 2014.. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. . J. Basic Microbiol. 54:(1):1827
    [Crossref] [Google Scholar]
  53. 53.
    Volke-Sepúlveda T, Saucedo-Castañeda G, Gutiérrez-Rojas M, Manzur A, Favela-Torres E. 2002.. Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. . J. Appl. Polym. Sci. 83:(2):30514
    [Crossref] [Google Scholar]
  54. 54.
    Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y. 2001.. Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. . Polym. Degrad. Stab. 72:(2):32327
    [Crossref] [Google Scholar]
  55. 55.
    Khan S, Nadir S, Shah ZU, Shah AA, Karunarathna SC, et al. 2017.. Biodegradation of polyester polyurethane by Aspergillus tubingensis. . Environ. Pollut. 225::46980
    [Crossref] [Google Scholar]
  56. 56.
    Álvarez-Barragán J, Domínguez-Malfavón L, Vargas-Suárez M, González-Hernández R, Aguilar-Osorio G, Loza-Tavera H. 2016.. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. . Appl. Environ. Microbiol. 82:(17):522535
    [Crossref] [Google Scholar]
  57. 57.
    Osman M, Satti SM, Luqman A, Hasan F, Shah Z, Shah AA. 2018.. Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil. . J. Polym. Environ. 26:(1):30110
    [Crossref] [Google Scholar]
  58. 58.
    Shah Z, Hasan F, Krumholz L, Aktas DF, Shah AA. 2013.. Degradation of polyester polyurethane by newly isolated Pseudomonas aeruginosa strain MZA-85 and analysis of degradation products by GC-MS. . Int. Biodeterior. Biodegrad. 77::11422
    [Crossref] [Google Scholar]
  59. 59.
    Wu T, Xu J, Xie W, Yao Z, Yang H, et al. 2018.. Pseudomonas aeruginosa L10: a hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). . Front. Microbiol. 9::1087
    [Crossref] [Google Scholar]
  60. 60.
    Culleton H, McKie V, de Vries RP. 2013.. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: What have we learned from Aspergillus?. Biotechnol. J. 8:(8):88494
    [Crossref] [Google Scholar]
  61. 61.
    Braun B, Künzel S, Szewzyk U. 2017.. Draft genome sequence of Ideonella sp. strain A 288, isolated from an iron-precipitating biofilm. . Genome Announc. 5:(33):e00803-17
    [Crossref] [Google Scholar]
  62. 62.
    Dadd RH. 1966.. Beeswax in the nutrition of the wax moth, Galleria mellonella (L.). . J. Insect Physiol. 12:(12):147992
    [Crossref] [Google Scholar]
  63. 63.
    Bordiean A, Krzyżaniak M, Stolarski MJ, Peni D. 2020.. Growth potential of yellow mealworm reared on industrial residues. . Agriculture 10:(12):599
    [Crossref] [Google Scholar]
  64. 64.
    Place AR. 1992.. Comparative aspects of lipid digestion and absorption: physiological correlates of wax ester digestion. . Am. J. Physiol. 263:(3):R46471
    [Google Scholar]
  65. 65.
    Zhang J, Gao D, Li Q, Zhao Y, Li L, et al. 2020.. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. . Sci. Total Environ. 704::135931
    [Crossref] [Google Scholar]
  66. 66.
    Yang J, Yang Y, Wu W-M, Zhao J, Jiang L. 2014.. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. . Environ. Sci. Technol. 48:(23):1377684
    [Crossref] [Google Scholar]
  67. 67.
    Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA. 2015.. Better together: engineering and application of microbial symbioses. . Curr. Opin. Biotechnol. 36::4049
    [Crossref] [Google Scholar]
  68. 68.
    Keller L, Surette MG. 2006.. Communication in bacteria: an ecological and evolutionary perspective. . Nat. Rev. Microbiol. 4:(4):24958
    [Crossref] [Google Scholar]
  69. 69.
