1932

Abstract

From microscopic fungi to colossal whales, fluid ejections are universal and intricate phenomena in biology, serving vital functions such as animal excretion, venom spraying, prey hunting, spore dispersal, and plant guttation. This review delves into the complex fluid physics of ejections across various scales, exploring both muscle-powered active systems and passive mechanisms driven by gravity or osmosis. It introduces a framework using dimensionless numbers to delineate transitions from dripping to jetting and elucidate the governing forces. Highlighting the understudied area of complex fluid ejections, this review not only rationalizes the biophysics involved but also uncovers potential engineering applications in soft robotics, additive manufacturing, and drug delivery. By bridging biomechanics, the physics of living systems, and fluid dynamics, this review offers valuable insights into the diverse world of fluid ejections and paves the way for future bioinspired research across the spectrum of life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100722-113148
2024-07-24
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100722-113148.html?itemId=/content/journals/10.1146/annurev-chembioeng-100722-113148&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pfister L, Savenije HH, Fenicia F. 2009.. Leonardo da Vinci's Water Theory: On the Origin and Fate of Water. Oxfordshire, UK:: IAHS Press
    [Google Scholar]
  2. 2.
    Vogel S. 1996.. Life in Moving Fluids: The Physical Biology of Flow. Princeton, NJ:: Princeton Univ. Press. , 2nd ed..
    [Google Scholar]
  3. 3.
    Marusic I, Broomhall S. 2021.. Leonardo da Vinci and fluid mechanics. . Annu. Rev. Fluid Mech. 53::125
    [Crossref] [Google Scholar]
  4. 4.
    Challita EJ, Sehgal P, Krugner R, Bhamla MS. 2023.. Droplet superpropulsion in an energetically constrained insect. . Nat. Commun. 14::860
    [Crossref] [Google Scholar]
  5. 5.
    Yang PJ, Pham J, Choo J, Hu DL. 2014.. Duration of urination does not change with body size. . PNAS 111::1193237
    [Crossref] [Google Scholar]
  6. 6.
    Weiss MR. 2006.. Defecation behavior and ecology of insects. . Annu. Rev. Entomol. 51::63561
    [Crossref] [Google Scholar]
  7. 7.
    Eisner T, Aneshansley DJ. 1999.. Spray aiming in the bombardier beetle: photographic evidence. . PNAS 96::97059
    [Crossref] [Google Scholar]
  8. 8.
    Keller B, Willke T. 2019.. Snotbot: a whale of a deep-learning project. . IEEE Spectr. 56::4153
    [Crossref] [Google Scholar]
  9. 9.
    Richter JP, ed. 2012.. The Notebooks of Leonardo da Vinci, Vol. 1. North Chelmsford, MA:: Courier Corp.
    [Google Scholar]
  10. 10.
    Eggers J, Villermaux E. 2008.. Physics of liquid jets. . Rep. Prog. Phys. 71::036601
    [Crossref] [Google Scholar]
  11. 11.
    van Hoeve W, Gekle S, Snoeijer JH, Versluis M, Brenner MP, Lohse D. 2010.. Breakup of diminutive Rayleigh jets. . Phys. Fluids 22::122003
    [Crossref] [Google Scholar]
  12. 12.
    Clanet C, Lasheras JC. 1999.. Transition from dripping to jetting. . J. Fluid Mech. 383::30726
    [Crossref] [Google Scholar]
  13. 13.
    Fuller GG, Vermant J. 2012.. Complex fluid-fluid interfaces: rheology and structure. . Annu. Rev. Chem. Biomol. Eng. 3::51943
    [Crossref] [Google Scholar]
  14. 14.
    Gemmell BJ, Dabiri JO, Colin SP, Costello JH, Townsend JP, Sutherland KR. 2021.. Cool your jets: biological jet propulsion in marine invertebrates. . J. Exp. Biol. 224::jeb222083
    [Crossref] [Google Scholar]
  15. 15.
    de Gennes PG, Brochard-Wyart F, Quéré D. 2004.. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York:: Springer
    [Google Scholar]
  16. 16.
    Bush J. 2010.. Interfacial phenomena. Course 18.357 , Fall. Mass. Inst. Technol., Cambridge:
    [Google Scholar]
  17. 17.
