1932

Abstract

Recent advances in the water–energy landscape hinge upon our improved understanding of the complex morphology of materials involved in water treatment and energy production. Due to their versatility and tunability for applications ranging from drug delivery to fuel cells, polymeric systems will play a crucial role in shaping the future of water–energy nexus applications. Electron tomography (ET) stands as a transformative approach for elucidating the intricate structures inherent to polymers, offering unparalleled insights into their nanoscale architectures and functional properties in three dimensions. In particular, the various morphological and chemical characteristics of polymer membranes provide opportunities for perturbations to standard ET for the study of these systems. We discuss the applications of transmission electron microscopy in establishing structure–function relationships in polymeric membranes with an emphasis on traditional ET and cryogenic ET (cryo-ET). The synergy between ET and cryo-ET to unravel structural complexities and dynamic behaviors of polymer membranes holds immense potential in driving progress and innovation across frontiers related to water–energy nexus applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100722-104623
2024-07-24
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100722-104623.html?itemId=/content/journals/10.1146/annurev-chembioeng-100722-104623&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Schnoor JL. 2011.. Water–energy nexus. . Environ. Sci. Technol. 45::5065
    [Crossref] [Google Scholar]
  2. 2.
    Lee S-H, Taniguchi M, Masuhara N, Mohtar RH, Yoo S-H, Haraguchi M. 2021.. Analysis of industrial water–energy–labor nexus zones for economic and resource-based impact assessment. . Resour. Conserv. Recycl. 169::105483
    [Crossref] [Google Scholar]
  3. 3.
    Morales-García M, García Rubio MÁ. 2023.. Sustainability of an economy from the water–energy–food nexus perspective. . Environ. Dev. Sustain. https://doi.org/10.1007/s10668-022-02877-4
    [Google Scholar]
  4. 4.
    Caldera U, Breyer C. 2017.. Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future. . Water Resour. Res. 53::1052338
    [Crossref] [Google Scholar]
  5. 5.
    Fritzmann C, Löwenberg J, Wintgens T, Melin T. 2007.. State-of-the-art of reverse osmosis desalination. . Desalination 216::176
    [Crossref] [Google Scholar]
  6. 6.
    Hallinan DT Jr., Balsara NP. 2013.. Polymer electrolytes. . Annu. Rev. Mater. Res. 43::50325
    [Crossref] [Google Scholar]
  7. 7.
    Geise GM, Lee H-S, Miller DJ, Freeman BD, McGrath JE, Paul DR. 2010.. Water purification by membranes: the role of polymer science. . J. Polym. Sci. B 48::1685718
    [Crossref] [Google Scholar]
  8. 8.
    Bassyouni M, Abdel-Aziz MH, Zoromba MS, Abdel-Hamid SMS, Drioli E. 2019.. A review of polymeric nanocomposite membranes for water purification. . J. Ind. Eng. Chem. 73::1946
    [Crossref] [Google Scholar]
  9. 9.
    Russell KP, Zydney AL, Gomez ED. 2023.. Impact of virus filter pore size /morphology on virus retention behavior. . J. Membr. Sci. 670::121335
    [Crossref] [Google Scholar]
  10. 10.
    Yuan R, Teran AA, Gurevitch I, Mullin SA, Wanakule NS, Balsara NP. 2013.. Ionic conductivity of low molecular weight block copolymer electrolytes. . Macromolecules 46::91421
    [Crossref] [Google Scholar]
  11. 11.
    Gierke TD, Munn GE, Wilson FC. 1981.. The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. . J. Polym. Sci. Polym. Phys. Ed. 19::1687704
    [Crossref] [Google Scholar]
  12. 12.
    Paddison SJ. 2003.. Proton conduction mechanisms at low degrees of hydration in sulfonic acid–based polymer electrolyte membranes. . Annu. Rev. Mater. Res. 33::289319
    [Crossref] [Google Scholar]
  13. 13.
    Rivnay J, Inal S, Salleo A, Owens RM, Berggren M, Malliaras GG. 2018.. Organic electrochemical transistors. . Nat. Rev. Mater. 3::17086
    [Crossref] [Google Scholar]
  14. 14.
