1932

Abstract

Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100722-121610
2024-07-24
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100722-121610.html?itemId=/content/journals/10.1146/annurev-chembioeng-100722-121610&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Li H-S, Israni DV, Gagnon KA, Gan KA, Raymond MH, et al. 2022.. Multidimensional control of therapeutic human cell function with synthetic gene circuits. . Science 378:(6625):122734
    [Crossref] [Google Scholar]
  2. 2.
    Uygur A, Lee RT. 2016.. Mechanisms of cardiac regeneration. . Dev. Cell 36:(4):36274
    [Crossref] [Google Scholar]
  3. 3.
    Gage FH, Temple S. 2013.. Neural stem cells: generating and regenerating the brain. . Neuron 80:(3):588601
    [Crossref] [Google Scholar]
  4. 4.
    Kharbikar BN, Mohindra P, Desai TA. 2022.. Biomaterials to enhance stem cell transplantation. . Cell Stem Cell 29:(5):692721
    [Crossref] [Google Scholar]
  5. 5.
    Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, et al. 2005.. Directed differentiation of telencephalic precursors from embryonic stem cells. . Nat. Neurosci. 8:(3):28896
    [Crossref] [Google Scholar]
  6. 6.
    Maroof AM, Keros S, Tyson JA, Ying S-W, Ganat YM, et al. 2013.. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. . Cell Stem Cell 12:(5):55972
    [Crossref] [Google Scholar]
  7. 7.
    Wichterle H, Lieberam I, Porter JA, Jessell TM. 2002.. Directed differentiation of embryonic stem cells into motor neurons. . Cell 110:(3):38597
    [Crossref] [Google Scholar]
  8. 8.
    Alekseenko Z, Dias JM, Adler AF, Kozhevnikova M, van Lunteren JA, et al. 2022.. Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery. . Nat. Commun. 13::3046
    [Crossref] [Google Scholar]
  9. 9.
    Levin M. 2021.. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. . Cell 184:(8):197189
    [Crossref] [Google Scholar]
  10. 10.
    Costantini F, Lacy E. 1981.. Introduction of a rabbit β-globin gene into the mouse germ line. . Nature 294:(5836):9294
    [Crossref] [Google Scholar]
  11. 11.
    Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD. 1981.. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. . Cell 27:(1):22331
    [Crossref] [Google Scholar]
  12. 12.
    Brinster RL, Chen HY, Warren R, Sarthy A, Palmiter RD. 1982.. Regulation of metallothionein-thymidine kinase fusion plasmids injected into mouse eggs. . Nature 296:(5852):3942
    [Crossref] [Google Scholar]
  13. 13.
    Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, et al. 1982.. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. . Nature 300:(5893):61115
    [Crossref] [Google Scholar]
  14. 14.
    Elowitz MB, Leibler S. 2000.. A synthetic oscillatory network of transcriptional regulators. . Nature 403:(6767):33538
    [Crossref] [Google Scholar]
  15. 15.
    Gardner TS, Cantor CR, Collins JJ. 2000.. Construction of a genetic toggle switch in Escherichia coli. . Nature 403:(6767):33942
    [Crossref] [Google Scholar]
  16. 16.
    Shi Y, Inoue H, Wu JC, Yamanaka S. 2017.. Induced pluripotent stem cell technology: a decade of progress. . Nat. Rev. Drug Discov. 16:(2):11530
    [Crossref] [Google Scholar]
  17. 17.
    Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. 2022.. Engineering the next generation of cell-based therapeutics. . Nat. Rev. Drug Discov. 21:(9):65575
    [Crossref] [Google Scholar]
  18. 18.
    Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, et al. 2016.. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. . Cell 164:(4):77079
    [Crossref] [Google Scholar]
  19. 19.
    Hong M, Clubb JD, Chen YY. 2020.. Engineering CAR-T cells for next-generation cancer therapy. . Cancer Cell 38:(4):47388
    [Crossref] [Google Scholar]
  20. 20.