    Lin SP, Reitz RD. 1998.. Drop and spray formation from a liquid jet. . Annu. Rev. Fluid Mech. 30::85105
    [Crossref] [Google Scholar]
  18. 18.
    Bergman EA, Green EL, Matthews PGD. 2021.. The cibarial pump of the xylem-feeding froghopper (Philaenus spumarius) produces negative pressures exceeding 1 MPa. . Proc. R. Soc. B 288::20210731
    [Crossref] [Google Scholar]
  19. 19.
    Clanet C, Lasheras JC. 1999.. Transition from dripping to jetting. . J. Fluid Mech. 383::30726
    [Crossref] [Google Scholar]
  20. 20.
    Denny M. 1993.. Air and Water: The Biology and Physics of Life's Media. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  21. 21.
    Hu DL, Bush JW. 2005.. Meniscus-climbing insects. . Nature 437::73336
    [Crossref] [Google Scholar]
  22. 22.
    Ortega-Jimenez VM, Challita EJ, Kim B, Ko H, Gwon M, et al. 2022.. Directional takeoff, aerial righting, and adhesion landing of semiaquatic springtails. . PNAS 119::e2211283119
    [Crossref] [Google Scholar]
  23. 23.
    Liu F, Chavez RL, Patek SN, Pringle A, Feng JJ, Chen CH. 2017.. Asymmetric drop coalescence launches fungal ballistospores with directionality. . J. R. Soc. Interface 14::20170083
    [Crossref] [Google Scholar]
  24. 24.
    Pike N, Richard D, Foster W, Mahadevan L. 2002.. How aphids lose their marbles. . Proc. R. Soc. B 269::121115
    [Crossref] [Google Scholar]
  25. 25.
    Folk GE, Semken A. 1991.. The evolution of sweat glands. . Int. J. Biometeorol. 35::18086
    [Crossref] [Google Scholar]
  26. 26.
    Kasahara M, Akimoto S-i, Hariyama T, Takaku Y, Yusa S-i, et al. 2019.. Liquid marbles in nature: craft of aphids for survival. . Langmuir 35::616978
    [Crossref] [Google Scholar]
  27. 27.
    Lahondère C, Lazzari CR. 2012.. Mosquitoes cool down during blood feeding to avoid overheating. . Curr. Biol. 22::4045
    [Crossref] [Google Scholar]
  28. 28.
    Stolze-Rybczynski JL, Cui Y, Stevens MHH, Davis DJ, Fischer MW, Money NP. 2009.. Adaptation of the spore discharge mechanism in the Basidiomycota. . PLOS ONE 4::e4163
    [Crossref] [Google Scholar]
  29. 29.
    Buller AHR. 1922.. Researches on Fungi, Vol. 2. London:: Longmans, Green & Co.
    [Google Scholar]
  30. 30.
    Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CAT. 2021.. Coalescence-induced droplet jumping. . Langmuir 37::9831000
    [Crossref] [Google Scholar]
  31. 31.
    Redak RA, Purcell AH, Lopes JR, Blua MJ, Mizell RF III, Andersen PC. 2004.. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. . Annu. Rev. Entomol. 49::24370
    [Crossref] [Google Scholar]
  32. 32.
    Okumura K, Chevy F, Richard D, Quéré D, Clanet C. 2003.. Water spring: a model for bouncing drops. . Europhys. Lett. 62::23743
    [Crossref] [Google Scholar]
  33. 33.
    Hubert M, Robert D, Caps H, Dorbolo S, Vandewalle N. 2015.. Resonant and antiresonant bouncing droplets. . Phys. Rev. E 91::023017
    [Crossref] [Google Scholar]
  34. 34.
    Raufaste C, Chagas GR, Darmanin T, Claudet C, Guittard F, Celestini F. 2017.. Superpropulsion of droplets and soft elastic solids. . Phys. Rev. Lett. 119::108001
    [Crossref] [Google Scholar]
  35. 35.
    Szczepanski CR, Guittard F, Darmanin T. 2017.. Recent advances in the study and design of parahydrophobic surfaces: from natural examples to synthetic approaches. . Adv. Colloid Interface Sci. 241::3761
    [Crossref] [Google Scholar]
  36. 36.
    Andersen PC, Brodbeck BV, Mizell RF III 1989.. Metabolism of amino acids, organic acids and sugars extracted from the xylem fluid of four host plants by adult Homalodisca coagulata. . Entomol. Exp. Appl. 50::14959
    [Crossref] [Google Scholar]
  37. 37.
