1932

Abstract

Sustainable energy solutions and electrification are driving increased demand for critical minerals. Unfortunately, current mineral processing techniques are resource intensive, use large quantities of hazardous chemicals, and occur at centralized facilities to realize economies of scale. These aspects of existing technologies are at odds with the sustainability goals driving increased demand for critical minerals. Here, we argue that the small footprint and modular nature of membrane technologies position them well to address declining concentrations in ores and brines, the variable feed concentrations encountered in recycling, and the environmental issues associated with current separation processes; thus, membrane technologies provide new sustainable pathways to strengthening resilient critical mineral supply chains. The success of creating circular economies hinges on overcoming diverse barriers across the molecular to infrastructure scales. As such, solving these challenges requires the convergence of research across disciplines rather than isolated innovations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100722-114853
2024-07-24
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100722-114853.html?itemId=/content/journals/10.1146/annurev-chembioeng-100722-114853&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    US Geol. Surv. 2022.. 2022 final list of critical minerals. 87 Fed. Regist. 10,381 (Febr. 24). https://www.federalregister.gov/documents/2022/02/24/2022-04027/2022-final-list-of-critical-minerals
    [Google Scholar]
  2. 2.
    Bhutada G. 2022.. The key minerals in an EV battery. . Elements by Visual Capitalist, May 2. https://elements.visualcapitalist.com/the-key-minerals-in-an-ev-battery/
    [Google Scholar]
  3. 3.
    Int. Energy Agency. 2022.. Global EV outlook 2022—analysis. Rep. , Int. Energy Agency, Paris:. https://www.iea.org/reports/global-ev-outlook-2022
    [Google Scholar]
  4. 4.
    Pavel CC, Thiel C, Degreif S, Blagoeva D, Buchert M, et al. 2017.. Role of substitution in mitigating the supply pressure of rare earths in electric road transport applications. . Sustain. Mater. Technol. 12::6272
    [Google Scholar]
  5. 5.
    Bauer D, Diamond D, Li J, McKittrick M, Sandalow D, Telleen P. 2011.. Critical materials strategy. Rep., US Dep. Energy, Washington, DC:
    [Google Scholar]
  6. 6.
    DuChanois RM, Cooper NJ, Lee B, Patel SK, Mazurowski L, et al. 2023.. Prospects of metal recovery from wastewater and brine. . Nat. Water 1::3746
    [Crossref] [Google Scholar]
  7. 7.
    Nkulu CBL, Casas L, Haufroid V, De Putter T, Saenen ND, et al. 2018.. Sustainability of artisanal mining of cobalt in DR Congo. . Nat. Sustain. 1:(9):495504
    [Crossref] [Google Scholar]
  8. 8.
    Rankin W. 2011.. Minerals, Metals and Sustainability: Meeting Future Material Needs. Canberra, Aust:.: CSIRO Publ.
    [Google Scholar]
  9. 9.
    Mudd GM. 2010.. The environmental sustainability of mining in Australia: key mega-trends and looming constraints. . Resour. Policy 35:(2):98115
    [Crossref] [Google Scholar]
  10. 10.
    Benson TR, Coble MA, Dilles JH. 2023.. Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones. . Sci. Adv. 9:(35):eadh8183
    [Crossref] [Google Scholar]
  11. 11.
    Garrett DE. 2004.. Handbook of Lithium and Natural Calcium Chloride. Cambridge, MA:: Academic
    [Google Scholar]
  12. 12.
    Gwalia Consol. LTD. 1990.. Annual report. Rep. , Gwalia Consol. LTD, West Perth, Aust.:
    [Google Scholar]
  13. 13.
    Albemarle Corp. 2022.. Annual report. Rep. , Albemarle Corp., Charlotte, NC:
    [Google Scholar]
  14. 14.
    Norgate T, Jahanshahi S. 2010.. Low grade ores—smelt, leach or concentrate?. Miner. Eng. 23:(2):6573
    [Crossref] [Google Scholar]
  15. 15.
    Kumar A, Fukuda H, Hatton TA, Lienhard JHV. 2019.. Lithium recovery from oil and gas produced water: a need for a growing energy industry. . ACS Energy Lett. 4:(6):147174
    [Crossref] [Google Scholar]
  16. 16.
    Cussler EL. 2009.. Diffusion: Mass Transfer in Fluid Systems. Cambridge, UK:: Cambridge Univ. Press. , 3rd ed..
    [Google Scholar]
  17. 17.
    Grübler A. 1998.. Technology and Global Change. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  18. 18.
    House K, Baclig A, Ranjan M, Nierop E, Wilcox J, Herzog H. 2011.. Economic and energetic analysis of capturing CO2 from ambient air. . PNAS 108:(51):2042833
    [Crossref] [Google Scholar]
  19. 19.
    Rioyo J, Tuset S, Grau R. 2022.. Lithium extraction from spodumene by the traditional sulfuric acid process: a review. . Miner. Process. Extr. Metall. Rev. 43:(1):97106
    [Crossref] [Google Scholar]
  20. 20.