    Ye H, Daoud-El Baba M, Peng R-W, Fussenegger M. 2011.. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. . Science 332:(6037):156568
    [Crossref] [Google Scholar]
  21. 21.
    Kemmer C, Gitzinger M, Daoud-El Baba M, Djonov V, Stelling J, Fussenegger M. 2010.. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. . Nat. Biotechnol. 28:(4):35560
    [Crossref] [Google Scholar]
  22. 22.
    Pferdehirt L, Damato AR, Dudek M, Meng Q-J, Herzog ED, Guilak F. 2022.. Synthetic gene circuits for preventing disruption of the circadian clock due to interleukin-1-induced inflammation. . Sci. Adv. 8:(21):eabj8892
    [Crossref] [Google Scholar]
  23. 23.
    Kempton HR, Goudy LE, Love KS, Qi LS. 2020.. Multiple input sensing and signal integration using a split Cas12a system. . Mol. Cell 78:(1):184191.e3
    [Crossref] [Google Scholar]
  24. 24.
    Smole A, Lainšček D, Bezeljak U, Horvat S, Jerala R. 2017.. A synthetic mammalian therapeutic gene circuit for sensing and suppressing inflammation. . Mol. Ther. 25:(1):10219
    [Crossref] [Google Scholar]
  25. 25.
    Kramer BP, Viretta AU, Baba MD-E, Aubel D, Weber W, Fussenegger M. 2004.. An engineered epigenetic transgene switch in mammalian cells. . Nat. Biotechnol. 22:(7):86770
    [Crossref] [Google Scholar]
  26. 26.
    Lebar T, Bezeljak U, Golob A, Jerala M, Kadunc L, et al. 2014.. A bistable genetic switch based on designable DNA-binding domains. . Nat. Commun. 5::5007
    [Crossref] [Google Scholar]
  27. 27.
    Bleris L, Xie Z, Glass D, Adadey A, Sontag E, Benenson Y. 2011.. Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. . Mol. Syst. Biol. 7::519
    [Crossref] [Google Scholar]
  28. 28.
    Jones RD, Qian Y, Siciliano V, DiAndreth B, Huh J, et al. 2020.. An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells. . Nat. Commun. 11::5690
    [Crossref] [Google Scholar]
  29. 29.
    Frei T, Chang C-H, Filo M, Arampatzis A, Khammash M. 2022.. A genetic mammalian proportional-integral feedback control circuit for robust and precise gene regulation. . PNAS 119:(24):e2122132119
    [Crossref] [Google Scholar]
  30. 30.
    Johnstone CP, Galloway KE. 2021.. Engineering cellular symphonies out of transcriptional noise. . Nat. Rev. Mol. Cell Biol. 22:(6):36970
    [Crossref] [Google Scholar]
  31. 31.
    Cabrera A, Edelstein HI, Glykofrydis F, Love KS, Palacios S, et al. 2022.. The sound of silence: transgene silencing in mammalian cell engineering. . Cell Syst. 13:(12):95073
    [Crossref] [Google Scholar]
  32. 32.
    Ma Y, Budde MW, Mayalu MN, Zhu J, Lu AC, et al. 2022.. Synthetic mammalian signaling circuits for robust cell population control. . Cell 185:(6):96779.e12
    [Crossref] [Google Scholar]
  33. 33.
    Bazaz M, Adeli A, Azizi M, Soleimani M, Mahboudi F, Davoudi N. 2022.. Recent developments in miRNA based recombinant protein expression in CHO. . Biotechnol. Lett. 44:(5):67181
    [Crossref] [Google Scholar]
  34. 34.
    Horie M, Yamano-Adachi N, Kawabe Y, Kaneoka H, Fujita H, et al. 2022.. Recent advances in animal cell technologies for industrial and medical applications. . J. Biosci. Bioeng. 133:(6):50914
    [Crossref] [Google Scholar]
  35. 35.