    Novotny V, Wilson MR. 1997.. Why are there no small species among xylem-sucking insects?. Evol. Ecol. 11::41937
    [Crossref] [Google Scholar]
  38. 38.
    Berlin LC, Hibbs ET. 1963.. Digestive system morphology and salivary enzymes of the potato leafhopper, Empoasca fabae (Harris). . Proc. Iowa Acad. Sci. 70::52740
    [Google Scholar]
  39. 39.
    Wang W, Ji C, Lin F, Zou J, Dorbolo S. 2019.. Water drops bouncing off vertically vibrating textured surfaces. . J. Fluid Mech. 876::104151
    [Crossref] [Google Scholar]
  40. 40.
    Fokkema N, Riphagen I, Poot R, De Jong C. 1983.. Aphid honeydew, a potential stimulant of Cochliobolus sativus and Septoria nodorum and the competitive role of saprophytic mycoflora. . Trans. Br. Mycol. Soc. 81::35563
    [Crossref] [Google Scholar]
  41. 41.
    Benton T, Foster W. 1992.. Altruistic housekeeping in a social aphid. . Proc. R. Soc. B 247::199202
    [Crossref] [Google Scholar]
  42. 42.
    Mahadevan L. 2001.. Non-stick water. . Nature 411::89596
    [Crossref] [Google Scholar]
  43. 43.
    Broadbent L. 1951.. Aphid excretion. . Proc. R. Entomol. Soc. A Gen. Entomol. 26::97103
    [Google Scholar]
  44. 44.
    Harner AD, Leach HL, Briggs L, Centinari M. 2022.. Prolonged phloem feeding by the spotted lanternfly, an invasive planthopper, alters resource allocation and inhibits gas exchange in grapevines. . Plant Direct 6::e452
    [Crossref] [Google Scholar]
  45. 45.
    Pringle A, Patek SN, Fischer M, Stolze J, Money NP. 2005.. The captured launch of a ballistospore. . Mycologia 97::86671
    [Crossref] [Google Scholar]
  46. 46.
    Mouterde T, Nguyen TV, Takahashi H, Clanet C, Shimoyama I, Quéré D. 2017.. How merging droplets jump off a superhydrophobic surface: measurements and model. . Phys. Rev. Fluids 2::112001
    [Crossref] [Google Scholar]
  47. 47.
    Heinrich B. 1979.. Keeping a cool head: honeybee thermoregulation. . Science 205::126971
    [Crossref] [Google Scholar]
  48. 48.
    Heinrich B. 1976.. Heat exchange in relation to blood flow between thorax and abdomen in bumblebees. . J. Exp. Biol. 64::56185
    [Crossref] [Google Scholar]
  49. 49.
    Adams PA, Heath JE. 1964.. An evaporative cooling mechanism in Pholus achemon (Sphingidae). . J. Res. Lepidopt. 3::6972
    [Crossref] [Google Scholar]
  50. 50.
    Prange HD. 1996.. Evaporative cooling in insects. . J. Insect Physiol. 42::49399
    [Crossref] [Google Scholar]
  51. 51.
    McKinley GH, Renardy M. 2011.. Wolfgang von Ohnesorge. . Phys. Fluids 23::127101
    [Crossref] [Google Scholar]
  52. 52.
    Yafetto L, Carroll L, Cui Y, Davis DJ, Fischer MW, et al. 2008.. The fastest flights in nature: high-speed spore discharge mechanisms among fungi. . PLOS ONE 3::e3237
    [Crossref] [Google Scholar]
  53. 53.
    Brütsch T, Jaffuel G, Vallat A, Turlings TC, Chapuisat M. 2017.. Wood ants produce a potent antimicrobial agent by applying formic acid on tree-collected resin. . Ecol. Evol. 7::224954
    [Crossref] [Google Scholar]
  54. 54.
    Young BA, Dunlap K, Koenig K, Singer M. 2004.. The buccal buckle: the functional morphology of venom spitting in cobras. . J. Exp. Biol. 207::348394
    [Crossref] [Google Scholar]
  55. 55.
    McGavin GC, Davranoglou LR, Lewington R. 2023.. Essential Entomology. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  56. 56.