    Brenner K, You L, Arnold FH. 2008.. Engineering microbial consortia: a new frontier in synthetic biology. . Trends Biotechnol. 26:(9):48389
    [Crossref] [Google Scholar]
  70. 70.
    Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. 2015.. Metabolic dependencies drive species co-occurrence in diverse microbial communities. . PNAS 112:(20):644954
    [Crossref] [Google Scholar]
  71. 71.
    Martínez-Hidalgo P, Hirsch AM. 2017.. The nodule microbiome: N2-fixing rhizobia do not live alone. . Phytobiomes J. 1:(2):7082
    [Crossref] [Google Scholar]
  72. 72.
    Rozen DE, Philippe N, Arjan de Visser J, Lenski RE, Schneider D. 2009.. Death and cannibalism in a seasonal environment facilitate bacterial coexistence. . Ecol. Lett. 12:(1):3444
    [Crossref] [Google Scholar]
  73. 73.
    Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D, De Cesare A. 2021.. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. . Sci. Rep. 11:(1):3030
    [Crossref] [Google Scholar]
  74. 74.
    Lou Y, Li Y, Lu B, Liu Q, Yang S-S, et al. 2021.. Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. . J. Hazard. Mater. 416::126222
    [Crossref] [Google Scholar]
  75. 75.
    Wang Z. 2022.. Computational metagenomics: a data engineering perspective. . In Introduction to Computational Metagenomics, pp. 1741. Singapore:: World Sci.
    [Google Scholar]
  76. 76.
    Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, et al. 2008.. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. . BMC Bioinform. 9::386
    [Crossref] [Google Scholar]
  77. 77.
    Blanco-Míguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, et al. 2023.. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. . Nat. Biotechnol. 41::163344
    [Crossref] [Google Scholar]
  78. 78.
    Lu J, Rincon N, Wood DE, Breitwieser FP, Pockrandt C, et al. 2022.. Metagenome analysis using the Kraken software suite. . Nat. Protoc. 17:(12):281539
    [Crossref] [Google Scholar]
  79. 79.
    Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, et al. 2021.. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. . eLife 10::e65088
    [Crossref] [Google Scholar]
  80. 80.
    Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, et al. 2020.. PICRUSt2 for prediction of metagenome functions. . Nat. Biotechnol. 38:(6):68588
    [Crossref] [Google Scholar]
  81. 81.
    Bashiardes S, Zilberman-Schapira G, Elinav E. 2016.. Use of metatranscriptomics in microbiome research. . Bioinform. Biol. Insights 10::1925
    [Crossref] [Google Scholar]
  82. 82.
    Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. 2007.. Quantitative mass spectrometry in proteomics: a critical review. . Anal. Bioanal. Chem. 389:(4):101731
    [Crossref] [Google Scholar]
  83. 83.
    Fan TW-M, Lane AN, Higashi RM. 2012.. Introduction to metabolomics. . In The Handbook of Metabolomics, pp. 16. Methods Pharmacol. Toxicol. Totowa, NJ:: Humana
    [Google Scholar]
  84. 84.
    Love MI, Huber W, Anders S. 2014.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. . Genome Biol. 15:(12):550
    [Crossref] [Google Scholar]
  85. 85.
    Robinson MD, McCarthy DJ, Smyth GK. 2010.. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. . Bioinformatics 26:(1):13940
    [Crossref] [Google Scholar]
  86. 86.
    Singh A, Rorrer NA, Nicholson SR, Erickson E, DesVeaux JS, et al. 2021.. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). . Joule 5:(9):2479503
    [Crossref] [Google Scholar]
  87. 87.
    Arnold FH. 2018.. Directed evolution: bringing new chemistry to life. . Angew. Chem. Int. Ed. 57:(16):414348
    [Crossref] [Google Scholar]
  88. 88.
    Brissos V, Tavares D, Sousa AC, Robalo MP, Martins LO. 2017.. Engineering a bacterial DyP-type peroxidase for enhanced oxidation of lignin-related phenolics at alkaline pH. . ACS Catal. 7:(5):345465
    [Crossref] [Google Scholar]
  89. 89.
