1932

Abstract

In the era of precision medicine, multivalent and multispecific therapeutics present a promising approach for targeted disease intervention. These therapeutics are designed to interact with multiple targets simultaneously, promising enhanced efficacy, reduced side effects, and resilience against drug resistance. We dissect the principles guiding the design of multivalent biologics, highlighting challenges and strategies that must be considered to maximize therapeutic effect. Engineerable elements in multivalent and multispecific biologic design—domain affinities, valency, and spatial presentation—must be considered in the context of the molecular targets as well as the balance of important properties such as target avidity and specificity. We illuminate recent applications of these principles in designing protein and cell therapies and identify exciting future directions in this field, underscored by advances in biomolecular and cellular engineering and computational approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100722-112440
2024-07-24
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100722-112440.html?itemId=/content/journals/10.1146/annurev-chembioeng-100722-112440&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Liu F, Walters KJ. 2010.. Multitasking with ubiquitin through multivalent interactions. . Trends Biochem. Sci. 35:(6):35260
    [Crossref] [Google Scholar]
  2. 2.
    Chu Y-H, Lees WJ, Stassinopoulos A, Walsh CT. 1994.. Using affinity capillary electrophoresis to determine binding stoichiometries of protein-ligand interactions. . Biochemistry 33:(35):1061621
    [Crossref] [Google Scholar]
  3. 3.
    Mammen M, Choi S-K, Whitesides GM. 1998.. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. . Angew. Chem. Int. Ed. 37:(20):275494
    [Crossref] [Google Scholar]
  4. 4.
    Arsiwala A, Castro A, Frey S, Stathos M, Kane RS. 2019.. Designing multivalent ligands to control biological interactions: from vaccines and cellular effectors to targeted drug delivery. . Chemistry 14:(2):24455
    [Google Scholar]
  5. 5.
    Kristyanto H, Holborough-Kerkvliet MD, Lelieveldt L, Bartels Y, Hammink R, et al. 2022.. Multifunctional, multivalent PIC polymer scaffolds for targeting antigen-specific, autoreactive B cells. . ACS Biomater. Sci. Eng. 8:(4):148693
    [Crossref] [Google Scholar]
  6. 6.
    Xu Z, Shi T, Mo F, Yu W, Shen Y, et al. 2022.. Programmable assembly of multivalent DNA-protein superstructures for tumor imaging and targeted therapy. . Angew. Chem. Int. Ed. 61:(44):e202211505
    [Crossref] [Google Scholar]
  7. 7.
    Chen Z, Liu Y, Chen N, Xing H, Tian Z, et al. 2023.. Loop CD20/CD19 CAR-T cells eradicate B-cell malignancies efficiently. . Sci. China Life Sci. 66:(4):75470
    [Crossref] [Google Scholar]
  8. 8.
    Kwon PS, Ren S, Kwon S-J, Kizer ME, Kuo L, et al. 2020.. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. . Nat. Chem. 12:(1):2635
    [Crossref] [Google Scholar]
  9. 9.
    Hunt AC, Case JB, Park Y-J, Cao L, Wu K, et al. 2022.. Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. . Sci. Transl. Med. 14:(646):eabn1252
    [Crossref] [Google Scholar]
  10. 10.
    Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, et al. 2020.. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. . Science 370:(6523):147379
    [Crossref] [Google Scholar]
  11. 11.
    Herpers B, Eppink B, James MI, Cortina C, Cañellas-Socias A, et al. 2022.. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. . Nat. Cancer 3:(4):41836
    [Crossref] [Google Scholar]
  12. 12.
    Hao S, Xu S, Li L, Li Y, Zhao M, et al. 2022.. Tumour inhibitory activity on pancreatic cancer by bispecific nanobody targeting PD-L1 and CXCR4. . BMC Cancer 22::1092
    [Crossref] [Google Scholar]
  13. 13.
    Goebeler M-E, Bargou RC. 2020.. T cell-engaging therapies—BiTEs and beyond. . Nat. Rev. Clin. Oncol. 17:(7):41834
    [Crossref] [Google Scholar]
  14. 14.
    Poole A, Karuppiah V, Hartt A, Haidar JN, Moureau S, et al. 2022.. Therapeutic high affinity T cell receptor targeting a KRASG12D cancer neoantigen. . Nat. Commun. 13::5333
    [Crossref] [Google Scholar]
  15. 15.
    Makowski EK, Kinnunen PC, Huang J, Wu L, Smith MD, et al. 2022.. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space. . Nat. Commun. 13::3788
    [Crossref] [Google Scholar]
  16. 16.
    Deng Y, Efremov AK, Yan J. 2022.. Modulating binding affinity, specificity, and configurations by multivalent interactions. . Biophys. J. 121:(10):186880
    [Crossref] [Google Scholar]
  17. 17.