    Int. Energy Agency. 2021.. The role of critical minerals in clean energy transitions. Rep. , Int. Energy Agency, Paris:. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions
    [Google Scholar]
  21. 21.
    Natl. Res. Counc. 2008.. Minerals, Critical Minerals, and the U.S. Economy. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  22. 22.
    Apple Inc. 2023.. Environmental responsibility report. Rep. , Apple Inc., Cupertino, CA:. https://www.apple.com/mideast/environment/pdf/en/Apple_Environmental_Progress_Report_2023.pdf
    [Google Scholar]
  23. 23.
    Reck B, Graedel TE. 2012.. Challenges in metal recycling. . Science 337:(6095):69095
    [Crossref] [Google Scholar]
  24. 24.
    Ciez RE, Whitacre JF. 2019.. Examining different recycling processes for lithium-ion batteries. . Nat. Sustain. 2::14856
    [Crossref] [Google Scholar]
  25. 25.
    Huang Y, Rupp J, Weil M, Liang C. 2022.. Advancing the sustainability of batteries. Nat. Sustain. Expert Panel Rep., Tongi Univ./Springer Nat., Shanghai/London:
    [Google Scholar]
  26. 26.
    US Geol. Surv. 2021.. Mineral commodity summaries 2021. Rep. , Natl. Miner. Inf. Cent., US Geol. Surv., Reston, VA:. https://pubs.usgs.gov/periodicals/mcs2021/mcs2021.pdf
    [Google Scholar]
  27. 27.
    Kaunda R. 2020.. Potential environmental impacts of lithium mining. . J. Energy Nat. Resour. Law 38:(3):23744
    [Crossref] [Google Scholar]
  28. 28.
    Cerda A, Quilaqueo M, Barros L, Seriche G, Gim-Krumm, et al. 2021.. Recovering water from lithium-rich brines by a fractionation process based on membrane distillation-crystallization. . J. Water Process Eng. 41::102063
    [Crossref] [Google Scholar]
  29. 29.
    Meng F, McNeice J, Zadeh SS, Ghahreman A. 2021.. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. . Miner. Process. Extr. Metall. Rev. 42:(2):12341
    [Crossref] [Google Scholar]
  30. 30.
    Pramanik BK, Asif MB, Kentish S, Nghiem LD, Hai FI. 2019.. Lithium enrichment from a simulated salt lake brine using an integrated nanofiltration-membrane distillation process. . J. Environ. Chem. Eng. 7:(5):103395
    [Crossref] [Google Scholar]
  31. 31.
    Giordano L, Roizard D, Favre E. 2018.. Life cycle assessment of post-combustion CO2 capture: a comparison between membrane separation and chemical absorption processes. . Int. J. Greenh. Gas Control 68::14663
    [Crossref] [Google Scholar]
  32. 32.
    Wang J, Yu Z, Zeng X, Wang Y, Li K, Deng S. 2021.. Water-energy-carbon nexus: a life cycle assessment of post-combustion carbon capture technology from power plant level. . J. Clean. Prod. 312::127727
    [Crossref] [Google Scholar]
  33. 33.
    Yun S, Jang M-G, Kim J-K. 2021.. Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry. . Energy 229::120778
    [Crossref] [Google Scholar]
  34. 34.
    Swain B. 2017.. Recovery and recycling of lithium: a review. . Sep. Purif. Technol. 172::388403
    [Crossref] [Google Scholar]
  35. 35.
    Kelly JC, Wang M, Dai Q, Winjobi O. 2021.. Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries. . Resour. Conserv. Recycl. 174::105762
    [Crossref] [Google Scholar]
  36. 36.
    US Energy Inf. Adm. 2020.. Annual household site fuel consumption in United States homes by state—totals and averages, 2020. Data Set, US Energy Inf. Adm., Washington, DC:. https://www.eia.gov/consumption/residential/data/2020/state/pdf/ce2.1.st.pdf
    [Google Scholar]
  37. 37.
    Jenkin GRT, Al-Bassam AZM, Harris RC, Abbott AP, Smith DJ, et al. 2016.. The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals. . Miner. Eng. 87::1824
    [Crossref] [Google Scholar]
  38. 38.
    Clarke CJ, Tu W-C, Levers O, Bröhl A, Hallett JP. 2018.. Green and sustainable solvents in chemical processes. . Chem. Rev. 118:(2):747800
    [Crossref] [Google Scholar]
  39. 39.
    Quijada-Maldonado E, Romero J. 2021.. Solvent extraction of rare-earth elements with ionic liquids: toward a selective and sustainable extraction of these valuable elements. . Curr. Opin. Green Sustain. Chem. 27::100428
    [Crossref] [Google Scholar]
  40. 40.
    Fagnant DP Jr., Goff GS, Scott BL, Runde W, Brennecke JF. 2013.. Switchable phase behavior of [HBet][Tf2N]-H2O upon neodymium loading: implications for lanthanide separations. . Inorg. Chem. 52:(2):54951
    [Crossref] [Google Scholar]
  41. 41.