    Walsh G, Walsh E. 2022.. Biopharmaceutical benchmarks 2022. . Nat. Biotechnol. 40:(12):172260
    [Crossref] [Google Scholar]
  36. 36.
    Levine BL, Miskin J, Wonnacott K, Keir C. 2017.. Global manufacturing of CAR T cell therapy. . Mol. Ther. Methods Clin. Dev. 4::92101
    [Crossref] [Google Scholar]
  37. 37.
    Wang Z, Wu Z, Liu Y, Han W. 2017.. New development in CAR-T cell therapy. . J. Hematol. Oncol. 10::53
    [Crossref] [Google Scholar]
  38. 38.
    Feichtinger J, Hernández I, Fischer C, Hanscho M, Auer N, et al. 2016.. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. . Biotechnol. Bioeng. 113:(10):224153
    [Crossref] [Google Scholar]
  39. 39.
    Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T. 2012.. Construction of BAC-based physical map and analysis of chromosome rearrangement in Chinese hamster ovary cell lines. . Biotechnol. Bioeng. 109:(6):135767
    [Crossref] [Google Scholar]
  40. 40.
    Ploessl D, Zhao Y, Shao Z. 2023.. Engineering of non-model eukaryotes for bioenergy and biochemical production. . Curr. Opin. Biotechnol. 79::102869
    [Crossref] [Google Scholar]
  41. 41.
    Tejwani V, Chaudhari M, Rai T, Sharfstein ST. 2021.. High-throughput and automation advances for accelerating single-cell cloning, monoclonality and early phase clone screening steps in mammalian cell line development for biologics production. . Biotechnol. Prog. 37:(6):e3208
    [Crossref] [Google Scholar]
  42. 42.
    Gam JJ, DiAndreth B, Jones RD, Huh J, Weiss R. 2019.. A ‘poly-transfection’ method for rapid, one-pot characterization and optimization of genetic systems. . Nucleic Acids Res. 47:(18):e106
    [Crossref] [Google Scholar]
  43. 43.
    Goyal Y, Busch GT, Pillai M, Li J, Boe RH, et al. 2023.. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. . Nature 620:(7974):65159
    [Crossref] [Google Scholar]
  44. 44.
    O'Connell RW, Rai K, Piepergerdes TC, Samra KD, Wilson JA, et al. 2023.. Ultra-high throughput mapping of genetic design space. . bioRxiv 532704. https://doi.org/10.1101/2023.03.16.532704
  45. 45.
    Gaidukov L, Wroblewska L, Teague B, Nelson T, Zhang X, et al. 2018.. A multi-landing pad DNA integration platform for mammalian cell engineering. . Nucleic Acids Res. 46:(8):407286
    [Crossref] [Google Scholar]
  46. 46.
    Desai RV, Chen X, Martin B, Chaturvedi S, Hwang DW, et al. 2021.. A DNA-repair pathway can affect transcriptional noise to promote cell fate transitions. . Science 373:(6557):eabc6506
    [Crossref] [Google Scholar]
  47. 47.
    Raj A, van Oudenaarden A. 2008.. Stochastic gene expression and its consequences. . Cell 135:(2):21626
    [Crossref] [Google Scholar]
  48. 48.
    DiAndreth B, Wauford N, Hu E, Palacios S, Weiss R. 2022.. PERSIST platform provides programmable RNA regulation using CRISPR endoRNases. . Nat. Commun. 13::2582
    [Crossref] [Google Scholar]
  49. 49.
    Zhu R, del Rio-Salgado JM, Garcia-Ojalvo J, Elowitz MB. 2022.. Synthetic multistability in mammalian cells. . Science 375:(6578):eabg9765
    [Crossref] [Google Scholar]
  50. 50.
