1932

Abstract

infections are a major cause of peptic ulcers and gastric cancers. The development of robust inflammation in response to these flagellated, motile bacteria is correlated with poor prognosis. Chemotaxis plays a crucial role in colonization, enabling the bacteria to swim toward favorable chemical environments. Unlike the model species of bacterial chemotaxis, , cells possess polar flagella. They run forward by rotating their flagella counterclockwise, whereas backward runs are achieved by rotating their flagella clockwise. We delve into the implications of certain features of the canonical model of chemotaxis on our understanding of biased migration in polarly flagellated bacteria such as . In particular, we predict how the translational displacement of cells during a backward run could give rise to chemotaxis errors within the canonical framework. Also, lack key chemotaxis enzymes found in , without which sensitive detection of ligands with a wide dynamic range seems unlikely. Despite these problems, exhibit robust ability to migrate toward urea-rich sources. We emphasize various unresolved questions regarding the biophysical mechanisms of chemotaxis in , shedding light on potential directions for future research. Understanding the intricacies of biased migration in could offer valuable insights into how pathogens breach various protective barriers in the human host.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100722-114625
2024-07-24
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100722-114625.html?itemId=/content/journals/10.1146/annurev-chembioeng-100722-114625&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Miyata M, Robinson RC, Uyeda TQP, Fukumori Y, Fukushima S, et al. 2020.. Tree of motility—a proposed history of motility systems in the tree of life. . Genes Cells 25:(1):621
    [Crossref] [Google Scholar]
  2. 2.
    Henrichsen J. 1972.. Bacterial surface translocation: a survey and a classification. . Bacteriol. Rev. 36:(4):478503
    [Crossref] [Google Scholar]
  3. 3.
    Jarrell KF, McBride MJ. 2008.. The surprisingly diverse ways that prokaryotes move. . Nat. Rev. Microbiol. 6:(6):46676
    [Crossref] [Google Scholar]
  4. 4.
    Shigematsu M, Meno Y, Misumi H, Amako K. 1995.. The measurement of swimming velocity of Vibrio cholerae and Pseudomonas aeruginosa using the video tracking methods. . Microbiol. Immunol. 39:(10):74144
    [Crossref] [Google Scholar]
  5. 5.
    Berg HC, ed. 2004.. E. coli in Motion. New York:: Springer
    [Google Scholar]
  6. 6.
    Antani JD, Sumali AX, Lele TP, Lele PP. 2021.. Asymmetric random walks reveal that the chemotaxis network modulates flagellar rotational bias in Helicobacter pylori. . eLife 10::e63936
    [Crossref] [Google Scholar]
  7. 7.
    Josenhans C, Suerbaum S. 2002.. The role of motility as a virulence factor in bacteria. . Int. J. Med. Microbiol. 291:(8):60514
    [Crossref] [Google Scholar]
  8. 8.
    Liu R, Ochman H. 2007.. Origins of flagellar gene operons and secondary flagellar systems. . J. Bacteriol. 189:(19):7098104
    [Crossref] [Google Scholar]
  9. 9.
    Haiko J, Westerlund-Wikström B. 2013.. The role of the bacterial flagellum in adhesion and virulence. . Biology 2:(4):124267
    [Crossref] [Google Scholar]
  10. 10.
    Nakamura S, Minamino T. 2019.. Flagella-driven motility of bacteria. . Biomolecules 9:(7):279
    [Crossref] [Google Scholar]
  11. 11.
    Faguy DM, Jarrell KF. 1999.. A twisted tale: the origin and evolution of motility and chemotaxis in prokaryotes. . Microbiology 145:(2):27981
    [Crossref] [Google Scholar]
  12. 12.
    Berg HC. 1993.. Random Walks in Biology. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  13. 13.
    Bourret RB, Stock AM. 2002.. Molecular information processing: lessons from bacterial chemotaxis. . J. Biol. Chem. 277:(12):962528
    [Crossref] [Google Scholar]
  14. 14.
    Parkinson JS. 1993.. Signal transduction schemes of bacteria. . Cell 73:(5):85771
    [Crossref] [Google Scholar]
  15. 15.
    Lowe G, Meister M, Berg HC. 1987.. Rapid rotation of flagellar bundles in swimming bacteria. . Nature 325:(6105):63740
    [Crossref] [Google Scholar]
  16. 16.