    Rivnay J, Inal S, Collins BA, Sessolo M, Stavrinidou E, et al. 2016.. Structural control of mixed ionic and electronic transport in conducting polymers. . Nat. Commun. 7::11287
    [Crossref] [Google Scholar]
  15. 15.
    Magonov SN, Reneker DH. 1997.. Characterization of polymer surfaces with atomic force microscopy. . Annu. Rev. Mater. Sci. 27::175222
    [Crossref] [Google Scholar]
  16. 16.
    Jinnai H, Jiang X. 2013.. Electron tomography in soft materials. . Curr. Opin. Solid State Mater. Sci. 17::13542
    [Crossref] [Google Scholar]
  17. 17.
    Yakovlev S, Balsara NP, Downing KH. 2013.. Insights on the study of Nafion nanoscale morphology by transmission electron microscopy. . Membranes 3::42439
    [Crossref] [Google Scholar]
  18. 18.
    Chan EP, Frieberg BR, Ito K, Tarver J, Tyagi M, et al. 2020.. Insights into the water transport mechanism in polymeric membranes from neutron scattering. . Macromolecules 53::144350
    [Crossref] [Google Scholar]
  19. 19.
    Heller WT. 2022.. Small-angle neutron scattering for studying lipid bilayer membranes. . Biomolecules 12::1591
    [Crossref] [Google Scholar]
  20. 20.
    Li Y, Kłosowski MM, McGilvery CM, Porter AE, Livingston AG, Cabral JT. 2017.. Probing flow activity in polyamide layer of reverse osmosis membrane with nanoparticle tracers. . J. Membr. Sci. 534::917
    [Crossref] [Google Scholar]
  21. 21.
    Peltonen A, Etula J, Seitsonen J, Engelhardt P, Laurila T. 2021.. Three-dimensional fine structure of nanometer-scale Nafion thin films. . ACS Appl. Polym. Mater. 3::107886
    [Crossref] [Google Scholar]
  22. 22.
    Singh MA, Groves MN. 2009.. Depth profiling of polymer films with grazing-incidence small-angle X-ray scattering. . Acta Crystallogr. A 65::190201
    [Crossref] [Google Scholar]
  23. 23.
    Rus ED, Dura JA. 2019.. In situ neutron reflectometry study of solid electrolyte interface (SEI) formation on tungsten thin-film electrodes. . ACS Appl. Mater. Interfaces 11::4755363
    [Crossref] [Google Scholar]
  24. 24.
    Heilmann A, Werner J, Kelly M, Holloway B, Kay E. 1997.. XPS depth profiles and optical properties of plasma polymer multilayers with embedded metal particles. . Appl. Surf. Sci. 115::36576
    [Crossref] [Google Scholar]
  25. 25.
    Ghasemi M, Balar N, Peng Z, Hu H, Qin Y, et al. 2021.. A molecular interaction–diffusion framework for predicting organic solar cell stability. . Nat. Mater. 20::52532
    [Crossref] [Google Scholar]
  26. 26.
    Ghasemi M, Ye L, Zhang Q, Yan L, Kim J-H, et al. 2017.. Panchromatic sequentially cast ternary polymer solar cells. . Adv. Mater. 29::1604603
    [Crossref] [Google Scholar]
  27. 27.
    Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, et al. 2021.. X-ray computed tomography. . Nat. Rev. Methods Prim. 1::18
    [Crossref] [Google Scholar]
  28. 28.
    Krüger P, Markötter H, Haußmann J, Klages M, Arlt T, et al. 2011.. Synchrotron X-ray tomography for investigations of water distribution in polymer electrolyte membrane fuel cells. . J. Power Sources 196::525055
    [Crossref] [Google Scholar]
  29. 29.
    Viguié J, Savart T, Duru P, Rouch JC, Remigy JC. 2013.. Characterisation of 3D porous macrostructure of hollow fibre membranes using X-ray tomography—effects of some spinning process conditions. . J. Membr. Sci. 435::1120
    [Crossref] [Google Scholar]
  30. 30.