    Jarmoskaite I, AlSadhan I, Vaidyanathan PP, Herschlag D. 2020.. How to measure and evaluate binding affinities. . eLife 9::e57264
    [Crossref] [Google Scholar]
  18. 18.
    Ren Z, Zhang A, Sun Z, Liang Y, Ye J, et al. 2022.. Selective delivery of low-affinity IL-2 to PD-1+ T cells rejuvenates antitumor immunity with reduced toxicity. . J. Clin. Investig. 132:(3):e153604
    [Crossref] [Google Scholar]
  19. 19.
    Berg KA, Clarke WP. 2018.. Making sense of pharmacology: inverse agonism and functional selectivity. . Int. J. Neuropsychopharmacol. 21:(10):96277
    [Crossref] [Google Scholar]
  20. 20.
    Liu H, Wu L, Liu B, Xu K, Lei W, et al. 2023.. Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice. . Cell Rep. Med. 4:(2):100918
    [Crossref] [Google Scholar]
  21. 21.
    Wang J, Min J, Eghtesadi SA, Kane RS, Chilkoti A. 2020.. Quantitative study of the interaction of multivalent ligand-modified nanoparticles with breast cancer cells with tunable receptor density. . ACS Nano 14:(1):37283
    [Crossref] [Google Scholar]
  22. 22.
    Scully M, Cataland SR, Peyvandi F, Coppo P, Knöbl P, et al. 2019.. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. . New Engl. J. Med. 380:(4):33546
    [Crossref] [Google Scholar]
  23. 23.
    Liu L. 2018.. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. . Protein Cell 9:(1):1532
    [Crossref] [Google Scholar]
  24. 24.
    González-Fernández A, Milstein C. 1998.. Low antigen dose favours selection of somatic mutants with hallmarks of antibody affinity maturation. . Immunology 93:(2):14953
    [Crossref] [Google Scholar]
  25. 25.
    Lynn RC, Feng Y, Schutsky K, Poussin M, Kalota A, et al. 2016.. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity. . Leukemia 30:(6):135564
    [Crossref] [Google Scholar]
  26. 26.
    Hudecek M, Lupo-Stanghellini M-T, Kosasih PL, Sommermeyer D, Jensen MC, et al. 2013.. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. . Clin. Cancer Res. 19:(12):315364
    [Crossref] [Google Scholar]
  27. 27.
    LaFleur D, Abramyan D, Kanakaraj P, Smith R, Shah R, et al. 2013.. Monoclonal antibody therapeutics with up to five specificities: functional enhancement through fusion of target-specific peptides. . mAbs 5:(2):20818
    [Crossref] [Google Scholar]
  28. 28.
    Misson Mindrebo L, Liu H, Ozorowski G, Tran Q, Woehl J, et al. 2023.. Fully synthetic platform to rapidly generate tetravalent bispecific nanobody–based immunoglobulins. . PNAS 120:(24):e2216612120
    [Crossref] [Google Scholar]
  29. 29.
    Muchekehu R, Liu D, Horn M, Campbell L, Del Rosario J, et al. 2013.. The effect of molecular weight, PK, and valency on tumor biodistribution and efficacy of antibody-based drugs. . Transl. Oncol. 6:(5):56272
    [Crossref] [Google Scholar]
  30. 30.
    Zhou Y, Goenaga A-L, Harms BD, Zou H, Lou J, et al. 2012.. Impact of intrinsic affinity on functional binding and biological activity of EGFR antibodies. . Mol. Cancer Ther. 11:(7):146776
    [Crossref] [Google Scholar]
  31. 31.
    Sim MJW, Lu J, Spencer M, Hopkins F, Tran E, et al. 2020.. High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. . PNAS 117:(23):1282635
    [Crossref] [Google Scholar]
  32. 32.
    Bijen HM, van der Steen DM, Hagedoorn RS, Wouters AK, Wooldridge L, et al. 2018.. Preclinical strategies to identify off-target toxicity of high-affinity TCRs. . Mol. Ther. 26:(5):120614
    [Crossref] [Google Scholar]
  33. 33.
    Liddy N, Bossi G, Adams KJ, Lissina A, Mahon TM, et al. 2012.. Monoclonal TCR-redirected tumor cell killing. . Nat. Med. 18:(6):98087
    [Crossref] [Google Scholar]
  34. 34.
    Einsele H, Borghaei H, Orlowski RZ, Subklewe M, Roboz GJ, et al. 2020.. The BiTE (bispecific T-cell engager) platform: development and future potential of a targeted immuno-oncology therapy across tumor types. . Cancer 126:(14):3192201
    [Crossref] [Google Scholar]
  35. 35.
    Zimmerman SP, Hallett RA, Bourke AM, Bear JE, Kennedy MJ, Kuhlman B. 2016.. Tuning the binding affinities and reversion kinetics of a light inducible dimer allows control of transmembrane protein localization. . Biochemistry 55:(37):526471
    [Crossref] [Google Scholar]
  36. 36.