    Eisner T, Eisner M, Siegler M. 2005.. Secret Weapons: Defenses of Insects, Spiders, Scorpions, and Other Many-Legged Creatures. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  57. 57.
    Eisner T, Kriston I, Aneshansley DJ. 1976.. Defensive behavior of a termite (Nasutitermes exitiosus). . Behav. Ecol. Sociobiol. 1::83125
    [Crossref] [Google Scholar]
  58. 58.
    Blum MS. 2012.. Chemical Defenses of Arthropods. New York:: Elsevier
    [Google Scholar]
  59. 59.
    Challita E, Rohilla P, Sehgal P, Harrison J, Bhamla S. 2023.. The dynamics of microjet spitting in termite soldiers. Abstract presented at the American Physical Society March Meeting 2023, Las Vegas, NV:, Mar. 5–10
    [Google Scholar]
  60. 60.
    Challita EJ, Bhamla MS. 2024.. Unifying fluidic excretion across life from cicadas to elephants. . PNAS 121:(13):e2317878121
    [Crossref] [Google Scholar]
  61. 61.
    Sakes A, van der Wiel M, Henselmans PW, van Leeuwen JL, Dodou D, Breedveld P. 2016.. Shooting mechanisms in nature: a systematic review. . PLOS ONE 11::e0158277
    [Crossref] [Google Scholar]
  62. 62.
    Kohlmeyer J, Volkmann-Kohlmeyer B. 1996.. Fungi on Juncus roemerianus. 6. Glomerobolus gen. nov., the first ballistic member of Agonomycetales. . Mycologia 88::32837
    [Crossref] [Google Scholar]
  63. 63.
    Van Leeuwen JL. 2010.. Launched at 36,000g. . Science 329::39596
    [Crossref] [Google Scholar]
  64. 64.
    Money NP, Fischer MW. 2009.. Biomechanics of spore release in phytopathogens. . In Plant Relationships: The Mycota, ed. HB Deising , 11533. Berlin:: Springer
    [Google Scholar]
  65. 65.
    Smith NM, Ebrahimi H, Ghosh R, Dickerson AK. 2018.. High-speed microjets issue from bursting oil gland reservoirs of citrus fruit. . PNAS 115::E588795
    [Google Scholar]
  66. 66.
    Westhoff G, Tzschätzsch K, Bleckmann H. 2005.. The spitting behavior of two species of spitting cobras. . J. Comp. Physiol. A 191::87381
    [Crossref] [Google Scholar]
  67. 67.
    Berthé RA, De Pury S, Bleckmann H, Westhoff G. 2009.. Spitting cobras adjust their venom distribution to target distance. . J. Comp. Physiol. A 195::75357
    [Crossref] [Google Scholar]
  68. 68.
    Triep M, Hess D, Chaves H, Brücker C, Balmert A, et al. 2013.. 3D flow in the venom channel of a spitting cobra: Do the ridges in the fangs act as fluid guide vanes?. PLOS ONE 8::e61548
    [Crossref] [Google Scholar]
  69. 69.
    Hinman F, ed. 1971.. Hydrodynamics of Micturition. New York:: Thomas
    [Google Scholar]
  70. 70.
    Yang PJ, Chen TG, Bracher SB, Hui A, Hu DL. 2023.. Urinary flow through urethras with a rough lumen. . Neurourol. Urodyn. 42::124554
    [Crossref] [Google Scholar]
  71. 71.
    Dass N, McMurray G, Greenland JE, Brading AF. 2001.. Morphological aspects of the female pig bladder neck and urethra: quantitative analysis using computer assisted 3-dimensional reconstructions. . J. Urol. 165::129499
    [Crossref] [Google Scholar]
  72. 72.
    Wheeler AP, Morad S, Buchholz N, Knight MM. 2012.. The shape of the urine stream—from biophysics to diagnostics. . PLOS ONE 7::e47133
    [Crossref] [Google Scholar]
  73. 73.
    Kjeld M. 2003.. Salt and water balance of modern baleen whales: rate of urine production and food intake. . Can. J. Zool. 81::60616
    [Crossref] [Google Scholar]
  74. 74.
    Brodie C. 2006.. Watch and learn: Benchwarming pays off for the archer fish. . Am. Sci. 94::21819
    [Crossref] [Google Scholar]
  75. 75.