    Liu B, He L, Wang L, Li T, Li C, et al. 2018.. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis. . ChemBioChem 19:(14):147175
    [Crossref] [Google Scholar]
  90. 90.
    Lu H, Diaz DJ, Czarnecki NJ, Zhu C, Kim W, et al. 2022.. Machine learning-aided engineering of hydrolases for PET depolymerization. . Nature 604:(7907):66267
    [Crossref] [Google Scholar]
  91. 91.
    Schwarz W. 2001.. The cellulosome and cellulose degradation by anaerobic bacteria. . Appl. Microbiol. Biotechnol. 56:(5):63449
    [Crossref] [Google Scholar]
  92. 92.
    Lamed R, Bayer EA. 1988.. The cellulosome of Clostridium thermocellum. . Adv. Appl. Microbiol. 33::146
    [Crossref] [Google Scholar]
  93. 93.
    Gold ND, Martin VJJ. 2007.. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. . J. Bacteriol. 189:(19):678795
    [Crossref] [Google Scholar]
  94. 94.
    Smith MR, Khera E, Wen F. 2015.. Engineering novel and improved biocatalysts by cell surface display. . Ind. Eng. Chem. Res. 54:(16):402132
    [Crossref] [Google Scholar]
  95. 95.
    Chen Z, Duan R, Xiao Y, Wei Y, Zhang H, et al. 2022.. Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin. . Nat. Commun. 13::7138
    [Crossref] [Google Scholar]
  96. 96.
    Carbios. 2024.. Enzymatic recycling. https://www.carbios.com/en/enzymatic-recycling/
    [Google Scholar]
  97. 97.
    Tournier V, Topham CM, Gilles A, David B, Folgoas C, et al. 2020.. An engineered PET depolymerase to break down and recycle plastic bottles. . Nature 580:(7802):21619
    [Crossref] [Google Scholar]
  98. 98.
    Gibbons W, Hughes S. 2011.. Integrated biorefineries with engineered microbes and high-value co-products for profitable biofuels production. . In Biofuels: Global Impact on Renewable Energy, Production Agriculture, and Technological Advancements, ed. D Tomes, P Lakshmanan, D Songstad , pp. 26583. New York:: Springer
    [Google Scholar]
  99. 99.
    Sullivan KP, Werner AZ, Ramirez KJ, Ellis LD, Bussard JR, et al. 2022.. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. . Science 378:(6616):20711
    [Crossref] [Google Scholar]
  100. 100.
    Tiso T, Narancic T, Wei R, Pollet E, Beagan N, et al. 2021.. Towards bio-upcycling of polyethylene terephthalate. . Metab. Eng. 66::16778
    [Crossref] [Google Scholar]
  101. 101.
    Liu P, Zhang T, Zheng Y, Li Q, Su T, Qi Q. 2021.. Potential one-step strategy for PET degradation and PHB biosynthesis through co-cultivation of two engineered microorganisms. . Eng. Microbiol. 1::100003
    [Crossref] [Google Scholar]
  102. 102.
    Utomo RNC, Heipieper HJ, Eberlein C, Blank LM. 2021.. New species Pseudomonas capeferrum TDA1 as a plastic monomer utilizer and a PHA native producer. . IOP Conf. Ser. Earth Environ. Sci. 894:(1):012024
    [Crossref] [Google Scholar]
  103. 103.
    Alonso-Campos V, Covarrubias-García I, Arriaga S. 2021.. Styrene bioconversion by Pseudomonas putida utilizing a non-aqueous phase for polyhydroxyalkanoate production. . J. Chem. Technol. Biotechnol. 97:(6):142435
    [Crossref] [Google Scholar]
  104. 104.
    Mihreteab M, Stubblefield BA, Gilbert ES. 2021.. Enhancing polypropylene bioconversion and lipogenesis by Yarrowia lipolytica using a chemical/biological hybrid process. . J. Biotechnol. 332::94102
    [Crossref] [Google Scholar]
  105. 105.