    Haddad AZ, Hackl L, Akuzum B, Pohlman G, Magnan J-F, Kostecki R. 2023.. How to make lithium extraction cleaner, faster and cheaper—in six steps. . Nature 616:(7956):24548
    [Crossref] [Google Scholar]
  42. 42.
    Javed A, Singh J. 2024.. Process intensification for sustainable extraction of metals from e-waste: challenges and opportunities. . Environ. Sci. Pollut Res. 31::9886919
    [Crossref] [Google Scholar]
  43. 43.
    Tian Y, Demirel SE, Hasan MMF, Pistikopoulos EN. 2018.. An overview of process systems engineering approaches for process intensification: state of the art. . Chem. Eng. Process. Process Intensif. 133::160210
    [Crossref] [Google Scholar]
  44. 44.
    Drioli E, Stankiewicz AI, Macedonio F. 2011.. Membrane engineering in process intensification—an overview. . J. Membr. Sci. 380:(1):18
    [Crossref] [Google Scholar]
  45. 45.
    Jha MK, Kumari A, Panda R, Rajesh Kumar J, Yoo K, Lee JY. 2016.. Review on hydrometallurgical recovery of rare earth metals. . Hydrometallurgy 165::226
    [Crossref] [Google Scholar]
  46. 46.
    Yang Y, Walton A, Sheridan R, Güth K, Gauß R, et al. 2017.. REE recovery from end-of-life NdFeB permanent magnet scrap: a critical review. . J. Sustain. Metall. 3:(1):12249
    [Crossref] [Google Scholar]
  47. 47.
    McNulty T, Hazen N, Park S. 2022.. Processing the ores of rare-earth elements. . MRS Bull. 47:(3):25866
    [Crossref] [Google Scholar]
  48. 48.
    Dutta T, Kim K-H, Uchimiya M, Kwon EE, Jeon B-H, et al. 2016.. Global demand for rare earth resources and strategies for green mining. . Environ. Res. 150::18290
    [Crossref] [Google Scholar]
  49. 49.
    Wamble NP, Eugene EA, Phillip WA, Dowling AW. 2022.. Optimal diafiltration membrane cascades enable green recycling of spent lithium-ion batteries. . ACS Sustain. Chem. Eng. 10:(37):1220725
    [Crossref] [Google Scholar]
  50. 50.
    Lehn J-M. 1990.. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. . Angew. Chem. Int. Ed. Engl. 29:(11):130419
    [Crossref] [Google Scholar]
  51. 51.
    Ghobeity A, Mitsos A. 2014.. Optimal design and operation of desalination systems: new challenges and recent advances. . Curr. Opin. Chem. Eng. 6::6168
    [Crossref] [Google Scholar]
  52. 52.
    Sánchez A, Martín M. 2018.. Scale up and scale down issues of renewable ammonia plants: towards modular design. Sustain. . Prod. Consum. 16::17692
    [Google Scholar]
  53. 53.
    Darestani M, Haigh V, Couperthwaite SJ, Millar GJ, Nghiem LD. 2017.. Hollow fibre membrane contactors for ammonia recovery: current status and future developments. . J. Environ. Chem. Eng. 5:(2):134959
    [Crossref] [Google Scholar]
  54. 54.
    Cecconet D, Callegari A, Hlavínek P, Capodaglio AG. 2019.. Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: a critical review. . Clean Technol. Environ. Policy 21:(4):74562
    [Crossref] [Google Scholar]
  55. 55.
    Issaoui M, Jellali S, Zorpas AA, Dutournie P. 2022.. Membrane technology for sustainable water resources management: challenges and future projections. . Sustain. Chem. Pharm. 25::100590
    [Crossref] [Google Scholar]
  56. 56.
    Foo ZH, Rehman D, Bouma AT, Monsalvo S, Lienhard JH. 2023.. Lithium concentration from salt-lake brine by Donnan-enhanced nanofiltration. . Environ. Sci. Technol. 57:(15):632030
    [Crossref] [Google Scholar]
  57. 57.
    Aliaga-Vicente A, Caballero JA, Fernández-Torres MJ. 2017.. Synthesis and optimization of membrane cascade for gas separation via mixed-integer nonlinear programming. . AIChE J. 63:(6):19892006
    [Crossref] [Google Scholar]
  58. 58.
    Chavez Velasco JA, Tumbalam Gooty R, Tawarmalani M, Agrawal R. 2021.. Optimal design of membrane cascades for gaseous and liquid mixtures via MINLP. . J. Membr. Sci. 636::119514
    [Crossref] [Google Scholar]
  59. 59.
    Zhu A, Christofides PD, Cohen Y. 2009.. Minimization of energy consumption for a two-pass membrane desalination: effect of energy recovery, membrane rejection and retentate recycling. . J. Membr. Sci. 339:(1):12637
    [Crossref] [Google Scholar]
  60. 60.