    Lee S-H, Chang W-S, Han S-M, Kim D-H, Kim J-K. 2017.. Synchrotron X-ray nanotomography and three-dimensional nanoscale imaging analysis of pore structure-function in nanoporous polymeric membranes. . J. Membr. Sci. 535::2834
    [Crossref] [Google Scholar]
  31. 31.
    Uchida H, Song JM, Suzuki S, Nakazawa E, Baba N, Watanabe M. 2006.. Electron tomography of Nafion ionomer coated on Pt/carbon black in high utilization electrode for PEFCs. . J. Phys. Chem. B 110::1331921
    [Crossref] [Google Scholar]
  32. 32.
    An H, Smith JW, Ji B, Cotty S, Zhou S, et al. 2022.. Mechanism and performance relevance of nanomorphogenesis in polyamide films revealed by quantitative 3D imaging and machine learning. . Sci. Adv. 8::eabk1888
    [Crossref] [Google Scholar]
  33. 33.
    Culp TE, Khara B, Brickey KP, Geitner M, Zimudzi TJ, et al. 2021.. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. . Science 371::7275
    [Crossref] [Google Scholar]
  34. 34.
    Wu M, Lander GC, Herzik MA. 2020.. Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200 keV. . J. Struct. Biol. X 4::100020
    [Google Scholar]
  35. 35.
    Fan X, Wang J, Zhang X, Yang Z, Zhang J-C, et al. 2019.. Single particle cryo-EM reconstruction of 52kDa streptavidin at 3.2 Angstrom resolution. . Nat. Commun. 10::2386
    [Crossref] [Google Scholar]
  36. 36.
    Naydenova K, Jia P, Russo CJ. 2020.. Cryo-EM with sub–1 Å specimen movement. . Science 370::22326
    [Crossref] [Google Scholar]
  37. 37.
    Hart RG. 1968.. Electron microscopy of unstained biological material: the polytropic montage. . Science 159::146467
    [Crossref] [Google Scholar]
  38. 38.
    De Rosier DJ, Klug A. 1968.. Reconstruction of three dimensional structures from electron micrographs. . Nature 217::13034
    [Crossref] [Google Scholar]
  39. 39.
    Gruska M, Medalia O, Baumeister W, Leis A. 2008.. Electron tomography of vitreous sections from cultured mammalian cells. . J. Struct. Biol. 161::38492
    [Crossref] [Google Scholar]
  40. 40.
    Chen M, Bell JM, Shi X, Sun SY, Wang Z, Ludtke SJ. 2019.. A complete data processing workflow for cryo-ET and subtomogram averaging. . Nat. Methods 16::116168
    [Crossref] [Google Scholar]
  41. 41.
    Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, et al. 2007.. EMAN2: an extensible image processing suite for electron microscopy. . J. Struct. Biol. 157::3846
    [Crossref] [Google Scholar]
  42. 42.
    Ercius P, Alaidi O, Rames MJ, Ren G. 2015.. Electron tomography: a three-dimensional analytic tool for hard and soft materials research. . Adv. Mater. 27::563863
    [Crossref] [Google Scholar]
  43. 43.
    Radermacher M. 1988.. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. . J. Electron. Microsc. Tech. 9::35994
    [Crossref] [Google Scholar]
  44. 44.
    Kawase N, Kato M, Nishioka H, Jinnai H. 2007.. Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. . Ultramicroscopy 107::815
    [Crossref] [Google Scholar]
  45. 45.
    Sugimori H, Nishi T, Jinnai H. 2005.. Dual-axis electron tomography for three-dimensional observations of polymeric nanostructures. . Macromolecules 38::1022633
    [Crossref] [Google Scholar]
  46. 46.
    Koster AJ, Grimm R, Typke D, Hegerl R, Stoschek A, et al. 1997.. Perspectives of molecular and cellular electron tomography. . J. Struct. Biol. 120::276308
    [Crossref] [Google Scholar]
  47. 47.
    Diebolder CA, Koster AJ, Koning RI. 2012.. Pushing the resolution limits in cryo electron tomography of biological structures. . J. Microsc. 248::15
    [Crossref] [Google Scholar]
  48. 48.
    Williams DB, Carter CB. 1996.. Transmission Electron Microscopy: A Textbook for Materials Science. New York:: Springer
    [Google Scholar]
  49. 49.