    Richman SA, Nunez-Cruz S, Moghimi B, Li LZ, Gershenson ZT, et al. 2018.. High-affinity GD2-specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model. . Cancer Immunol. Res. 6:(1):3646
    [Crossref] [Google Scholar]
  37. 37.
    Johnsen KB, Bak M, Kempen PJ, Melander F, Burkhart A, et al. 2018.. Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles. . Theranostics 8:(12):341636
    [Crossref] [Google Scholar]
  38. 38.
    Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, et al. 2011.. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. . Sci. Transl. Med. 3:(84):84ra44
    [Crossref] [Google Scholar]
  39. 39.
    Do T-M, Capdevila C, Pradier L, Blanchard V, Lopez-Grancha M, et al. 2020.. Tetravalent bispecific tandem antibodies improve brain exposure and efficacy in an amyloid transgenic mouse model. . Mol. Ther. Methods Clin. Dev. 19::5877
    [Crossref] [Google Scholar]
  40. 40.
    Karaoglu Hanzatian D, Schwartz A, Gizatullin F, Erickson J, Deng K, et al. 2018.. Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration. . mAbs 10:(5):76577
    [Crossref] [Google Scholar]
  41. 41.
    Kievit E, Pinedo HM, Schlüper HMM, Haisma HJ, Boven E. 1996.. Comparison of the monoclonal antibodies 17-1A and 323/A3: the influence of the affinity on tumour uptake and efficacy of radioimmunotherapy in human ovarian cancer xenografts. . Br. J. Cancer 73:(4):45764
    [Crossref] [Google Scholar]
  42. 42.
    Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, et al. 2001.. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. . Cancer Res. 61:(12):475055
    [Google Scholar]
  43. 43.
    Kawai K, Ohashi PS. 1995.. Immunological function of a defined T-cell population tolerized to low-affinity self antigens. . Nature 374:(6517):6869
    [Crossref] [Google Scholar]
  44. 44.
    Liu Q, Sun Z, Chen L. 2020.. Memory T cells: strategies for optimizing tumor immunotherapy. . Protein Cell 11:(8):54964
    [Crossref] [Google Scholar]
  45. 45.
    Knudson KM, Goplen NP, Cunningham CA, Daniels MA, Teixeiro E. 2013.. Low-affinity T cells are programmed to maintain normal primary responses but are impaired in their recall to low-affinity ligands. . Cell Rep. 4:(3):55465
    [Crossref] [Google Scholar]
  46. 46.
    Chmielewski M, Hombach A, Heuser C, Adams GP, Abken H. 2004.. T cell activation by antibody-like immunoreceptors: Increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. . J. Immunol. 173:(12):764753
    [Crossref] [Google Scholar]
  47. 47.
    Ghorashian S, Kramer AM, Onuoha S, Wright G, Bartram J, et al. 2019.. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. . Nat. Med. 25:(9):140814
    [Crossref] [Google Scholar]
  48. 48.
    Lane MD, Seelig B. 2014.. Advances in the directed evolution of proteins. . Curr. Opin. Chem. Biol. 22::12936
    [Crossref] [Google Scholar]
  49. 49.
    Cao L, Coventry B, Goreshnik I, Huang B, Sheffler W, et al. 2022.. Design of protein-binding proteins from the target structure alone. . Nature 605:(7910):55160
    [Crossref] [Google Scholar]
  50. 50.
    Anishchenko I, Pellock SJ, Chidyausiku TM, Ramelot TA, Ovchinnikov S, et al. 2021.. De novo protein design by deep network hallucination. . Nature 600:(7889):54752
    [Crossref] [Google Scholar]
  51. 51.
    Ohoka A, Sarkar CA. 2023.. Facile display of homomultivalent proteins for in vitro selections. . ACS Synth. Biol. 12:(2):63438
    [Crossref] [Google Scholar]
  52. 52.
    Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. 2015.. Molecular docking and structure-based drug design strategies. . Molecules 20:(7):13384421
    [Crossref] [Google Scholar]
  53. 53.
    Rehman AU, Khurshid B, Ali Y, Rasheed S, Wadood A, et al. 2023.. Computational approaches for the design of modulators targeting protein-protein interactions. . Expert Opin. Drug Discov. 18:(3):31533
    [Crossref] [Google Scholar]
  54. 54.
    Bruncsics B, Errington WJ, Sarkar CA. 2022.. MVsim is a toolset for quantifying and designing multivalent interactions. . Nat. Commun. 13::5029
    [Crossref] [Google Scholar]
  55. 55.
    Erijman A, Rosenthal E, Shifman JM. 2014.. How structure defines affinity in protein-protein interactions. . PLOS ONE 9:(10):e110085
    [Crossref] [Google Scholar]
  56. 56.