    Davis BD, Dill L. 2012.. Intraspecific kleptoparasitism and counter-tactics in the archerfish (Toxotes chatareus). . Behaviour 149::136794
    [Crossref] [Google Scholar]
  76. 76.
    Gerullis P, Schuster S. 2014.. Archerfish actively control the hydrodynamics of their jets. . Curr. Biol. 24::215660
    [Crossref] [Google Scholar]
  77. 77.
    Vailati A, Zinnato L, Cerbino R. 2012.. How archer fish achieve a powerful impact: hydrodynamic instability of a pulsed jet in Toxotes jaculatrix. . PLOS ONE 7::e47867
    [Crossref] [Google Scholar]
  78. 78.
    Heath JE. 1966.. Venous shunts in the cephalic sinuses of horned lizards. . Physiol. Zool. 39::3035
    [Crossref] [Google Scholar]
  79. 79.
    Sherbrooke WC, Middendorf GA III. 2001.. Blood-squirting variability in horned lizards (Phrynosoma). . Copeia 2001::111422
    [Crossref] [Google Scholar]
  80. 80.
    Middendorf GA III, Sherbrooke WC. 1992.. Canid elicitation of blood-squirting in a horned lizard (Phrynosoma cornutum). . Copeia 1992::51927
    [Crossref] [Google Scholar]
  81. 81.
    Singh S. 2016.. Guttation: mechanism, momentum and modulation. . Bot. Rev. 82::14982
    [Crossref] [Google Scholar]
  82. 82.
    Singh S. 2014.. Guttation: new insights into agricultural implications. . Adv. Agron. 128::97135
    [Crossref] [Google Scholar]
  83. 83.
    Cerutti A, Jauneau A, Laufs P, Leonhardt N, Schattat MH, et al. 2019.. Mangroves in the leaves: anatomy, physiology, and immunity of epithemal hydathodes. . Annu. Rev. Phytopathol. 57::91116
    [Crossref] [Google Scholar]
  84. 84.
    Gelstein S, Yeshurun Y, Rozenkrantz L, Shushan S, Frumin I, et al. 2011.. Human tears contain a chemosignal. . Science 331::22630
    [Crossref] [Google Scholar]
  85. 85.
    Rühs PA, Bergfreund J, Bertsch P, Gstöhl SJ, Fischer P. 2021.. Complex fluids in animal survival strategies. . Soft Matter 17::302236
    [Crossref] [Google Scholar]
  86. 86.
    Boys CV. 1959.. Soap Bubbles and the Forces which Mould Them, Science Study Ser. 3 . New York:: Anchor Doubleday Books
    [Google Scholar]
  87. 87.
    Bhat PP, Appathurai S, Harris MT, Pasquali M, McKinley GH, Basaran OA. 2010.. Formation of beads-on-a-string structures during break-up of viscoelastic filaments. . Nat. Phys. 6::62531
    [Crossref] [Google Scholar]
  88. 88.
    Poole R. 2012.. The Deborah and Weissenberg numbers. . Rheol. Bull. 53::3239
    [Google Scholar]
  89. 89.
    Dealy J. 2010.. Weissenberg and Deborah numbers—their definition and use. . Rheol. Bull 79::1418
    [Google Scholar]
  90. 90.
    Gaume L, Forterre Y. 2007.. A viscoelastic deadly fluid in carnivorous pitcher plants. . PLOS ONE 2::e1185
    [Crossref] [Google Scholar]
  91. 91.
    Zintzen V, Roberts CD, Anderson MJ, Stewart AL, Struthers CD, Harvey ES. 2011.. Hagfish predatory behaviour and slime defence mechanism. . Sci. Rep. 1::131
    [Crossref] [Google Scholar]
  92. 92.
    Concha A, Mellado P, Morera-Brenes B, Sampaio Costa C, Mahadevan L, Monge-Nájera J. 2015.. Oscillation of the velvet worm slime jet by passive hydrodynamic instability. . Nat. Commun. 6::6292
    [Crossref] [Google Scholar]
  93. 93.
    Gilbert C, Rayor LS. 1985.. Predatory behavior of spitting spiders (Araneae: Scytodidae) and the evolution of prey wrapping. . J. Arachnol. 13::23141
    [Google Scholar]
  94. 94.