    Gan L, Jensen GJ. 2012.. Electron tomography of cells. . Q. Rev. Biophys. 45::2756
    [Crossref] [Google Scholar]
  50. 50.
    Dierksen K, Typke D, Hegerl R, Koster AJ, Baumeister W. 1992.. Towards automatic electron tomography. . Ultramicroscopy 40::7187
    [Crossref] [Google Scholar]
  51. 51.
    Baker RW. 2012.. Reverse osmosis. . In Membrane Technology and Applications, pp. 20751. Hoboken, NJ:: John Wiley & Sons Ltd
    [Google Scholar]
  52. 52.
    Lee KP, Arnot TC, Mattia D. 2011.. A review of reverse osmosis membrane materials for desalination—development to date and future potential. . J. Membr. Sci. 370::122
    [Crossref] [Google Scholar]
  53. 53.
    Lau WJ, Ismail AF, Misdan N, Kassim MA. 2012.. A recent progress in thin film composite membrane: a review. . Desalination 287::19099
    [Crossref] [Google Scholar]
  54. 54.
    Baker RW. 2012.. Membranes and modules. . In Membrane Technology and Applications, pp. 97178. Hoboken, NJ:: John Wiley & Sons Ltd
    [Google Scholar]
  55. 55.
    Morgan PW, Kwolek SL. 1959.. Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. . J. Polym. Sci. A 34::53159
    [Crossref] [Google Scholar]
  56. 56.
    Peterson RJ, Cadotte JE. 1990.. Thin film composite reverse osmosis membranes. . In Handbook of Industrial Membrane Technology, ed. MC Porter , pp. 30748. New Jersey:: Noyes Publ
    [Google Scholar]
  57. 57.
    Freger V. 2003.. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. . Langmuir 19::479197
    [Crossref] [Google Scholar]
  58. 58.
    She FH, Nihara K, Gao WM, Hodgson PD, Jinnai H, Kong LX. 2010.. 3-Dimensional characterization of membrane with nanoporous structure using TEM tomography and image analysis. . Desalination 250::75761
    [Crossref] [Google Scholar]
  59. 59.
    Pacheco F, Sougrat R, Reinhard M, Leckie JO, Pinnau I. 2016.. 3D visualization of the internal nanostructure of polyamide thin films in RO membranes. . J. Membr. Sci. 501::3344
    [Crossref] [Google Scholar]
  60. 60.
    Culp TE, Shen Y-x, Geitner M, Paul M, Roy A, et al. 2018.. Electron tomography reveals details of the internal microstructure of desalination membranes. . PNAS 115::869499
    [Crossref] [Google Scholar]
  61. 61.
    Kurihara M, Hanakawa M. 2013.. Mega-ton water system: Japanese national research and development project on seawater desalination and wastewater reclamation. . Desalination 308::13137
    [Crossref] [Google Scholar]
  62. 62.
    Song X, Smith JW, Kim J, Zaluzec NJ, Chen W, et al. 2019.. Unraveling the morphology-function relationships of polyamide membranes using quantitative electron tomography. . ACS Appl. Mater. Interfaces 11::851726
    [Crossref] [Google Scholar]
  63. 63.
    Yao L, An H, Zhou S, Kim A, Luijten E, Chen Q. 2022.. Seeking regularity from irregularity: unveiling the synthesis-nanomorphology relationships of heterogeneous nanomaterials using unsupervised machine learning. . Nanoscale 14::1649789
    [Google Scholar]
  64. 64.
    Li D, Lu R, Wang K, Li Y, Lin W, et al. 2024.. Neural network-assisted data processing improved tomography characterizations of reverse osmosis polyamide layers. . ACS EST Eng. 1::12838
    [Crossref] [Google Scholar]
  65. 65.
    Venkatesan SV, Lim C, Holdcroft S, Kjeang E. 2016.. Progression in the morphology of fuel cell membranes upon conjoint chemical and mechanical degradation. . J. Electrochem. Soc. 163::F637
    [Crossref] [Google Scholar]
  66. 66.