    Darnton NC, Turner L, Rojevsky S, Berg HC. 2007.. On torque and tumbling in swimming Escherichia coli. . J. Bacteriol. 189:(5):175664
    [Crossref] [Google Scholar]
  17. 17.
    Berg HC, Brown DA. 1972.. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. . Nature 239:(5374):5004
    [Crossref] [Google Scholar]
  18. 18.
    Falke JJ, Hazelbauer GL. 2001.. Transmembrane signaling in bacterial chemoreceptors. . Trends Biochem. Sci. 26:(4):25765
    [Crossref] [Google Scholar]
  19. 19.
    Khan S, Macnab RM. 1980.. The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by protonmotive force. . J. Mol. Biol. 138:(3):56397
    [Crossref] [Google Scholar]
  20. 20.
    Turner L, Samuel AD, Stern AS, Berg HC. 1999.. Temperature dependence of switching of the bacterial flagellar motor by the protein CheY13DK106YW. . Biophys. J. 77:(1):597603
    [Crossref] [Google Scholar]
  21. 21.
    Cluzel P, Surette M, Leibler S. 2000.. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. . Science 287:(5458):165255
    [Crossref] [Google Scholar]
  22. 22.
    Lele PP, Shrivastava A, Roland T, Berg HC. 2015.. Response thresholds in bacterial chemotaxis. . Sci. Adv. 1:(9):e1500299
    [Crossref] [Google Scholar]
  23. 23.
    Yuan J, Branch RW, Hosu BG, Berg HC. 2012.. Adaptation at the output of the chemotaxis signalling pathway. . Nature 484:(7393):23336
    [Crossref] [Google Scholar]
  24. 24.
    Block SM, Segall JE, Berg HC. 1982.. Impulse responses in bacterial chemotaxis. . Cell 31:(1):21526
    [Crossref] [Google Scholar]
  25. 25.
    Wadhams GH, Armitage JP. 2004.. Making sense of it all: bacterial chemotaxis. . Nat. Rev. Mol. Cell Biol. 5:(12):102437
    [Crossref] [Google Scholar]
  26. 26.
    Sourjik V, Wingreen NS. 2012.. Responding to chemical gradients: bacterial chemotaxis. . Curr. Opin. Cell Biol. 24:(2):26268
    [Crossref] [Google Scholar]
  27. 27.
    Lele PP, Branch RW, Nathan VSJ, Berg HC. 2012.. Mechanism for adaptive remodeling of the bacterial flagellar switch. . PNAS 109:(49):2001822
    [Crossref] [Google Scholar]
  28. 28.
    Zhang C, He R, Zhang R, Yuan J. 2018.. Motor adaptive remodeling speeds up bacterial chemotactic adaptation. . Biophys. J. 114:(5):122531
    [Crossref] [Google Scholar]
  29. 29.
    Ishihara A, Segall JE, Block SM, Berg HC. 1983.. Coordination of flagella on filamentous cells of Escherichia coli. . J. Bacteriol. 155:(1):22837
    [Crossref] [Google Scholar]
  30. 30.
    Taylor BL, Koshland DE. 1974.. Reversal of flagellar rotation in monotrichous and peritrichous bacteria: generation of changes in direction. . J. Bacteriol. 119:(2):64042
    [Crossref] [Google Scholar]
  31. 31.
    Theves M, Taktikos J, Zaburdaev V, Stark H, Beta C. 2013.. A bacterial swimmer with two alternating speeds of propagation. . Biophys. J. 105:(8):191524
    [Crossref] [Google Scholar]
  32. 32.
    Thormann KM, Beta C, Kühn MJ. 2022.. Wrapped up: the motility of polarly flagellated bacteria. . Annu. Rev. Microbiol. 76::34967
    [Crossref] [Google Scholar]
  33. 33.
    Duffy KJ, Ford RM. 1997.. Turn angle and run time distributions characterize swimming behavior for Pseudomonas putida. . J. Bacteriol. 179:(4):142830
    [Crossref] [Google Scholar]
  34. 34.
    Liu B, Gulino M, Morse M, Tang JX, Powers TR, Breuer KS. 2014.. Helical motion of the cell body enhances Caulobacter crescentus motility. . PNAS 111:(31):1125256
    [Crossref] [Google Scholar]
  35. 35.