    Morera-Brenes B, Monge-Nájera J. 2010.. A new giant species of placented worm and the mechanism by which onychophorans weave their nets (Onychophora: Peripatidae). . Rev. Biol. Trop. 58::112742
    [Crossref] [Google Scholar]
  95. 95.
    Baer A, Schmidt S, Haensch S, Eder M, Mayer G, Harrington MJ. 2017.. Mechanoresponsive lipid-protein nanoglobules facilitate reversible fibre formation in velvet worm slime. . Nat. Commun. 8::974
    [Crossref] [Google Scholar]
  96. 96.
    Suter RB, Stratton GE. 2009.. Spitting performance parameters and their biomechanical implications in the spitting spider, Scytodes thoracica. . J. Insect Sci. 9::62
    [Crossref] [Google Scholar]
  97. 97.
    Bush JW, Hu DL. 2006.. Walking on water: biolocomotion at the interface. . Annu. Rev. Fluid Mech. 38::33969
    [Crossref] [Google Scholar]
  98. 98.
    Suter RB, Stratton GE. 2005.. Scytodes versus Schizocosa predatory techniques and their morphological correlates. . J. Arachnol. 33::715
    [Crossref] [Google Scholar]
  99. 99.
    Ewoldt RH, Clasen C, Hosoi AE, McKinley GH. 2007.. Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. . Soft Matter 3::63443
    [Crossref] [Google Scholar]
  100. 100.
    Denny M. 1980.. The role of gastropod pedal mucus in locomotion. . Nature 285::16061
    [Crossref] [Google Scholar]
  101. 101.
    Parker G. 1911.. The mechanism of locomotion in gastropods. . J. Morphol. 22::15570
    [Crossref] [Google Scholar]
  102. 102.
    Lai JH, del Alamo JC, Rodríguez-Rodríguez J, Lasheras JC. 2010.. The mechanics of the adhesive locomotion of terrestrial gastropods. . J. Exp. Biol. 213::392033
    [Crossref] [Google Scholar]
  103. 103.
    Campion M. 1961.. The structure and function of the cutaneous glands in Helix aspersa. . J. Cell Sci. 3::195216
    [Crossref] [Google Scholar]
  104. 104.
    Martini FH. 1998.. The ecology of hagfishes. . In The Biology of Hagfishes, ed. JM Jørgensen, JP Lomholt, RE Weber, H Malte , pp. 5777. Dordrecht, Neth:.: Springer
    [Google Scholar]
  105. 105.
    Böni L, Fischer P, Böcker L, Kuster S, Rühs PA. 2016.. Hagfish slime and mucin flow properties and their implications for defense. . Sci. Rep. 6::30371
    [Crossref] [Google Scholar]
  106. 106.
    Ewoldt RH, Winegard TM, Fudge DS. 2011.. Non-linear viscoelasticity of hagfish slime. . Int. J. Nonlinear Mech. 46::62736
    [Crossref] [Google Scholar]
  107. 107.
    MacMinn CW. 2005.. The design and construction of a novel pipe flow apparatus for exploring polymer drag reduction. PhD Thesis , Mass. Inst. Technol.
    [Google Scholar]
  108. 108.
    Gaume L, Forterre Y. 2007.. A viscoelastic deadly fluid in carnivorous pitcher plants. . PLOS ONE 2::e1185
    [Crossref] [Google Scholar]
  109. 109.
    Kang V, Isermann H, Sharma S, Wilson DI, Federle W. 2021.. How a sticky fluid facilitates prey retention in a carnivorous pitcher plant (Nepenthes rafflesiana). . Acta Biomater. 128::35769
    [Crossref] [Google Scholar]
  110. 110.
    Vogel S. 2014.. Comparative Biomechanics: Life's Physical World. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  111. 111.
    Gosline JM, DeMont ME. 1985.. Jet-propelled swimming in squids. . Sci. Am. 252::96103
    [Crossref] [Google Scholar]
  112. 112.
    Johnson W, Soden P, Trueman E. 1972.. A study in jet propulsion: an analysis of the motion of the squid, Loligo vulgaris. . J. Exp. Biol. 56::15565
    [Crossref] [Google Scholar]
  113. 113.
    Krueger PS, Gharib M. 2003.. The significance of vortex ring formation to the impulse and thrust of a starting jet. . Phys. Fluids 15::127181
    [Crossref] [Google Scholar]
  114. 114.