    Wei X, Gao J, Wang F, Ying M, Angsantikul P, et al. 2017.. In situ capture of bacterial toxins for antivirulence vaccination. . Adv. Mater. 29:(33):1701644
    [Crossref] [Google Scholar]
  57. 57.
    Zanetti SR, Velasco-Hernandez T, Gutierrez-Agüera F, Díaz VM, Romecín PA, et al. 2022.. A novel and efficient tandem CD19- and CD22-directed CAR for B cell ALL. . Mol. Ther. 30:(2):55063
    [Crossref] [Google Scholar]
  58. 58.
    Rodriguez-Marquez P, Calleja-Cervantes ME, Serrano G, Oliver-Caldes A, Palacios-Berraquero ML, et al. 2022.. CAR density influences antitumoral efficacy of BCMA CAR T cells and correlates with clinical outcome. . Sci. Adv. 8:(39):eabo0514
    [Crossref] [Google Scholar]
  59. 59.
    Bailey EM, Choudhury A, Vuppula H, Ortiz DF, Schaeck J, et al. 2021.. Engineered IgG1-Fc molecules define valency control of cell surface Fcγ receptor inhibition and activation in endosomes. . Front. Immunol. 11::617767
    [Crossref] [Google Scholar]
  60. 60.
    Ortiz DF, Lansing JC, Rutitzky L, Kurtagic E, Prod'homme T, et al. 2016.. Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors. . Sci. Transl. Med. 8:(365):365ra158
    [Crossref] [Google Scholar]
  61. 61.
    Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, et al. 2010.. Paradoxical glomerular filtration of carbon nanotubes. . PNAS 107:(27):1236974
    [Crossref] [Google Scholar]
  62. 62.
    Böhler J, Donauer J, Keller F. 1999.. Pharmacokinetic principles during continuous renal replacement therapy: drugs and dosage. . Kidney Int. 56::S2428
    [Crossref] [Google Scholar]
  63. 63.
    Debie P, Devoogdt N, Hernot S. 2019.. Targeted nanobody-based molecular tracers for nuclear imaging and image-guided surgery. . Antibodies 8:(1):12
    [Crossref] [Google Scholar]
  64. 64.
    Unverdorben F, Richter F, Hutt M, Seifert O, Malinge P, et al. 2015.. Pharmacokinetic properties of IgG and various Fc fusion proteins in mice. . mAbs 8:(1):12028
    [Crossref] [Google Scholar]
  65. 65.
    Siegemund M, Oak P, Hansbauer E-M, Allersdorfer A, Utschick K, et al. 2021.. Pharmacokinetic engineering of OX40-blocking anticalin proteins using monomeric plasma half-life extension domains. . Front. Pharmacol. 12::759337
    [Crossref] [Google Scholar]
  66. 66.
    Koenig P-A, Das H, Liu H, Kümmerer BM, Gohr FN, et al. 2021.. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. . Science 371:(6530):eabe6230
    [Crossref] [Google Scholar]
  67. 67.
    Strauch E-M, Bernard SM, La D, Bohn AJ, Lee PS, et al. 2017.. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site. . Nat. Biotechnol. 35:(7):66771
    [Crossref] [Google Scholar]
  68. 68.
    Silverman J, Lu Q, Bakker A, To W, Duguay A, et al. 2005.. Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. . Nat. Biotechnol. 23:(12):155661
    [Crossref] [Google Scholar]
  69. 69.
    Kane RS. 2010.. Thermodynamics of multivalent interactions: influence of the linker. . Langmuir 26:(11):863640
    [Crossref] [Google Scholar]
  70. 70.
    Erickson HP, Corbin Goodman L. 2023.. Recently designed multivalent spike binders cannot bind multivalently—how do they achieve enhanced avidity to SARS-CoV-2?. Biochemistry 62:(2):16368
    [Crossref] [Google Scholar]
  71. 71.
    Svilenov HL, Bester R, Sacherl J, Absmeier R, Peters C, et al. 2022.. Multimeric ACE2-IgM fusions as broadly active antivirals that potently neutralize SARS-CoV-2 variants. . Commun. Biol. 5::1237
    [Crossref] [Google Scholar]
  72. 72.
    Hale M, Netland J, Chen Y, Thouvenel CD, Smith KN, et al. 2022.. IgM antibodies derived from memory B cells are potent cross-variant neutralizers of SARS-CoV-2. . J. Exp. Med. 219:(9):e20220849
    [Crossref] [Google Scholar]
  73. 73.
    Miersch S, Sharma N, Saberianfar R, Chen C, Caccuri F, et al. 2022.. Ultrapotent and broad neutralization of SARS-CoV-2 variants by modular, tetravalent, bi-paratopic antibodies. . Cell Rep. 39:(9):110905
    [Crossref] [Google Scholar]
  74. 74.