    Fujii M, Shibata S, Aizawa S-I. 2008.. Polar, peritrichous, and lateral flagella belong to three distinguishable flagellar families. . J. Mol. Biol. 379:(2):27383
    [Crossref] [Google Scholar]
  36. 36.
    Taguchi F, Shibata S, Suzuki T, Ogawa Y, Aizawa S-I, et al. 2008.. Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605. . J. Bacteriol. 190:(2):76468
    [Crossref] [Google Scholar]
  37. 37.
    Stocker R. 2011.. Reverse and flick: hybrid locomotion in bacteria. . PNAS 108:(7):263536
    [Crossref] [Google Scholar]
  38. 38.
    Son K, Guasto JS, Stocker R. 2013.. Bacteria can exploit a flagellar buckling instability to change direction. . Nat. Phys. 9:(8):49498
    [Crossref] [Google Scholar]
  39. 39.
    Segall JE, Block SM, Berg HC. 1986.. Temporal comparisons in bacterial chemotaxis. . PNAS 83:(23):898791
    [Crossref] [Google Scholar]
  40. 40.
    Yang J, Chawla R, Rhee KY, Gupta R, Manson MD, et al. 2020.. Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. . PNAS 117:(11):611420
    [Crossref] [Google Scholar]
  41. 41.
    Lovely PS, Dahlquist FW. 1975.. Statistical measures of bacterial motility and chemotaxis. . J. Theor. Biol. 50:(2):47796
    [Crossref] [Google Scholar]
  42. 42.
    Dickinson RB, Tranquillo RT. 1993.. A stochastic model for adhesion-mediated cell random motility and haptotaxis. . J. Math. Biol. 31:(6):563600
    [Crossref] [Google Scholar]
  43. 43.
    Tindall MJ, Maini PK, Porter SL, Armitage JP. 2008.. Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. . Bull. Math. Biol. 70:(6):1570607
    [Crossref] [Google Scholar]
  44. 44.
    Arumugam G, Tyagi J. 2021.. Keller-Segel chemotaxis models: a review. . Acta Appl. Math. 171::6
    [Crossref] [Google Scholar]
  45. 45.
    Ford RM, Lauffenburger DA. 1991.. Measurement of bacterial random motility and chemotaxis coefficients: II. Application of single-cell-based mathematical model. . Biotechnol. Bioeng. 37:(7):66172
    [Crossref] [Google Scholar]
  46. 46.
    Ford RM, Harvey RW. 2007.. Role of chemotaxis in the transport of bacteria through saturated porous media. . Adv. Water Resour. 30:(6–7):160817
    [Crossref] [Google Scholar]
  47. 47.
    Mattingly HH, Emonet T. 2022.. Collective behavior and nongenetic inheritance allow bacterial populations to adapt to changing environments. . PNAS 119:(26):e2117377119
    [Crossref] [Google Scholar]
  48. 48.
    Taktikos J, Stark H, Zaburdaev V. 2013.. How the motility pattern of bacteria affects their dispersal and chemotaxis. . PLOS ONE 8:(12):e81936
    [Crossref] [Google Scholar]
  49. 49.
    Großmann R, Peruani F, Bär M. 2016.. Diffusion properties of active particles with directional reversal. . New J. Phys. 18:(4):043009
    [Crossref] [Google Scholar]
  50. 50.
    Xie L, Lu C, Wu X-L. 2015.. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus. . Biophys. J. 108:(3):76674
    [Crossref] [Google Scholar]
  51. 51.
    Alirezaeizanjani Z, Großmann R, Pfeifer V, Hintsche M, Beta C. 2020.. Chemotaxis strategies of bacteria with multiple run modes. . Sci. Adv. 6:(22):eaaz6153
    [Crossref] [Google Scholar]
  52. 52.
    Cai Q, Li Z, Ouyang Q, Luo C, Gordon VD. 2016.. Singly flagellated Pseudomonas aeruginosa chemotaxes efficiently by unbiased motor regulation. . mBio 7:(2):e00013-16
    [Crossref] [Google Scholar]
  53. 53.