    Schaerer LG, Wu R, Putman LI, Pearce JM, Lu T, et al. 2023.. Killing two birds with one stone: chemical and biological upcycling of polyethylene terephthalate plastics into food. . Trends Biotechnol. 41:(2):18496
    [Crossref] [Google Scholar]
  106. 106.
    Esmail A, Rebocho AT, Marques AC, Silvestre S, Gonçalves A, et al. 2022.. Bioconversion of terephthalic acid and ethylene glycol into bacterial cellulose by Komagataeibacter xylinus DSM 2004 and DSM 46604. . Front. Bioeng. Biotechnol. 10::853322
    [Crossref] [Google Scholar]
  107. 107.
    Kim HT, Kim JK, Cha HG, Kang MJ, Lee HS, et al. 2019.. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. . ACS Sustain. Chem. Eng. 7:(24):19396406
    [Crossref] [Google Scholar]
  108. 108.
    Kang MJ, Kim HT, Lee M-W, Kim K-A, Khang TU, et al. 2020.. A chemo-microbial hybrid process for the production of 2-pyrone-4,6-dicarboxylic acid as a promising bioplastic monomer from PET waste. . Green Chem. 22:(11):346169
    [Crossref] [Google Scholar]
  109. 109.
    Tiso T, Winter B, Wei R, Hee J, de Witt J, et al. 2022.. The metabolic potential of plastics as biotechnological carbon sources—review and targets for the future. . Metab. Eng. 71::7798
    [Crossref] [Google Scholar]
  110. 110.
    Nakamura CE, Whited GM. 2003.. Metabolic engineering for the microbial production of 1,3-propanediol. . Curr. Opin. Biotechnol. 14:(5):45459
    [Crossref] [Google Scholar]
  111. 111.
    Burgard A, Burk MJ, Osterhout R, Van Dien S, Yim H. 2016.. Development of a commercial scale process for production of 1,4-butanediol from sugar. . Curr. Opin. Biotechnol. 42::11825
    [Crossref] [Google Scholar]
  112. 112.
    Yu J-L, Xia X-X, Zhong J-J, Qian Z-G. 2014.. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. . Biotechnol. Bioeng. 111:(12):258086
    [Crossref] [Google Scholar]
  113. 113.
    Werner AZ, Clare R, Mand TD, Pardo I, Ramirez KJ, et al. 2021.. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. . Metab. Eng. 67::25061
    [Crossref] [Google Scholar]
  114. 114.
    Rorrer NA, Notonier SF, Knott BC, Black BA, Singh A, et al. 2022.. Production of β-ketoadipic acid from glucose in Pseudomonas putida KT2440 for use in performance-advantaged nylons. . Cell Rep. Phys. Sci. 3:(4):100840
    [Crossref] [Google Scholar]
  115. 115.
    Ling C, Peabody GL, Salvachúa D, Kim Y-M, Kneucker CM, et al. 2022.. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. . Nat. Commun. 13::4925
    [Crossref] [Google Scholar]
  116. 116.
    Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C. 2018.. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. . Microbial Cell Factor. 17::115
    [Crossref] [Google Scholar]
  117. 117.
    Diao J, Hu Y, Tian Y, Carr R, Moon TS. 2023.. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. . Cell Rep. 42:(1):111908
    [Crossref] [Google Scholar]
  118. 118.
    Lukito BR, Sekar BS, Wu S, Li Z. 2019.. Whole cell-based cascade biotransformation for the production of (S)-mandelic acid from styrene, L-phenylalanine, glucose, or glycerol. . Adv. Synth. Catal. 361:(15):356068
    [Crossref] [Google Scholar]
  119. 119.
    Rabot C, Chen Y, Lin S-Y, Miller B, Chiang Y-M, et al. 2023.. Polystyrene upcycling into fungal natural products and a biocontrol agent. . J. Am. Chem. Soc. 145:(9):522230
    [Crossref] [Google Scholar]
  120. 120.