    Buabeng-Baidoo E, Majozi T. 2015.. Effective synthesis and optimization framework for integrated water and membrane networks: a focus on reverse osmosis membranes. . Ind. Eng. Chem. Res. 54:(38):9394406
    [Crossref] [Google Scholar]
  61. 61.
    Zhao Y, Wang H, Li Y, Wang M, Xiang X. 2020.. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine. . Desalination 493::114620
    [Crossref] [Google Scholar]
  62. 62.
    Jiang C, Wang Y, Wang Q, Feng H, Xu T. 2014.. Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM). . Ind. Eng. Chem. Res. 53:(14):610312
    [Crossref] [Google Scholar]
  63. 63.
    Kingsbury RS, Wang J, Coronell O. 2020.. Comparison of water and salt transport properties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination and energy applications. . J. Membr. Sci. 604::117998
    [Crossref] [Google Scholar]
  64. 64.
    Tang C, Bruening ML. 2020.. Ion separations with membranes. . J. Polym. Sci. 58:(20):283156
    [Crossref] [Google Scholar]
  65. 65.
    Zhang Y, Almodovar-Arbelo NE, Weidman JL, Corti DS, Boudouris BW, Phillip WA. 2018.. Fit-for-purpose block polymer membranes molecularly engineered for water treatment. . npj Clean Water 1::2
    [Crossref] [Google Scholar]
  66. 66.
    Elbashier E, Mussa A, Hafiz M, Hawari AH. 2021.. Recovery of rare earth elements from waste streams using membrane processes: an overview. . Hydrometallurgy 204::105706
    [Crossref] [Google Scholar]
  67. 67.
    Epsztein R, DuChanois RM, Ritt CL, Noy A, Elimelech M. 2020.. Towards single-species selectivity of membranes with subnanometre pores. . Nat. Nanotechnol. 15:(6):42636
    [Crossref] [Google Scholar]
  68. 68.
    Kamcev J, Freeman BD. 2016.. Charged polymer membranes for environmental/energy applications. . Annu. Rev. Chem. Biomol. Eng. 7::11133
    [Crossref] [Google Scholar]
  69. 69.
    Kingsbury RS, Liu F, Zhu S, Boggs C, Armstrong MD, et al. 2017.. Impact of natural organic matter and inorganic solutes on energy recovery from five real salinity gradients using reverse electrodialysis. . J. Membr. Sci. 541::62132
    [Crossref] [Google Scholar]
  70. 70.
    Summe MJ, Jagriti Sahoo S, Whitmer JK, Phillip WA. 2018.. Salt permeation mechanisms in charge-patterned mosaic membranes. . Mol. Syst. Design Eng. 3:(6):95969
    [Crossref] [Google Scholar]
  71. 71.
    Muetzel ZW, Ouimet JA, Phillip WA. 2022.. Device for the acquisition of dynamic data enables the rapid characterization of polymer membranes. . ACS Appl. Polym. Mater. 4:(5):343847
    [Crossref] [Google Scholar]
  72. 72.
    Chu C-H, Wang C, Xiao H-F, Wang Q, Yang W-J, et al. 2020.. Separation of ions with equivalent and similar molecular weights by nanofiltration: sodium chloride and sodium acetate as an example. . Sep. Purif. Technol. 250::117199
    [Crossref] [Google Scholar]
  73. 73.
    Awais Ashraf M, Li X, Wang J, Guo S, Xu B-H. 2020.. DiaNanofiltration-based process for effective separation of Li+ from the high Mg2+/Li+ ratio aqueous solution. . Sep. Purif. Technol. 247::116965
    [Crossref] [Google Scholar]
  74. 74.
    Kamcev J, Sujanani R, Jang E-S, Yan N, Moe N, et al. 2018.. Salt concentration dependence of ionic conductivity in ion exchange membranes. . J. Membr. Sci. 547::12333
    [Crossref] [Google Scholar]
  75. 75.
    Kamcev J, Paul DR, Freeman BD. 2017.. Effect of fixed charge group concentration on equilibrium ion sorption in ion exchange membranes. . J. Mater. Chem. A 5:(9):463850
    [Crossref] [Google Scholar]
  76. 76.
    Ouyang L, Malaisamy R, Bruening ML. 2008.. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. . J. Membr. Sci. 310:(1–2):7684
    [Crossref] [Google Scholar]
  77. 77.
    Zhang X, Li F, Liu M, Zhu C, Zhao X. 2022.. Positively charged modification of commercial nanofiltration membrane to enhance the separation of mono-/divalent cation. . J. Appl. Polym. Sci. 139:(47):e53204
    [Crossref] [Google Scholar]
  78. 78.
    Yaroshchuk A, Bruening ML, Zholkovskiy E. 2019.. Modelling nanofiltration of electrolyte solutions. . Adv. Colloid Interface Sci. 268::3963
    [Crossref] [Google Scholar]
  79. 79.