    Chonira V, Kwon YD, Gorman J, Case JB, Ku Z, et al. 2023.. A potent and broad neutralization of SARS-CoV-2 variants of concern by DARPins. . Nat. Chem. Biol. 19:(3):28491
    [Crossref] [Google Scholar]
  75. 75.
    Rujas E, Kucharska I, Tan YZ, Benlekbir S, Cui H, et al. 2021.. Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. . Nat. Commun. 12::3661
    [Crossref] [Google Scholar]
  76. 76.
    Hernandez-Davies JE, Felgner J, Strohmeier S, Pone EJ, Jain A, et al. 2021.. Administration of multivalent influenza virus recombinant hemagglutinin vaccine in combination-adjuvant elicits broad reactivity beyond the vaccine components. . Front. Immunol. 12::692151
    [Crossref] [Google Scholar]
  77. 77.
    Carlson CB, Mowery P, Owen RM, Dykhuizen EC, Kiessling LL. 2007.. Selective tumor cell targeting using low-affinity, multivalent interactions. . ACS Chem. Biol. 2:(2):11927
    [Crossref] [Google Scholar]
  78. 78.
    Csizmar CM, Petersburg JR, Perry TJ, Rozumalski L, Hackel BJ, Wagner CR. 2019.. Multivalent ligand binding to cell membrane antigens: defining the interplay of affinity, valency, and expression density. . J. Am. Chem. Soc. 141:(1):25161
    [Crossref] [Google Scholar]
  79. 79.
    Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG, et al. 2010.. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. . Nature 467:(7315):59195
    [Crossref] [Google Scholar]
  80. 80.
    Dheilly E, Moine V, Broyer L, Salgado-Pires S, Johnson Z, et al. 2017.. Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies. . Mol. Ther. 25:(2):52333
    [Crossref] [Google Scholar]
  81. 81.
    Cho BC, Simi A, Sabari J, Vijayaraghavan S, Moores S, Spira A. 2023.. Amivantamab, an epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) bispecific antibody, designed to enable multiple mechanisms of action and broad clinical applications. . Clin. Lung Cancer 24:(2):8997
    [Crossref] [Google Scholar]
  82. 82.
    Lejeune M, Köse MC, Duray E, Einsele H, Beguin Y, Caers J. 2020.. Bispecific, T-cell-recruiting antibodies in B-cell malignancies. . Front. Immunol. 11::762
    [Crossref] [Google Scholar]
  83. 83.
    Poussin M, Sereno A, Wu X, Huang F, Manro J, et al. 2021.. Dichotomous impact of affinity on the function of T cell engaging bispecific antibodies. . J. Immunother. Cancer 9:(7):e002444
    [Crossref] [Google Scholar]
  84. 84.
    Ho J-Y, Wang L, Liu Y, Ba M, Yang J, et al. 2021.. Promoter usage regulating the surface density of CAR molecules may modulate the kinetics of CAR-T cells in vivo. . Mol. Ther. Methods Clin. Dev. 21::23746
    [Crossref] [Google Scholar]
  85. 85.
    Meiselbach H, Sticht H. 2011.. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase. . J. Mol. Model. 17:(8):192734
    [Crossref] [Google Scholar]
  86. 86.
    Benton DJ, Nans A, Calder LJ, Turner J, Neu U, et al. 2018.. Influenza hemagglutinin membrane anchor. . PNAS 115:(40):1011217
    [Crossref] [Google Scholar]
  87. 87.
    Liese S, Netz RR. 2015.. Influence of length and flexibility of spacers on the binding affinity of divalent ligands. . Beilstein J. Org. Chem. 11::80416
    [Crossref] [Google Scholar]
  88. 88.
    Frenzel A, Hust M, Schirrmann T. 2013.. Expression of recombinant antibodies. . Front. Immunol. 4::217
    [Crossref] [Google Scholar]
  89. 89.
    Callegari I, Schneider M, Berloffa G, Mühlethaler T, Holdermann S, et al. 2022.. Potent neutralization by monoclonal human IgM against SARS-CoV-2 is impaired by class switch. . EMBO Rep. 23:(7):e53956
    [Crossref] [Google Scholar]
  90. 90.
    Chen X, Zaro J, Shen W-C. 2013.. Fusion protein linkers: property, design and functionality. . Adv. Drug Deliv. Rev. 65:(10):135769
    [Crossref] [Google Scholar]
  91. 91.
    Spahr C, Shi SD-H, Lu HS. 2014.. O-Glycosylation of glycine-serine linkers in recombinant Fc-fusion proteins. . mAbs 6:(4):90414
    [Crossref] [Google Scholar]
  92. 92.
    DiGiammarino EL, Harlan JE, Walter KA, Ladror US, Edalji RP, et al. 2011.. Ligand association rates to the inner-variable-domain of a dual-variable-domain immunoglobulin are significantly impacted by linker design. . mAbs 3:(5):48794
    [Crossref] [Google Scholar]
  93. 93.