    Plekhanova Y, Tarasov S, Reshetilov A. 2021.. Use of PEDOT:PSS/graphene/Nafion composite in biosensors based on acetic acid bacteria. . Biosensors 11::332
    [Crossref] [Google Scholar]
  67. 67.
    Lu J, Drzal LT, Worden RM, Lee I. 2007.. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets Nafion membrane. . Chem. Mater. 19::624046
    [Crossref] [Google Scholar]
  68. 68.
    Yu X, Joseph J, Manthiram A. 2015.. Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode. . J. Mater. Chem. A 3::1568391
    [Crossref] [Google Scholar]
  69. 69.
    Liang HY, Qiu XP, Zhang SC, Zhu WT, Chen LQ. 2004.. Study of lithiated Nafion ionomer for lithium batteries. . J. Appl. Electrochem. 34::121114
    [Crossref] [Google Scholar]
  70. 70.
    Siracusano S, Baglio V, Nicotera I, Mazzapioda L, Aricò AS, et al. 2017.. Sulfated titania as additive in Nafion membranes for water electrolysis applications. . Int. J. Hydrog. Energy 42::2785158
    [Crossref] [Google Scholar]
  71. 71.
    Ito H, Maeda T, Nakano A, Takenaka H. 2011.. Properties of Nafion membranes under PEM water electrolysis conditions. . Int. J. Hydrog. Energy 36::1052740
    [Crossref] [Google Scholar]
  72. 72.
    Xue T, Trent JS, Osseo-Asare K. 1989.. Characterization of nafion® membranes by transmission electron microscopy. . J. Membr. Sci. 45::26171
    [Crossref] [Google Scholar]
  73. 73.
    Venkatesan SV, El Hannach M, Holdcroft S, Kjeang E. 2017.. Probing nanoscale membrane degradation in fuel cells through electron tomography. . J. Membr. Sci. 539::13843
    [Crossref] [Google Scholar]
  74. 74.
    Lopez-Haro M, Guétaz L, Printemps T, Morin A, Escribano S, et al. 2014.. Three-dimensional analysis of Nafion layers in fuel cell electrodes. . Nat. Commun. 5::5229
    [Crossref] [Google Scholar]
  75. 75.
    Lee M, Uchida M, Yano H, Tryk DA, Uchida H, Watanabe M. 2010.. New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions. . Electrochim. Acta 55::850412
    [Crossref] [Google Scholar]
  76. 76.
    Ghasemi M, Hu H, Peng Z, Rech JJ, Angunawela I, et al. 2019.. Delineation of thermodynamic and kinetic factors that control stability in non-fullerene organic solar cells. . Joule 3::132848
    [Crossref] [Google Scholar]
  77. 77.
    Kuei B, Kabius B, Gray JL, Gomez ED. 2018.. Strategies for elemental mapping from energy-filtered TEM of polymeric materials. . MRS Commun. 8::132127
    [Crossref] [Google Scholar]
  78. 78.
    Kozub DR, Vakhshouri K, Orme LM, Wang C, Hexemer A, Gomez ED. 2011.. Polymer crystallization of partially miscible polythiophene/fullerene mixtures controls morphology. . Macromolecules 44::572226
    [Crossref] [Google Scholar]
  79. 79.
    Köntges W, Perkhun P, Kammerer J, Alkarsifi R, Würfel U, et al. 2020.. Visualizing morphological principles for efficient photocurrent generation in organic non-fullerene acceptor blends. . Energy Environ. Sci. 13::125968
    [Crossref] [Google Scholar]
  80. 80.
    Yang X, Loos J. 2007.. Toward high-performance polymer solar cells: the importance of morphology control. . Macromolecules 40::135362
    [Crossref] [Google Scholar]
  81. 81.
    van Bavel SS, Sourty E, de With G, Loos J. 2009.. Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. . Nano Lett. 9::50713
    [Crossref] [Google Scholar]
  82. 82.
    Kuei B, Aplan MP, Litofsky JH, Gomez ED. 2020.. New opportunities in transmission electron microscopy of polymers. . Mater. Sci. Eng. R 139::100516
    [Crossref] [Google Scholar]
  83. 83.