    Kamcev J, Galizia M, Benedetti FM, Jang E-S, Paul DR, et al. 2016.. Partitioning of mobile ions between ion exchange polymers and aqueous salt solutions: importance of counter-ion condensation. . Phys. Chem. Chem. Phys. 18:(8):602131
    [Crossref] [Google Scholar]
  80. 80.
    Kitto D, Kamcev J. 2022.. Manning condensation in ion exchange membranes: a review on ion partitioning and diffusion models. . J. Polym. Sci. 60:(21):292973
    [Crossref] [Google Scholar]
  81. 81.
    Sujanani R, Nordness O, Miranda A, Katz LE, Brennecke JF, Freeman BD. 2023.. Accounting for ion pairing effects on sulfate salt sorption in cation exchange membranes. . J. Phys. Chem. B 127:(8):184255
    [Crossref] [Google Scholar]
  82. 82.
    Marioni N, Zhang Z, Zofchak ES, Sachar HS, Kadulkar S, et al. 2022.. Impact of ion-ion correlated motion on salt transport in solvated ion exchange membranes. . ACS Macro Lett. 11:(11):125864
    [Crossref] [Google Scholar]
  83. 83.
    Sachar HS, Marioni N, Zofchak ES, Ganesan V. 2023.. Impact of ionic correlations on selective salt transport in ligand-functionalized polymer membranes. . Macromolecules 56:(5):2194208
    [Crossref] [Google Scholar]
  84. 84.
    Kamcev J, Paul DR, Freeman BD. 2015.. Ion activity coefficients in ion exchange polymers: applicability of Manning's counterion condensation theory. . Macromolecules 48:(21):801124
    [Crossref] [Google Scholar]
  85. 85.
    Kitto D, Kamcev J. 2023.. The need for ion-exchange membranes with high charge densities. . J. Membr. Sci. 677::121608
    [Crossref] [Google Scholar]
  86. 86.
    Yang Z, Fang W, Wang Z, Zhang R, Zhu Y, Jin J. 2021.. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation. . J. Membr. Sci. 620::118862
    [Crossref] [Google Scholar]
  87. 87.
    He R, Dong C, Xu S, Liu C, Zhao S, He T. 2022.. Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. . Desalination 525::115492
    [Crossref] [Google Scholar]
  88. 88.
    Li Y, Wang S, Wu W, Yu H, Che R, et al. 2022.. Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation. . J. Membr. Sci. 659::120809
    [Crossref] [Google Scholar]
  89. 89.
    Ding D, Yaroshchuk A, Bruening ML. 2022.. Electrodialysis through Nafion membranes coated with polyelectrolyte multilayers yields >99% pure monovalent ions at high recoveries. . J. Membr. Sci. 647::120294
    [Crossref] [Google Scholar]
  90. 90.
    Yaroshchuk A, Bruening ML, Licón Bernal EE. 2013.. Solution-diffusion-electro-migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis and forward osmosis in multi-ionic solutions. . J. Membr. Sci. 447::46376
    [Crossref] [Google Scholar]
  91. 91.
    Helfferich FG. 1995.. Ion Exchange. Mineola, NY:: Dover Publ.
    [Google Scholar]
  92. 92.
    Hu Y, Drouin E, Larivière D, Kleitz F, Fontaine F-G. 2017.. Highly efficient and selective recovery of rare earth elements using mesoporous silica functionalized by preorganized chelating ligands. . ACS Appl. Mater. Interfaces 9:(44):3858493
    [Crossref] [Google Scholar]
  93. 93.
    Zhu X, Alexandratos SD. 2015.. Development of a new ion-exchange/coordinating phosphate ligand for the sorption of U(VI) and trivalent ions from phosphoric acid solutions. . Chem. Eng. Sci. 127::12632
    [Crossref] [Google Scholar]
  94. 94.
    Izatt RM, Izatt SR, Bruening RL, Izatt NE, Moyer BA. 2014.. Challenges to achievement of metal sustainability in our high-tech society. . Chem. Soc. Rev. 43::245175
    [Crossref] [Google Scholar]
  95. 95.
    Mohammadi M, Forsberg K, Kloo L, Martinez De La Cruz J, Rasmuson Å. 2015.. Separation of ND(III), DY(III) and Y(III) by solvent extraction using D2EHPA and EHEHPA. . Hydrometallurgy 156::21524
    [Crossref] [Google Scholar]
  96. 96.
    Kim D, Powell L, Delmau LH, Peterson ES, Herchenroeder J, Bhave RR. 2016.. A supported liquid membrane system for the selective recovery of rare earth elements from neodymium-based permanent magnets. . Sep. Sci. Technol. 51:(10):171626
    [Crossref] [Google Scholar]
  97. 97.
    Xu D, Shah Z, Sun G, Peng X, Cui Y. 2019.. Recovery of rare earths from phosphate ores through supported liquid membrane using N,N,N′,N′-tetraoctyl diglycol amide. . Miner. Eng. 139::105861
    [Crossref] [Google Scholar]
  98. 98.