    Vogel S. 1987.. Flow-assisted mantle cavity refilling in jetting squid. . Biol. Bull. 172::6168
    [Crossref] [Google Scholar]
  115. 115.
    Zhu Q, Xiao Q. 2022.. Physics and applications of squid-inspired jetting. . Bioinspirat. Biomimet. 17::041001
    [Crossref] [Google Scholar]
  116. 116.
    Ward DV, Wainwright SA. 1972.. Locomotory aspects of squid mantle structure. . J. Zool. 167::43749
    [Crossref] [Google Scholar]
  117. 117.
    Sutherland KR, Madin LP. 2010.. Comparative jet wake structure and swimming performance of salps. . J. Exp. Biol. 213::296775
    [Crossref] [Google Scholar]
  118. 118.
    Roh C, Gharib M. 2018.. Asymmetry in the jet opening: underwater jet vectoring mechanism by dragonfly larvae. . Bioinspirat. Biomimet. 13::046007
    [Crossref] [Google Scholar]
  119. 119.
    Mill P, Pickard R. 1975.. Jet-propulsion in anisopteran dragonfly larvae. . J. Comp. Physiol. 97::32938
    [Crossref] [Google Scholar]
  120. 120.
    Linsenmair KE, Jander R. 1963.. Das “Entspannungsschwimmen” von Velia und Stenus. . Naturwissenschaften 50::231
    [Crossref] [Google Scholar]
  121. 121.
    Bush JW, Hu DL, Prakash M. 2007.. The integument of water-walking arthropods: form and function. . Adv. Insect Physiol. 34::11792
    [Crossref] [Google Scholar]
  122. 122.
    Schildknecht H. 1976.. Chemical ecology—a chapter of modern natural products chemistry. . Angew. Chem. Int. Ed. Engl. 15::21422
    [Crossref] [Google Scholar]
  123. 123.
    Nachtigall W. 1985.. Swimming in aquatic insects. . Compr. Insect Physiol. Biochem. Pharmacol. 5::46790
    [Google Scholar]
  124. 124.
    Scharfman B, Techet A, Bush J, Bourouiba L. 2016.. Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. . Exp. Fluids 57::24
    [Crossref] [Google Scholar]
  125. 125.
    Bourouiba L. 2021.. The fluid dynamics of disease transmission. . Annu. Rev. Fluid Mech. 53::473508
    [Crossref] [Google Scholar]
  126. 126.
    Han M, Ooka R, Kikumoto H, Oh W, Bu Y, Hu S. 2021.. Experimental measurements of airflow features and velocity distribution exhaled from sneeze and speech using particle image velocimetry. . Build. Environ. 205::108293
    [Crossref] [Google Scholar]
  127. 127.
    Nunes J, Tsai S, Wan J, Stone HA. 2013.. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. . J. Phys. D 46::114002
    [Crossref] [Google Scholar]
  128. 128.
    Fahlman A, Loring SH, Levine G, Rocho-Levine J, Austin T, Brodsky M. 2015.. Lung mechanics and pulmonary function testing in cetaceans. . J. Exp. Biol. 218::203038
    [Crossref] [Google Scholar]
  129. 129.
    Barton C. 2020.. Characterization of the impulsive jet produced from a dolphin's blowhole. PhD Thesis , Okla. State Univ.
    [Google Scholar]
  130. 130.
    Ngo A, Ford M, Barton C, Gaeta R, Jacob J. 2019.. Flow visualization of a dolphin blowhole. Video presented at the 72nd Annual Meeting of the APS Division of Fluid Dynamics, Nov. 23. https://doi.org/10.1103/APS.DFD.2019.GFM.V0060
    [Google Scholar]
  131. 131.
    Stockan JA, Robinson EJ. 2016.. Wood Ant Ecology and Conservation. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  132. 132.
    Dean J, Aneshansley DJ, Edgerton HE, Eisner T. 1990.. Defensive spray of the bombardier beetle: a biological pulse jet. . Science 248::121921
    [Crossref] [Google Scholar]
  133. 133.
    Arndt EM, Moore W, Lee WK, Ortiz C. 2015.. Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation. . Science 348::56367
    [Crossref] [Google Scholar]
  134. 134.