    Palm GJ, Reisky L, Böttcher D, Müller H, Michels EAP, et al. 2019.. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. . Nat. Commun. 10::1717
    [Crossref] [Google Scholar]
  121. 121.
    Fujiwara R, Sanuki R, Ajiro H, Fukui T, Yoshida S. 2021.. Direct fermentative conversion of poly(ethylene terephthalate) into poly(hydroxyalkanoate) by Ideonella sakaiensis. . Sci. Rep. 11:(1):19991
    [Crossref] [Google Scholar]
  122. 122.
    Liu H, Deutschbauer AM. 2018.. Rapidly moving new bacteria to model-organism status. . Curr. Opin. Biotechnol. 51::11622
    [Crossref] [Google Scholar]
  123. 123.
    Yang Z, Blenner M. 2020.. Genome editing systems across yeast species. . Curr. Opin. Biotechnol. 66::25566
    [Crossref] [Google Scholar]
  124. 124.
    Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. 2020.. Industrial biotechnology of Pseudomonas putida: advances and prospects. . Appl. Microbiol. Biotechnol. 104:(18):774566
    [Crossref] [Google Scholar]
  125. 125.
    Bredeweg EL, Pomraning KR, Dai Z, Nielsen J, Kerkhoven EJ, Baker SE. 2017.. A molecular genetic toolbox for Yarrowia lipolytica. . Biotechnol. Biofuels 10::2
    [Crossref] [Google Scholar]
  126. 126.
    Kim GY, Kim J, Park G, Kim HJ, Yang J, Seo SW. 2023.. Synthetic biology tools for engineering Corynebacterium glutamicum. . Comput. Struct. Biotechnol. J. 21::195565
    [Crossref] [Google Scholar]
  127. 127.
    Doudna JA, Charpentier E. 2014.. The new frontier of genome engineering with CRISPR-Cas9. . Science 346:(6213):1258096
    [Crossref] [Google Scholar]
  128. 128.
    Schwartz C, Cheng J-F, Evans R, Schwartz CA, Wagner JM, et al. 2019.. Validating genome-wide CRISPR-Cas9 function improves screening in the oleaginous yeast Yarrowia lipolytica. . Metab. Eng. 55::10210
    [Crossref] [Google Scholar]
  129. 129.
    Lu L, Shen X, Sun X, Yan Y, Wang J, Yuan Q. 2022.. CRISPR-based metabolic engineering in non-model microorganisms. . Curr. Opin. Biotechnol. 75::102698
    [Crossref] [Google Scholar]
  130. 130.
    Liang Y, Jiao S, Wang M, Yu H, Shen Z. 2020.. A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH. . Metab. Eng. 57::1322
    [Crossref] [Google Scholar]
  131. 131.
    Zhang J, Zong W, Hong W, Zhang Z-T, Wang Y. 2018.. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. . Metab. Eng. 47::4959
    [Crossref] [Google Scholar]
  132. 132.
    Velázquez E, Al-Ramahi Y, Tellechea-Luzardo J, Krasnogor N, de Lorenzo V. 2021.. Targetron-assisted delivery of exogenous DNA sequences into Pseudomonas putida through CRISPR-aided counterselection. . ACS Synth. Biol. 10:(10):255265
    [Crossref] [Google Scholar]
  133. 133.
    Kazi MI, Schargel RD, Boll JM. 2020.. Generating transposon insertion libraries in gram-negative bacteria for high-throughput sequencing. . J. Vis. Exp. 2020::61612
    [Google Scholar]
  134. 134.
    Thompson MG, Incha MR, Pearson AN, Schmidt M, Sharpless WA, et al. 2020.. Fatty acid and alcohol metabolism in Pseudomonas putida: functional analysis using random barcode transposon sequencing. . Appl. Environ. Microbiol. 86:(21):e01665-20
    [Crossref] [Google Scholar]
  135. 135.