    Cussler EL. 1971.. Membranes which pump. . AIChE J. 17:(6):13003
    [Crossref] [Google Scholar]
  99. 99.
    Cussler EL, Aris R, Bhown A. 1989.. On the limits of facilitated diffusion. . J. Membr. Sci. 43:(2):14964
    [Crossref] [Google Scholar]
  100. 100.
    Cussler EL. 1976.. Multicomponent Diffusion. Amsterdam:: Elsevier. , 1st ed..
    [Google Scholar]
  101. 101.
    Croft CF, Almeida MIGS, Cattrall RW, Kolev SD. 2018.. Separation of lanthanum(III), gadolinium(III) and ytterbium(III) from sulfuric acid solutions by using a polymer inclusion membrane. . J. Membr. Sci. 545::25965
    [Crossref] [Google Scholar]
  102. 102.
    Zhang C, Mu Y, Zhao S, Zhang W, Wang Y. 2020.. Lithium extraction from synthetic brine with high Mg2+/Li+ ratio using the polymer inclusion membrane. . Desalination 496::114710
    [Crossref] [Google Scholar]
  103. 103.
    Keskin B, Zeytuncu-Gökoğlu B, Koyuncu I. 2021.. Polymer inclusion membrane applications for transport of metal ions: a critical review. . Chemosphere 279::130604
    [Crossref] [Google Scholar]
  104. 104.
    Sujanani R, Landsman MR, Jiao S, Moon JD, Shell MS, et al. 2020.. Designing solute-tailored selectivity in membranes: perspectives for water reuse and resource recovery. . ACS Macro Lett. 9:(11):170917
    [Crossref] [Google Scholar]
  105. 105.
    Webber MJ, Tibbitt MW. 2022.. Dynamic and reconfigurable materials from reversible network interactions. . Nat. Rev. Mater. 7:(7):54156
    [Crossref] [Google Scholar]
  106. 106.
    Goodrich CP, Brenner MP, Ribbeck K. 2018.. Enhanced diffusion by binding to the crosslinks of a polymer gel. . Nat. Commun. 9::4348
    [Crossref] [Google Scholar]
  107. 107.
    Huang J, Ramlawi N, Sheridan GS, Chen C, Ewoldt RH, et al. 2023.. Dynamic covalent bond exchange enhances penetrant diffusion in dense vitrimers. . Macromolecules 56:(3):125362
    [Crossref] [Google Scholar]
  108. 108.
    Huang J, Sheridan GS, Chen C, Ramlawi N, Ewoldt RH, et al. 2023.. Reversible reactions, mesh size, and segmental dynamics control penetrant diffusion in ethylene vitrimers. . ACS Macro Lett. 12:(7):9017
    [Crossref] [Google Scholar]
  109. 109.
    Braegelman AS, Ollier RC, Su B, Addonizio CJ, Zou L, et al. 2022.. Macromolecular solute transport in supramolecular hydrogels spanning dynamic to quasi-static states. . ACS Appl. Bio Mater. 5:(10):458998
    [Crossref] [Google Scholar]
  110. 110.
    Benavides S, Qu S, Gao F, Phillip WA. 2018.. Polymeric ion pumps: using an oscillating stimulus to drive solute transport in reactive membranes. . Langmuir 34:(15):450314
    [Crossref] [Google Scholar]
  111. 111.
    Ouimet JA, Dowling AW, Phillip WA. 2023.. Isolating the effects of gate layer permeability and sorbent density on the performance of solute-selective polymeric ion pumps. . Mol. Syst. Des. Eng. 8:(11):141829
    [Crossref] [Google Scholar]
  112. 112.
    Sheng C, Wijeratne S, Cheng C, Baker GL, Bruening ML. 2014.. Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands. . J. Membr. Sci. 459::16976
    [Crossref] [Google Scholar]
  113. 113.
    Sadeghi I, Asatekin A. 2019.. Membranes with functionalized nanopores for aromaticity-based separation of small molecules. . ACS Appl. Mater. Interfaces 11:(13):1285462
    [Crossref] [Google Scholar]
  114. 114.
    Sadeghi I, Kronenberg J, Asatekin A. 2018.. Selective transport through membranes with charged nanochannels formed by scalable self-assembly of random copolymer micelles. . ACS Nano 12:(1):95108
    [Crossref] [Google Scholar]
  115. 115.
    Ouimet JA, Xu J, Flores-Hansen C, Phillip WA, Boudouris BW. 2022.. Design considerations for next-generation polymer sorbents: from polymer chemistry to device configurations. . Macromol. Chem. Phys. 223:(16):2200032
    [Crossref] [Google Scholar]
  116. 116.
    Napadensky B, Shinkazh O, Teella A, Zydney AL. 2013.. Continuous countercurrent tangential chromatography for monoclonal antibody purification. . Sep. Sci. Technol. 48:(9):128997
    [Crossref] [Google Scholar]
  117. 117.