    Lertsethtakarn P, Ottemann KM, Hendrixson DR. 2011.. Motility and chemotaxis in Campylobacter and Helicobacter. . Annu. Rev. Microbiol. 65::389410
    [Crossref] [Google Scholar]
  54. 54.
    Howitt MR, Lee JY, Lertsethtakarn P, Vogelmann R, Joubert L-M, et al. 2011.. ChePep controls Helicobacter pylori infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. . mBio 2:(4):e00098-11
    [Crossref] [Google Scholar]
  55. 55.
    Lertsethtakarn P, Howitt MR, Castellon J, Amieva MR, Ottemann KM. 2015.. Helicobacter pylori CheZHP and ChePep form a novel chemotaxis-regulatory complex distinct from the core chemotaxis signaling proteins and the flagellar motor. . Mol. Microbiol. 97:(6):106378
    [Crossref] [Google Scholar]
  56. 56.
    Rao CV, Glekas GD, Ordal GW. 2008.. The three adaptation systems of Bacillus subtilis chemotaxis. . Trends Microbiol. 16:(10):48087
    [Crossref] [Google Scholar]
  57. 57.
    Huang JY, Sweeney EG, Guillemin K, Amieva MR. 2017.. Multiple acid sensors control Helicobacter pylori colonization of the stomach. . PLOS Pathog. 13:(1):e1006118
    [Crossref] [Google Scholar]
  58. 58.
    Perkins A, Tudorica DA, Amieva MR, Remington SJ, Guillemin K. 2019.. Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. . PLOS Biol. 17:(8):e3000395
    [Crossref] [Google Scholar]
  59. 59.
    Collins KD, Andermann TM, Draper J, Sanders L, Williams SM, et al. 2016.. The Helicobacter pylori CZB cytoplasmic chemoreceptor TlpD forms an autonomous polar chemotaxis signaling complex that mediates a tactic response to oxidative stress. . J. Bacteriol. 198:(11):156375
    [Crossref] [Google Scholar]
  60. 60.
    Croxen MA, Sisson G, Melano R, Hoffman PS. 2006.. The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. . J. Bacteriol. 188:(7):265665
    [Crossref] [Google Scholar]
  61. 61.
    Rader BA, Wreden C, Hicks KG, Sweeney EG, Ottemann KM, Guillemin K. 2011.. Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. . Microbiology 157:(9):244555
    [Crossref] [Google Scholar]
  62. 62.
    Cerda O, Rivas A, Toledo H. 2003.. Helicobacter pylori strain ATCC700392 encodes a methyl-accepting chemotaxis receptor protein (MCP) for arginine and sodium bicarbonate. . FEMS Microbiol. Lett. 224:(2):17581
    [Crossref] [Google Scholar]
  63. 63.
    Cerda OA, Núñez-Villena F, Soto SE, Ugalde JM, López-Solís R, Toledo H. 2011.. tlpA gene expression is required for arginine and bicarbonate chemotaxis in Helicobacter pylori. . Biol. Res. 44:(3):27782
    [Crossref] [Google Scholar]
  64. 64.
    Hanyu H, Engevik KA, Matthis AL, Ottemann KM, Montrose MH, Aihara E. 2019.. Helicobacter pylori uses the TlpB receptor to sense sites of gastric injury. . Infect. Immun. 87:(9):e00202-19
    [Crossref] [Google Scholar]
  65. 65.
    Aihara E, Closson C, Matthis AL, Schumacher MA, Engevik AC, et al. 2014.. Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori. . PLOS Pathog. 10:(7):e1004275
    [Crossref] [Google Scholar]
  66. 66.
    Hansen S, Melby KK, Aase S, Jellum E, Vollset SE. 1999.. Helicobacter pylori infection and risk of cardia cancer and non-cardia gastric cancer: a nested case-control study. . Scand. J. Gastroenterol. 34:(4):35360
    [Crossref] [Google Scholar]
  67. 67.
    Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, et al. 2001.. Helicobacter pylori infection and the development of gastric cancer. . N. Engl. J. Med. 345:(11):78489
    [Crossref] [Google Scholar]
  68. 68.
    Polk DB, Peek RM. 2010.. Helicobacter pylori: gastric cancer and beyond. . Nat. Rev. Cancer 10:(6):40314
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100722-114625
Loading
/content/journals/10.1146/annurev-chembioeng-100722-114625
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error