    Patterson K, Yu J, Landberg J, Chang I, Shavarebi F, et al. 2018.. Functional genomics for the oleaginous yeast Yarrowia lipolytica. . Metab. Eng. 48::18496
    [Crossref] [Google Scholar]
  136. 136.
    Wang G, Zhao Z, Ke J, Engel Y, Shi Y-M, et al. 2019.. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. . Nat. Microbiol. 4:(12):2498510
    [Crossref] [Google Scholar]
  137. 137.
    Elmore JR, Dexter GN, Baldino H, Huenemann JD, Francis R, et al. 2023.. High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration. . Sci. Adv. 9:(10):eade1285
    [Crossref] [Google Scholar]
  138. 138.
    Zhang H, Perez-Garcia P, Dierkes RF, Applegate V, Schumacher J, et al. 2022.. The Bacteroidetes Aequorivita sp. and Kaistella jeonii produce promiscuous esterases with PET-hydrolyzing activity. . Front. Microbiol. 12::803896
    [Crossref] [Google Scholar]
  139. 139.
    Yoshida T, Sugano Y. 2023.. Unexpected diversity of dye-decolorizing peroxidases. . Biochem. Biophys. Rep. 33::101401
    [Google Scholar]
  140. 140.
    Blázquez-Sánchez P, Engelberger F, Cifuentes-Anticevic J, Sonnendecker C, Griñén A, et al. 2022.. Antarctic polyester hydrolases degrade aliphatic and aromatic polyesters at moderate temperatures. . Appl. Environ. Microbiol. 88:(1):e01842-21
    [Crossref] [Google Scholar]
  141. 141.
    Qi X, Yan W, Cao Z, Ding M, Yuan Y. 2022.. Current advances in the biodegradation and bioconversion of polyethylene terephthalate. . Microorganisms 10:(1):39
    [Crossref] [Google Scholar]
  142. 142.
    Mohanrasu K, Premnath N, Siva Prakash G, Sudhakar M, Boobalan T, Arun A. 2018.. Exploring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation. . J. Photochem. Photobiol. B 185::5565
    [Crossref] [Google Scholar]
  143. 143.
    Liu R, Zhao S, Zhang B, Li G, Fu X, et al. 2023.. Biodegradation of polystyrene (PS) by marine bacteria in mangrove ecosystem. . J. Hazard. Mater. 442::130056
    [Crossref] [Google Scholar]
  144. 144.
    Khruengsai S, Sripahco T, Pripdeevech P. 2022.. Microbial degradation of low-density polyethylene by Neopestalotiopsis phangngaensis. . J. Gen. Appl. Microbiol. 68::28794
    [Crossref] [Google Scholar]
  145. 145.
    Sudhakar M, Priyadarshini C, Doble M, Sriyutha Murthy P, Venkatesan R. 2007.. Marine bacteria mediated degradation of nylon 66 and 6. . Int. Biodeterior. Biodegrad. 60:(3):14451
    [Crossref] [Google Scholar]
  146. 146.
    Kowalczyk A, Chyc M, Ryszka P, Latowski D. 2016.. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation. . Environ. Sci. Pollut. Res. 23:(11):1134956
    [Crossref] [Google Scholar]
  147. 147.
    Khruengsai S, Sripahco T, Pripdeevech P. 2022.. Biodegradation of polyester polyurethane by Embarria clematidis. . Front. Microbiol. 13::874842
    [Crossref] [Google Scholar]
  148. 148.
    Guzik MW, Kenny ST, Duane GF, Casey E, Woods T, et al. 2014.. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. . Appl. Microbiol. Biotechnol. 98:(9):422332
    [Crossref] [Google Scholar]
  149. 149.
    Rabot C, Chen Y, Bijlani S, Chiang Y-M, Oakley CE, et al. 2023.. Conversion of polyethylenes into fungal secondary metabolites. . Angew. Chem. Int. Ed. 62:(4):e202214609
    [Crossref] [Google Scholar]
  150. 150.