    Popp AP, Hettich J, Gebhardt JCM. 2021.. Altering transcription factor binding reveals comprehensive transcriptional kinetics of a basic gene. . Nucleic Acids Res. 49:(11):624966
    [Crossref] [Google Scholar]
  51. 51.
    Jain N, Goyal Y, Dunagin MC, Cote CJ, Mellis IA, et al. 2023.. Retrospective identification of intrinsic factors that mark pluripotency potential in rare somatic cells. . bioRxiv 527870. https://doi.org/10.1101/2023.02.10.527870
  52. 52.
    Shakiba N, Fahmy A, Jayakumaran G, McGibbon S, David L, et al. 2019.. Cell competition during reprogramming gives rise to dominant clones. . Science 364:(6438):eaan0925
    [Crossref] [Google Scholar]
  53. 53.
    Babos KN, Galloway KE, Kisler K, Zitting M, Li Y, et al. 2019.. Mitigating antagonism between transcription and proliferation allows near-deterministic cellular reprogramming. . Cell Stem Cell 25:(4):486500.e9
    [Crossref] [Google Scholar]
  54. 54.
    Umkehrer C, Holstein F, Formenti L, Jude J, Froussios K, et al. 2021.. Isolating live cell clones from barcoded populations using CRISPRa-inducible reporters. . Nat. Biotechnol. 39:(2):17478
    [Crossref] [Google Scholar]
  55. 55.
    Beitz AM, Oakes CG, Galloway KE. 2022.. Synthetic gene circuits as tools for drug discovery. . Trends Biotechnol. 40:(2):21025
    [Crossref] [Google Scholar]
  56. 56.
    Piao J, Zabierowski S, Dubose BN, Hill EJ, Navare M, et al. 2021.. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. . Cell Stem Cell 28:(2):21729.e7
    [Crossref] [Google Scholar]
  57. 57.
    Takayama K, Yamanaka S. 2023.. Pluripotent stem cell-based therapies and their path to the clinic. . Stem Cell Rep. 18:(8):154748
    [Crossref] [Google Scholar]
  58. 58.
    Mullard A. 2023.. FDA approves first cell therapy for type 1 diabetes. . Nat. Rev. Drug Discov. 22::611
    [Google Scholar]
  59. 59.
    Caldwell KJ, Gottschalk S, Talleur AC. 2021.. Allogeneic CAR cell therapy—more than a pipe dream. . Front. Immun. 11::618427
    [Crossref] [Google Scholar]
  60. 60.
    Schweitzer JS, Song B, Herrington TM, Park T-Y, Lee N, et al. 2020.. Personalized iPSC-derived dopamine progenitor cells for Parkinson's disease. . N. Engl. J. Med. 382:(20):192632
    [Crossref] [Google Scholar]
  61. 61.
    Yip A, Webster RM. 2018.. The market for chimeric antigen receptor T cell therapies. . Nat. Rev. Drug Discov. 17:(3):16162
    [Crossref] [Google Scholar]
  62. 62.
    Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, et al. 2022.. Stem cell-based therapy for human diseases. . Signal Transduct. Target. Ther. 7::272
    [Crossref] [Google Scholar]
  63. 63.
    Medvec AR, Ecker C, Kong H, Winters EA, Glover J, et al. 2017.. Improved expansion and in vivo function of patient T cells by a serum-free medium. . Mol. Ther. Methods Clin. Dev. 8::6574
    [Crossref] [Google Scholar]
  64. 64.
    Themeli M, Rivière I, Sadelain M. 2015.. New cell sources for T cell engineering and adoptive immunotherapy. . Cell Stem Cell 16:(4):35766
    [Crossref] [Google Scholar]
  65. 65.
    Deng Q, Han G, Puebla-Osorio N, Ma MCJ, Strati P, et al. 2020.. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. . Nat. Med. 26:(12):187887
    [Crossref] [Google Scholar]
  66. 66.