    Britton D, Punia K, Mahmoudinobar F, Tada T, Jiang X, et al. 2022.. Engineered multivalent self-assembled binder protein against SARS-CoV-2 RBD. . Biochem. Eng. J. 187::108596
    [Crossref] [Google Scholar]
  94. 94.
    Grigoryan G, Keating AE. 2008.. Structural specificity in coiled-coil interactions. . Curr. Opin. Struct. Biol. 18:(4):47783
    [Crossref] [Google Scholar]
  95. 95.
    Hernandez Alvarez B, Hartmann MD, Albrecht R, Lupas AN, Zeth K, Linke D. 2008.. A new expression system for protein crystallization using trimeric coiled-coil adaptors. . Protein Eng. Des. Sel. 21:(1):1118
    [Crossref] [Google Scholar]
  96. 96.
    Mao H, Hart SA, Schink A, Pollok BA. 2004.. Sortase-mediated protein ligation: a new method for protein engineering. . J. Am. Chem. Soc. 126:(9):267071
    [Crossref] [Google Scholar]
  97. 97.
    Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, et al. 2012.. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. . PNAS 109:(12):E69097
    [Crossref] [Google Scholar]
  98. 98.
    Gautier A, Juillerat A, Heinis C, Corrêa IR, Kindermann M, et al. 2008.. An engineered protein tag for multiprotein labeling in living cells. . Chem. Biol. 15:(2):12836
    [Crossref] [Google Scholar]
  99. 99.
    Morgan HE, Turnbull WB, Webb ME. 2022.. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. . Chem. Soc. Rev. 51:(10):412145
    [Crossref] [Google Scholar]
  100. 100.
    Keeble AH, Howarth M. 2020.. Power to the protein: enhancing and combining activities using the Spy toolbox. . Chem. Sci. 11:(28):728191
    [Crossref] [Google Scholar]
  101. 101.
    Beerli RR, Hell T, Merkel AS, Grawunder U. 2015.. Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. . PLOS ONE 10:(7):e0131177
    [Crossref] [Google Scholar]
  102. 102.
    Witte MD, Theile CS, Wu T, Guimaraes CP, Blom AEM, Ploegh HL. 2013.. Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry. . Nat. Protoc. 8:(9):180819
    [Crossref] [Google Scholar]
  103. 103.
    Kadkhodazadeh M, Mohajel N, Behdani M, Baesi K, Khodaei B, et al. 2022.. Fiber manipulation and post-assembly nanobody conjugation for adenoviral vector retargeting through SpyTag-SpyCatcher protein ligation. . Front. Mol. Biosci. 9::1039324
    [Crossref] [Google Scholar]
  104. 104.
    Ruffo E, Butchy AA, Tivon Y, So V, Kvorjak M, et al. 2023.. Post-translational covalent assembly of CAR and synNotch receptors for programmable antigen targeting. . Nat. Commun. 14::2463
    [Crossref] [Google Scholar]
  105. 105.
    Hull EA, Livanos M, Miranda E, Smith MEB, Chester KA, Baker JR. 2014.. Homogeneous bispecifics by disulfide bridging. . Bioconjug. Chem. 25:(8):1395401
    [Crossref] [Google Scholar]
  106. 106.
    Xu Y, Lee J, Tran C, Heibeck TH, Wang WD, et al. 2014.. Production of bispecific antibodies in “knobs-into-holes” using a cell-free expression system. . mAbs 7:(1):23142
    [Crossref] [Google Scholar]
  107. 107.
    Arslan M, Karadag M, Onal E, Gelinci E, Cakan-Akdogan G, Kalyoncu S. 2022.. Effect of non-repetitive linker on in vitro and in vivo properties of an anti-VEGF scFv. . Sci. Rep. 12::5449
    [Crossref] [Google Scholar]
  108. 108.
    Bai Y, Shen W-C. 2006.. Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. . Pharm. Res. 23:(9):211621
    [Crossref] [Google Scholar]
  109. 109.
    Klement M, Liu C, Loo BLW, Choo AB-H, Ow DS-W, Lee D-Y. 2015.. Effect of linker flexibility and length on the functionality of a cytotoxic engineered antibody fragment. . J. Biotechnol. 199::9097
    [Crossref] [Google Scholar]
  110. 110.
    Zhao H, Sokabe M. 2008.. Tuning the mechanosensitivity of a BK channel by changing the linker length. . Cell Res. 18:(8):87178
    [Crossref] [Google Scholar]
  111. 111.
    Kondo T, Iwatani Y, Matsuoka K, Fujino T, Umemoto S, et al. 2020.. Antibody-like proteins that capture and neutralize SARS-CoV-2. . Sci. Adv. 6:(42):eabd3916
    [Crossref] [Google Scholar]
  112. 112.
    van Rosmalen M, Krom M, Merkx M. 2017.. Tuning the flexibility of glycine-serine linkers to allow rational design of multidomain proteins. . Biochemistry 56:(50):656574
    [Crossref] [Google Scholar]
  113. 113.