    Barcena M, Oostergetel G, Bartelink W, Faas GGA, Verkleij A, et al. 2009.. Cryo-electron tomography of mouse hepatitis virus: insights into the structure of the coronavirion. . PNAS 106::58287
    [Crossref] [Google Scholar]
  84. 84.
    McKenzie BE, Holder SJ, Sommerdijk NAJM. 2012.. Assessing internal structure of polymer assemblies from 2D to 3D CryoTEM: bicontinuous micelles. . Curr. Opin. Colloid Interface Sci. 17::34349
    [Crossref] [Google Scholar]
  85. 85.
    Patterson JP, Xu Y, Moradi M-A, Sommerdijk NAJM, Friedrich H. 2017.. CryoTEM as an advanced analytical tool for materials chemists. . Acc. Chem. Res. 50::1495501
    [Crossref] [Google Scholar]
  86. 86.
    Newcomb CJ, Moyer TJ, Lee SS, Stupp SI. 2012.. Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures. . Curr. Opin. Colloid Interface Sci. 17::35059
    [Crossref] [Google Scholar]
  87. 87.
    Jiang X, Xuan S, Zuckermann RN, Glaeser RM, Downing KH, Balsara NP. 2021.. Minimizing crinkling of soft specimens using holey gold films on molybdenum grids for cryogenic electron microscopy. . Microsc. Microanal. 27::76775
    [Crossref] [Google Scholar]
  88. 88.
    Dubochet J, Adrian M, Chang J-J, Homo J-C, Lepault J, et al. 1988.. Cryo-electron microscopy of vitrified specimens. . Q. Rev. Biophys. 21::129228
    [Crossref] [Google Scholar]
  89. 89.
    Dubochet J, McDowall AW. 1981.. Vitrification of pure water for electron microscopy. . J. Microsc. 124::34
    [Crossref] [Google Scholar]
  90. 90.
    Ya'akobi AM, Talmon Y. 2021.. Extending Cryo-EM to nonaqueous liquid systems. . Acc. Chem. Res. 54::21009
    [Crossref] [Google Scholar]
  91. 91.
    Oostergetel GT, Esselink FJ, Hadziioannou G. 1995.. Cryo-electron microscopy of block copolymers in an organic solvent. . Langmuir 11::372124
    [Crossref] [Google Scholar]
  92. 92.
    Weissenberger G, Henderikx RJM, Peters PJ. 2021.. Understanding the invisible hands of sample preparation for cryo-EM. . Nat. Methods 18::46371
    [Crossref] [Google Scholar]
  93. 93.
    Auer M. 2000.. Three-dimensional electron cryo-microscopy as a powerful structural tool in molecular medicine. . J. Mol. Med. 78::191202
    [Crossref] [Google Scholar]
  94. 94.
    Dierksen K, Typke D, Hegerl R, Walz J, Sackmann E, Baumeister W. 1995.. Three-dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography. . Biophys. J. 68::141622
    [Crossref] [Google Scholar]
  95. 95.
    Parry AL, Bomans PHH, Holder SJ, Sommerdijk NAJM, Biagini SCG. 2008.. Cryo electron tomography reveals confined complex morphologies of tripeptide-containing amphiphilic double-comb diblock copolymers. . Angew. Chem. Int. Ed. 47::885962
    [Crossref] [Google Scholar]
  96. 96.
    McKenzie BE, Nudelman F, Bomans PHH, Holder SJ, Sommerdijk NAJM. 2010.. Temperature-responsive nanospheres with bicontinuous internal structures from a semicrystalline amphiphilic block copolymer. . J. Am. Chem. Soc. 132::1025659
    [Crossref] [Google Scholar]
  97. 97.
    Yu H, Jiang W. 2009.. Effect of shear flow on the formation of ring-shaped ABA amphiphilic triblock copolymer micelles. . Macromolecules 42::3399404
    [Crossref] [Google Scholar]
  98. 98.
    Gomez ED, Rappl TJ, Agarwal V, Bose A, Schmutz M, et al. 2005.. Platelet self-assembly of an amphiphilic A−B−C−A tetrablock copolymer in pure water. . Macromolecules 38::356770
    [Crossref] [Google Scholar]
  99. 99.