    Eisner T. 1965.. Defensive spray of a phasmid insect. . Science 148::96668
    [Crossref] [Google Scholar]
  135. 135.
    Meinwald J, Chadha M, Hurst J, Eisner I. 1962.. Defense mechanisms of arthropods-IX Anisomorphal, the secretion of a phasmid insect. . Tetrahedron Lett. 3::2933
    [Crossref] [Google Scholar]
  136. 136.
    Eisner T, Aneshansley DJ. 1982.. Spray aiming in bombardier beetles: jet deflection by the Coănda effect. . Science 215::8385
    [Crossref] [Google Scholar]
  137. 137.
    Woodburne RT, Lapides J. 1972.. The ureteral lumen during peristalsis. . Am. J. Anat. 133::25558
    [Crossref] [Google Scholar]
  138. 138.
    Concha A, Mellado P, Morera-Brenes B, Sampaio Costa C, Mahadevan L, Monge-Nájera J. 2015.. Oscillation of the velvet worm slime jet by passive hydrodynamic instability. . Nat. Commun. 6::6292
    [Crossref] [Google Scholar]
  139. 139.
    Marmottant P, Villermaux E. 2004.. On spray formation. . J. Fluid Mech. 498::73111
    [Crossref] [Google Scholar]
  140. 140.
    Mortensen NA, Okkels F, Bruus H. 2005.. Reexamination of Hagen-Poiseuille flow: shape dependence of the hydraulic resistance in microchannels. . Phys. Rev. E 71::057301
    [Crossref] [Google Scholar]
  141. 141.
    Chen HH, Brenner MP. 2004.. The optimal faucet. . Phys. Rev. Lett. 92::166106
    [Crossref] [Google Scholar]
  142. 142.
    Ward TA, Rezadad M, Fearday CJ, Viyapuri R. 2015.. A review of biomimetic air vehicle research: 1984-2014. . Int. J. Micro Air Veh. 7::37594
    [Crossref] [Google Scholar]
  143. 143.
    Wang L, Hui Y, Fu C, Wang Z, Zhang M, Zhang T. 2020.. Recent advances in gecko-inspired adhesive materials and application. . J. Adhesion Sci. Technol. 34::227591
    [Crossref] [Google Scholar]
  144. 144.
    Zhang X, Shi F, Niu J, Jiang Y, Wang Z. 2008.. Superhydrophobic surfaces: from structural control to functional application. . J. Mater. Chem. 18::62133
    [Crossref] [Google Scholar]
  145. 145.
    Zadesky SP, Rothkopf FR, Fletcher AE. 2016.. Liquid expulsion from an orifice. US Patent 9,451,354
    [Google Scholar]
  146. 146.
    Xu NW. 2021.. Squid-inspired robots perform swimmingly. . Sci. Robot. 6::eabf4301
    [Crossref] [Google Scholar]
  147. 147.
    Rohilla P, Rane YS, Lawal I, Le Blanc A, Davis J, et al. 2019.. Characterization of jets for impulsively-started needle-free jet injectors: influence of fluid properties. . J. Drug Deliv. Sci. Technol. 53::101167
    [Crossref] [Google Scholar]
  148. 148.
    Bujard T, Giorgio-Serchi F, Weymouth GD. 2021.. A resonant squid-inspired robot unlocks biological propulsive efficiency. . Sci. Robot. 6::eabd2971
    [Crossref] [Google Scholar]
  149. 149.
    Christianson C, Cui Y, Ishida M, Bi X, Zhu Q, et al. 2020.. Cephalopod-inspired robot capable of cyclic jet propulsion through shape change. . Bioinspirat. Biomimet. 16::016014
    [Crossref] [Google Scholar]
  150. 150.
    Weymouth G, Subramaniam V, Triantafyllou M. 2015.. Ultra-fast escape maneuver of an octopus-inspired robot. . Bioinspirat. Biomimet. 10::016016
    [Crossref] [Google Scholar]
  151. 151.
    Booth A, McIntosh A, Beheshti N, Walker R, Larsson L, Copestake A. 2012.. Spray technologies inspired by bombardier beetle. . In Encyclopedia of Nanotechnology, ed. B Bhushan , pp. 2495503. Dordrecht, Neth:.: Springer
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100722-113148
Loading
/content/journals/10.1146/annurev-chembioeng-100722-113148
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error