    Klein JS, Jiang S, Galimidi RP, Keeffe JR, Bjorkman PJ. 2014.. Design and characterization of structured protein linkers with differing flexibilities. . Protein Eng. Des. Sel. 27:(10):32530
    [Crossref] [Google Scholar]
  114. 114.
    Arviv O, Levy Y. 2012.. Folding of multidomain proteins: biophysical consequences of tethering even in apparently independent folding. . Proteins 80:(12):278098
    [Crossref] [Google Scholar]
  115. 115.
    Sokolovski M, Bhattacherjee A, Kessler N, Levy Y, Horovitz A. 2015.. Thermodynamic protein destabilization by GFP tagging: a case of interdomain allostery. . Biophys. J. 109:(6):115762
    [Crossref] [Google Scholar]
  116. 116.
    Tjandra KC, Thordarson P. 2019.. Multivalency in drug delivery—when is it too much of a good thing?. Bioconjug. Chem. 30:(3):50314
    [Crossref] [Google Scholar]
  117. 117.
    Mohan K, Ueda G, Kim AR, Jude KM, Fallas JA, et al. 2019.. Topological control of cytokine receptor signaling induces differential effects in hematopoiesis. . Science 364:(6442):eaav7532
    [Crossref] [Google Scholar]
  118. 118.
    Julian MC, Rabia LA, Desai AA, Arsiwala A, Gerson JE, et al. 2019.. Nature-inspired design and evolution of anti-amyloid antibodies. . J. Biol. Chem. 294:(21):843851
    [Crossref] [Google Scholar]
  119. 119.
    Cochran JR, Aivazian D, Cameron TO, Stern LJ. 2001.. Receptor clustering and transmembrane signaling in T cells. . Trends Biochem. Sci. 26:(5):30410
    [Crossref] [Google Scholar]
  120. 120.
    Schamel WWA, Alarcón B. 2013.. Organization of the resting TCR in nanoscale oligomers. . Immunol. Rev. 251:(1):1320
    [Crossref] [Google Scholar]
  121. 121.
    Hellmeier J, Platzer R, Eklund AS, Schlichthaerle T, Karner A, et al. 2021.. DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. . PNAS 118:(4):e2016857118
    [Crossref] [Google Scholar]
  122. 122.
    Strebhardt K, Ullrich A. 2008.. Paul Ehrlich's magic bullet concept: 100 years of progress. . Nat. Rev. Cancer 8:(6):47380
    [Crossref] [Google Scholar]
  123. 123.
    Hopkins AL. 2008.. Network pharmacology: the next paradigm in drug discovery. . Nat. Chem. Biol. 4:(11):68290
    [Crossref] [Google Scholar]
  124. 124.
    Ma J, Mo Y, Tang M, Shen J, Qi Y, et al. 2021.. Bispecific antibodies: from research to clinical application. . Front. Immunol. 12::626616
    [Crossref] [Google Scholar]
  125. 125.
    Jin S, Sun Y, Liang X, Gu X, Ning J, et al. 2022.. Emerging new therapeutic antibody derivatives for cancer treatment. . Sig. Transduct. Target. Ther. 7::39
    [Crossref] [Google Scholar]
  126. 126.
    Dreier B, Honegger A, Hess C, Nagy-Davidescu G, Mittl PRE, et al. 2013.. Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. . PNAS 110:(10):E86977
    [Crossref] [Google Scholar]
  127. 127.
    Stark JC, Gray MA, Wisnovsky S, Ibarlucea-Benitez I, Riley NM, et al. 2022.. Antibody-lectin chimeras for glyco-immune checkpoint blockade. . bioRxiv 2022.10.26.513931. https://doi.org/10.1101/2022.10.26.513931
  128. 128.
    Dubacheva GV, Curk T, Richter RP. 2023.. Determinants of superselectivity—practical concepts for application in biology and medicine. . Acc. Chem. Res. 56:(7):72939
    [Crossref] [Google Scholar]
  129. 129.
    Curk T, Dubacheva GV, Brisson AR, Richter RP. 2022.. Controlling superselectivity of multivalent interactions with cofactors and competitors. . J. Am. Chem. Soc. 144:(38):1734650
    [Crossref] [Google Scholar]
  130. 130.
    Estep P, Reid F, Nauman C, Liu Y, Sun T, et al. 2013.. High throughput solution-based measurement of antibody-antigen affinity and epitope binning. . mAbs 5:(2):27078
    [Crossref] [Google Scholar]
  131. 131.
    Das R, Baker D. 2008.. Macromolecular modeling with Rosetta. . Annu. Rev. Biochem. 77::36382
    [Crossref] [Google Scholar]
  132. 132.