    Meier-Haack J, Taeger A, Vogel C, Schlenstedt K, Lenk W, Lehmann D. 2005.. Membranes from sulfonated block copolymers for use in fuel cells. . Sep. Purif. Technol. 41::20720
    [Crossref] [Google Scholar]
  100. 100.
    Elabd YA, Hickner MA. 2011.. Block copolymers for fuel cells. . Macromolecules 44::111
    [Crossref] [Google Scholar]
  101. 101.
    Liu QH, Grim GM, Papandrew AB, Turhan A, Zawodzinski TA, Mench MM. 2012.. High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection. . J. Electrochem. Soc. 159::A1246
    [Crossref] [Google Scholar]
  102. 102.
    Chalamala BR, Soundappan T, Fisher GR, Anstey MR, Viswanathan VV, Perry ML. 2014.. Redox flow batteries: an engineering perspective. . Proc. IEEE 102::97699
    [Crossref] [Google Scholar]
  103. 103.
    Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, et al. 2013.. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. . Nat. Mater. 12::45257
    [Crossref] [Google Scholar]
  104. 104.
    Tropp J, Meli D, Rivnay J. 2023.. Organic mixed conductors for electrochemical transistors. . Matter 6::313264
    [Crossref] [Google Scholar]
  105. 105.
    Lyu D, Jin Y, Magusin PCMM, Sturniolo S, Zhao EW, et al. 2023.. Operando NMR electrochemical gating studies of ion dynamics in PEDOT:PSS. . Nat. Mater. 22::74653
    [Crossref] [Google Scholar]
  106. 106.
    Harikesh PC, Yang C-Y, Wu H-Y, Zhang S, Donahue MJ, et al. 2023.. Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons. . Nat. Mater. 22::24248
    [Crossref] [Google Scholar]
  107. 107.
    Paulsen BD, Fabiano S, Rivnay J. 2021.. Mixed ionic-electronic transport in polymers. . Annu. Rev. Mater. Res. 51::7399
    [Crossref] [Google Scholar]
  108. 108.
    Zawodzinski TA, Davey J, Valerio J, Gottesfeld S. 1995.. The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes. . Electrochim. Acta 40::297302
    [Crossref] [Google Scholar]
  109. 109.
    Choi P, Jalani NH, Datta R. 2005.. Thermodynamics and proton transport in Nafion: II. Proton diffusion mechanisms and conductivity. . J. Electrochem. Soc. 152::E123
    [Crossref] [Google Scholar]
  110. 110.
    Chen XC, Wong DT, Yakovlev S, Beers KM, Downing KH, Balsara NP. 2014.. Effect of morphology of nanoscale hydrated channels on proton conductivity in block copolymer electrolyte membranes. . Nano Lett. 14::405864
    [Crossref] [Google Scholar]
  111. 111.
    Chen XC, Jiang X, Balsara NP. 2018.. Swelling of individual nanodomains in hydrated block copolymer electrolyte membranes. . J. Chem. Phys. 149::163325
    [Crossref] [Google Scholar]
  112. 112.
    Jiang X, Sun J, Zuckermann RN, Balsara NP. 2021.. Effect of hydration on morphology of thin phosphonate block copolymer electrolyte membranes studied by electron tomography. . Polym. Eng. Sci. 61::110415
    [Crossref] [Google Scholar]
  113. 113.
    Allen FI, Comolli LR, Kusoglu A, Modestino MA, Minor AM, Weber AZ. 2015.. Morphology of hydrated as-cast Nafion revealed through cryo electron tomography. . ACS Macro Lett. 4::15
    [Crossref] [Google Scholar]
  114. 114.
    Lim C, Ghassemzadeh L, Van Hove F, Lauritzen M, Kolodziej J, et al. 2014.. Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells. . J. Power Sour. 257::10210
    [Crossref] [Google Scholar]
  115. 115.
    Roehling JD, Batenburg KJ, Swain FB, Moulé AJ, Arslan I. 2013.. Three-dimensional concentration mapping of organic blends. . Adv. Funct. Mater. 23::211522
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100722-104623
Loading
/content/journals/10.1146/annurev-chembioeng-100722-104623
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error