    Ru J, Huo Y, Yang Y. 2020.. Microbial degradation and valorization of plastic wastes. . Front. Microbiol. 11::442
    [Crossref] [Google Scholar]
  151. 151.
    Utomo RNC, Li W-J, Tiso T, Eberlein C, Doeker M, et al. 2020.. Defined microbial mixed culture for utilization of polyurethane monomers. . ACS Sustain. Chem. Eng. 8:(47):1746674
    [Crossref] [Google Scholar]
  152. 152.
    Zhou Y, Sekar BS, Wu S, Li Z. 2020.. Benzoic acid production via cascade biotransformation and coupled fermentation-biotransformation. . Biotechnol. Bioeng. 117:(8):234050
    [Crossref] [Google Scholar]
  153. 153.
    Grand View Res. 2023.. 1,3 Propanediol market size, share & growth report, 2030. Rep. , Grand View Res., San Francisco:. https://www.grandviewresearch.com/industry-analysis/1-3-propanediol-pdo-market#
    [Google Scholar]
  154. 154.
    Cheng J, Chen P, Song A, Wang D, Wang Q. 2018.. Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives. . J. Ind. Microbiol. Biotechnol. 45:(8):71934
    [Crossref] [Google Scholar]
  155. 155.
    Future Market Insights. 2022.. Caprolactam market outlook (2022–2032). Rep. , Future Market Insights, Newark, DE:. https://www.futuremarketinsights.com/reports/caprolactam-market
    [Google Scholar]
  156. 156.
    Grand View Res. 2018.. Caprolactam market size worth $15.74 billion by 2022 | CAGR 5.2%. Rep., Grand View Res. , San Francisco:. https://www.grandviewresearch.com/press-release/global-caprolactam-market
    [Google Scholar]
  157. 157.
    Grand View Res. 2023.. 1,4 Butanediol market size, share & growth report, 2030. Rep. , Grand View Res., San Francisco:. https://www.grandviewresearch.com/industry-analysis/1-4-butanediol-market
    [Google Scholar]
  158. 158.
    Statista Res. Dep. 2023.. Global market volume of adipic acid 2018 & 2023. Rep. , Statista, New York:. https://www.statista.com/statistics/1113587/global-market-size-adipic-acid/
    [Google Scholar]
  159. 159.
    Grand View Res. 2023.. Adipic acid market size, share & trends analysis report, 2030. Rep. , Grand View Res., San Francisco:. https://www.grandviewresearch.com/industry-analysis/adipic-acid-market
    [Google Scholar]
  160. 160.
    Dai Z, Guo F, Zhang S, Zhang W, Yang Q, et al. 2019.. Bio-based succinic acid: an overview of strain development, substrate utilization, and downstream purification. . Biofuels Bioprod. Biorefining 14:(5):96585
    [Crossref] [Google Scholar]
  161. 161.
    NNFCC. 2011.. Renewable chemicals factsheet: succinic acid. Fact Sheet, NNFCC, York, UK:
    [Google Scholar]
  162. 162.
    Grand View Res. 2022.. Succinic acid market size & share report, 2022–2030. Rep. , Grand View Res., San Francisco:. https://www.grandviewresearch.com/industry-analysis/succinic-acid-market#
    [Google Scholar]
  163. 163.
    Tao G-B, Pu N, Wang M-R, Li Z-J. 2022.. Hyper production of polyhydroxyalkanoates by a novel bacterium Salinivibrio sp. TGB11. . Biochem. Eng. J. 185::108538
    [Crossref] [Google Scholar]
  164. 164.
    Mordor Intell. 2024.. Polyhydroxyalkanoate (PHA) market size & share analysis—growth trends and forecasts (2024–2029). Ind. Res. Rep., Mordor Intell., Telangana, India:. https://www.mordorintelligence.com/industry-reports/polyhydroxyalkanoate-market
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100522-115850
Loading
/content/journals/10.1146/annurev-chembioeng-100522-115850
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error