    Errington WJ, Bruncsics B, Sarkar CA. 2019.. Mechanisms of noncanonical binding dynamics in multivalent protein–protein interactions. . PNAS 116:(51):2565967
    [Crossref] [Google Scholar]
  133. 133.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596:(7873):58389
    [Crossref] [Google Scholar]
  134. 134.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, et al. 2021.. Accurate prediction of protein structures and interactions using a three-track neural network. . Science 373:(6557):87176
    [Crossref] [Google Scholar]
  135. 135.
    Lin Z, Akin H, Rao R, Hie B, Zhu Z, et al. 2023.. Evolutionary-scale prediction of atomic-level protein structure with a language model. . Science 379:(6637):112330
    [Crossref] [Google Scholar]
  136. 136.
    Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, et al. 2023.. De novo design of protein structure and function with RFdiffusion. . Nature 620::1089100
    [Crossref] [Google Scholar]
  137. 137.
    Jones D, Kim H, Zhang X, Zemla A, Stevenson G, et al. 2021.. Improved protein–ligand binding affinity prediction with structure-based deep fusion inference. . J. Chem. Inf. Model. 61:(4):158392
    [Crossref] [Google Scholar]
  138. 138.
    Su Z, Wang B, Almo SC, Wu Y. 2020.. Understanding the targeting mechanisms of multi-specific biologics in immunotherapy with multiscale modeling. . iScience 23:(12):101835
    [Crossref] [Google Scholar]
  139. 139.
    Van Fossen EM, Bednar RM, Jana S, Franklin R, Beckman J, et al. 2022.. Nanobody assemblies with fully flexible topology enabled by genetically encoded tetrazine amino acids. . Sci. Adv. 8:(18):eabm6909
    [Crossref] [Google Scholar]
  140. 140.
    Rothenberger S, Hurdiss DL, Walser M, Malvezzi F, Mayor J, et al. 2022.. The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants. . Nat. Biotechnol. 40:(12):184554
    [Crossref] [Google Scholar]
  141. 141.
    Nagorsen D, Kufer P, Baeuerle PA, Bargou R. 2012.. Blinatumomab: a historical perspective. . Pharmacol. Ther. 136:(3):33442
    [Crossref] [Google Scholar]
  142. 142.
    Kitazawa T, Shima M. 2020.. Emicizumab, a humanized bispecific antibody to coagulation factors IXa and X with a factor VIIIa-cofactor activity. . Int. J. Hematol. 111:(1):2030
    [Crossref] [Google Scholar]
  143. 143.
    Neijssen J, Cardoso RMF, Chevalier KM, Wiegman L, Valerius T, et al. 2021.. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. . J. Biol. Chem. 296::100641
    [Crossref] [Google Scholar]
  144. 144.
    Sun LL, Ellerman D, Mathieu M, Hristopoulos M, Chen X, et al. 2015.. Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. . Sci. Transl. Med. 7:(287):287ra70
    [Crossref] [Google Scholar]
  145. 145.
    Pillarisetti K, Powers G, Luistro L, Babich A, Baldwin E, et al. 2020.. Teclistamab is an active T cell–redirecting bispecific antibody against B-cell maturation antigen for multiple myeloma. . Blood Adv. 4:(18):453849
    [Crossref] [Google Scholar]
  146. 146.
    van der Horst HJ, de Jonge AV, Hiemstra IH, Gelderloos AT, Berry DRAI, et al. 2021.. Epcoritamab induces potent anti-tumor activity against malignant B-cells from patients with DLBCL, FL and MCL, irrespective of prior CD20 monoclonal antibody treatment. . Blood Cancer J. 11::38
    [Crossref] [Google Scholar]
  147. 147.
    Klein C, Schaefer W, Regula JT, Dumontet C, Brinkmann U, et al. 2019.. Engineering therapeutic bispecific antibodies using CrossMab technology. . Methods 154::2131
    [Crossref] [Google Scholar]
  148. 148.
    Surowka M, Schaefer W, Klein C. 2021.. Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins. . mAbs 13:(1):1967714
    [Crossref] [Google Scholar]
  149. 149.
    Middleton MR, McAlpine C, Woodcock VK, Corrie P, Infante JR, et al. 2020.. Tebentafusp, a TCR/anti-CD3 bispecific fusion protein targeting gp100, potently activated antitumor immune responses in patients with metastatic melanoma. . Clin. Cancer Res. 26:(22):586978
    [Crossref] [Google Scholar]
  150. 150.
    Food Drug Adm. 2023.. Bispecific antibodies: an area of research and clinical applications. . US Food & Drug Administration. https://www.fda.gov/drugs/news-events-human-drugs/bispecific-antibodies-area-research-and-clinical-applications
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100722-112440
Loading
/content/journals/10.1146/annurev-chembioeng-100722-112440
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error