    Hoffman JR, Phillip WA. 2020.. 100th anniversary of macromolecular science viewpoint: integrated membrane systems. . ACS Macro Lett. 9:(9):126779
    [Crossref] [Google Scholar]
  118. 118.
    Hostert JD, Sepesy MR, Duval CE, Renner JN. 2023.. Clickable polymer scaffolds enable Ce recovery with peptide ligands. . Soft Matter 19:(15):282331
    [Crossref] [Google Scholar]
  119. 119.
    Xu J, Slykas C, Braegelman AS, Alvarez KG, Kasl T, et al. 2022.. Heavy metal removal using structured sorbents 3D printed from carbon nanotube-enriched polymer solutions. . Matter 5:(10):343251
    [Crossref] [Google Scholar]
  120. 120.
    DeWitt SJA, Sinha A, Kalyanaraman J, Zhang F, Realff MJ, Lively RP. 2018.. Critical comparison of structured contactors for adsorption-based gas separations. . Annu. Rev. Chem. Biomol. Eng. 9::12952
    [Crossref] [Google Scholar]
  121. 121.
    Suresh P, Che AC, Yu M, Pataroque KE, Kulbacki DK, Duval CE. 2022.. Incorporating comonomers into polymeric phosphate ligands can tune the affinity and capacity for rare earth element, La. . ACS Appl. Polym. Mater. 4:(9):671022
    [Crossref] [Google Scholar]
  122. 122.
    Zhang Y, Vallin JR, Sahoo JK, Gao F, Boudouris BW, et al. 2018.. High-affinity detection and capture of heavy metal contaminants using block polymer composite membranes. . ACS Cent. Sci. 4:(12):1697707
    [Crossref] [Google Scholar]
  123. 123.
    Cotruvo JA Jr., Featherston ER, Mattocks JA, Ho JV, Laremore TN. 2018.. Lanmodulin: a highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium. . J. Am. Chem. Soc. 140:(44):1505661
    [Crossref] [Google Scholar]
  124. 124.
    Mattocks JA, Jung JJ, Lin C-Y, Dong Z, Yennawar NH, et al. 2023.. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. . Nature 618:(7963):8793
    [Crossref] [Google Scholar]
  125. 125.
    Ye Q, Jin X, Zhu B, Gao H, Wei N. 2023.. Lanmodulin-functionalized magnetic nanoparticles as a highly selective biosorbent for recovery of rare earth elements. . Environ. Sci. Technol. 57:(10):427685
    [Crossref] [Google Scholar]
  126. 126.
    Zirehpour A, Rahimpour A, Ulbricht M. 2017.. Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane. . J. Membr. Sci. 531::5967
    [Crossref] [Google Scholar]
  127. 127.
    Fenton JL, Burke DW, Qian D, Olvera De La Cruz M, Dichtel WR. 2021.. Polycrystalline covalent organic framework films act as adsorbents, not membranes. . J. Am. Chem. Soc. 143:(3):146673
    [Crossref] [Google Scholar]
  128. 128.
    Waldman RZ, Gao F, Phillip WA, Darling SB. 2021.. Maximizing selectivity: an analysis of isoporous membranes. . J. Membr. Sci. 633::119389
    [Crossref] [Google Scholar]
  129. 129.
    Singh Rathee V, Qu S, Phillip WA, Whitmer JK. 2016.. A coarse-grained thermodynamic model for the predictive engineering of valence-selective membranes. . Mol. Syst. Des. Eng. 1:(3):30112
    [Crossref] [Google Scholar]
  130. 130.
    Ouimet JA, Liu X, Brown DJ, Eugene EA, Popps T, et al. 2022.. DATA: diafiltration apparatus for high-throughput analysis. . J. Membr. Sci. 641::119743
    [Crossref] [Google Scholar]
  131. 131.
    Ghosh R, Cui Z. 2000.. Analysis of protein transport and polarization through membranes using pulsed sample injection technique. . J. Membr. Sci. 175:(1):7584
    [Crossref] [Google Scholar]
  132. 132.
    Ghosh R, Wan Y, Cui Z, Hale G. 2003.. Parameter scanning ultrafiltration: rapid optimisation of protein separation. . Biotechnol. Bioeng. 81:(6):67382
    [Crossref] [Google Scholar]
  133. 133.
    Kilmartin CP, Ouimet JA, Dowling AW, Phillip WA. 2021.. Staged diafiltration cascades provide opportunities to execute highly selective separations. . Ind. Eng. Chem. Res. 60:(43):1570619
    [Crossref] [Google Scholar]
  134. 134.
    Wang J, Dowling AW. 2022.. Pyomo.DOE: an open-source package for model-based design of experiments in Python. . AIChE J. 68:(12):e17813
    [Crossref] [Google Scholar]
  135. 135.
    Liu X, Wang J, Ouimet JA, Phillip WA, Dowling AW. 2022.. Membrane characterization with model-based design of experiments. . In Computer Aided Chemical Engineering, ed. Y Yamashita, M Kano , 49:85964. Amsterdam:: Elsevier
    [Google Scholar]
  136. 136.
    Franceschini G, Macchietto S. 2008.. Model-based design of experiments for parameter precision: state of the art. . Chem. Eng. Sci. 63:(19):484672
    [Crossref] [Google Scholar]
  137. 137.
    Eugene EA, Phillip WA, Dowling AW. 2021.. Material property targets to enable adsorptive water treatment and resource recovery systems. . ACS EST Eng. 1:(8):117182
    [Crossref] [Google Scholar]
  138. 138.
    Lee YJ, Chen L, Nistane J, Jang HY, Weber DJ, et al. 2023.. Data-driven predictions of complex organic mixture permeation in polymer membranes. . Nat. Commun. 14::4931
    [Crossref] [Google Scholar]
  139. 139.
    Rall D, Schweidtmann AM, Kruse M, Evdochenko E, Mitsos A, Wessling M. 2020.. Multi-scale membrane process optimization with high-fidelity ion transport models through machine learning. . J. Membr. Sci. 608::118208
    [Crossref] [Google Scholar]
  140. 140.
    Bruns B, Herrmann F, Grünewald M, Riese J. 2021.. Dynamic design optimization for flexible process equipment. . Ind. Eng. Chem. Res. 60:(20):767888
    [Crossref] [Google Scholar]
  141. 141.
    Hasan MMF, First EL, Boukouvala F, Floudas CA. 2015.. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. . Comput. Chem. Eng. 81::221
    [Crossref] [Google Scholar]
  142. 142.
    Sherif SU, Asokan P, Sasikumar P, Mathiyazhagan K, Jerald J. 2022.. An integrated decision making approach for the selection of battery recycling plant location under sustainable environment. . J. Clean. Prod. 330::129784
    [Crossref] [Google Scholar]
  143. 143.
    Van Engeland J, Beliën J, De Boeck L, De Jaeger S. 2020.. Literature review: strategic network optimization models in waste reverse supply chains. . Omega 91::102012
    [Crossref] [Google Scholar]
  144. 144.
    Rosenberg S, Glöser-Chahoud S, Huster S, Schultmann F. 2023.. A dynamic network design model with capacity expansions for EoL traction battery recycling—a case study of an OEM in Germany. . Waste Manag. 160::1222
    [Crossref] [Google Scholar]
  145. 145.
    Wang L, Wang X, Yang W. 2020.. Optimal design of electric vehicle battery recycling network—from the perspective of electric vehicle manufacturers. . Appl. Energy 275::115328
    [Crossref] [Google Scholar]
  146. 146.
    Kleinekorte J, Fleitmann L, Bachmann M, Kätelhön A, Barbosa-Póvoa A, et al. 2020.. Life cycle assessment for the design of chemical processes, products, and supply chains. . Annu. Rev. Chem. Biomol. Eng. 11::20333
    [Crossref] [Google Scholar]
  147. 147.
    Dowling AW, Ruiz-Mercado G, Zavala VM. 2016.. A framework for multi-stakeholder decision-making and conflict resolution. . Comput. Chem. Eng. 90::13650
    [Crossref] [Google Scholar]
  148. 148.
    Miller DC, Syamlal M, Mebane DS, Storlie C, Bhattacharyya D, et al. 2014.. Carbon capture simulation initiative: a case study in multiscale modeling and new challenges. . Annu. Rev. Chem. Biomol. Eng. 5::30123
    [Crossref] [Google Scholar]
  149. 149.
    Eugene EA, Phillip WA, Dowling AW. 2019.. Data science-enabled molecular-to-systems engineering for sustainable water treatment. . Curr. Opin. Chem. Eng. 26::12230
    [Crossref] [Google Scholar]
  150. 150.
    Häse F, Roch LM, Aspuru-Guzik A. 2019.. Next-generation experimentation with self-driving laboratories. . TRECHEM 1:(3):28291
    [Google Scholar]
  151. 151.
    Bennett JA, Abolhasani M. 2022.. Autonomous chemical science and engineering enabled by self-driving laboratories. . Curr. Opin. Chem. Eng. 36::100831
    [Crossref] [Google Scholar]
  152. 152.
    Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, . 2020.. A mobile robotic chemist. . Nature 583:(7815):23741
    [Crossref] [Google Scholar]
  153. 153.
    Dave A, Mitchell J, Kandasamy K, Wang H, Burke S, . 2020.. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning. . Cell Rep. Phys. Sci. 1:(12):100264
    [Crossref] [Google Scholar]
  154. 154.
    MacLeod BP, Parlane FGL, Morrissey TD, Häse F, Roch LM, . 2020.. Self-driving laboratory for accelerated discovery of thin-film materials. . Sci. Adv. 6:(20):eaaz8867
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100722-114853
Loading
/content/journals/10.1146/annurev-chembioeng-100722-114853
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error