    Dashnau JL, Xue Q, Nelson M, Law E, Cao L, Hei D. 2023.. A risk-based approach for cell line development, manufacturing and characterization of genetically engineered, induced pluripotent stem cell-derived allogeneic cell therapies. . Cytotherapy 25:(1):113
    [Crossref] [Google Scholar]
  67. 67.
    Wang B, Iriguchi S, Waseda M, Ueda N, Ueda T, et al. 2021.. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. . Nat. Biomed. Eng. 5:(5):42940
    [Crossref] [Google Scholar]
  68. 68.
    Harrison RP, Zylberberg E, Ellison S, Levine BL. 2019.. Chimeric antigen receptor-T cell therapy manufacturing: modelling the effect of offshore production on aggregate cost of goods. . Cytotherapy 21:(2):22433
    [Crossref] [Google Scholar]
  69. 69.
    Dimitri A, Herbst F, Fraietta JA. 2022.. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. . Mol. Cancer 21::78
    [Crossref] [Google Scholar]
  70. 70.
    GlobalData Healthc. 2022.. The increasing trend towards allogeneic cell therapy. . Clinical Trials Arena, Jan. 27. https://web.archive.org/web/20230817214710/https://www.clinicaltrialsarena.com/comment/trend-allogeneic-cell-therapy/
    [Google Scholar]
  71. 71.
    Anzalone AV, Koblan LW, Liu DR. 2020.. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. . Nat. Biotechnol. 38:(7):82444
    [Crossref] [Google Scholar]
  72. 72.
    Paunovska K, Loughrey D, Dahlman JE. 2022.. Drug delivery systems for RNA therapeutics. . Nat. Rev. Genet. 23:(5):26580
    [Crossref] [Google Scholar]
  73. 73.
    Foley RA, Sims RA, Duggan EC, Olmedo JK, Ma R, Jonas SJ. 2022.. Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. . Front. Bioeng. Biotechnol. 10::973326
    [Crossref] [Google Scholar]
  74. 74.
    van Haasteren J, Li J, Scheideler OJ, Murthy N, Schaffer DV. 2020.. The delivery challenge: fulfilling the promise of therapeutic genome editing. . Nat. Biotechnol. 38:(7):84555
    [Crossref] [Google Scholar]
  75. 75.
    Irving M, Lanitis E, Migliorini D, Ivics Z, Guedan S. 2021.. Choosing the right tool for genetic engineering: clinical lessons from chimeric antigen receptor-T cells. . Hum. Gene Ther. 32:(19–20):104458
    [Crossref] [Google Scholar]
  76. 76.
    Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. 2021.. Viral vector platforms within the gene therapy landscape. . Signal Transduct. Target. Ther. 6::53
    [Crossref] [Google Scholar]
  77. 77.
    de Jong J, Wessels LFA, van Lohuizen M, de Ridder J, Akhtar W. 2015.. Applications of DNA integrating elements: facing the bias bully. . Mob. Genet. Elements 4:(6):16
    [Crossref] [Google Scholar]
  78. 78.
    Ajina A, Maher J. 2018.. Strategies to address chimeric antigen receptor tonic signaling. . Mol. Cancer Ther. 17:(9):1795815
    [Crossref] [Google Scholar]
  79. 79.
    Brudno JN, Kochenderfer JN. 2016.. Toxicities of chimeric antigen receptor T cells: recognition and management. . Blood 127:(26):332130
    [Crossref] [Google Scholar]
  80. 80.
    Stoiber S, Cadilha BL, Benmebarek M-R, Lesch S, Endres S, Kobold S. 2019.. Limitations in the design of chimeric antigen receptors for cancer therapy. . Cells 8:(5):472
    [Crossref] [Google Scholar]
  81. 81.
    Zhao Y, Stepto H, Schneider CK. 2017.. Development of the first World Health Organization Lentiviral Vector Standard: toward the production control and standardization of lentivirus-based gene therapy products. . Hum. Gene. Ther. Methods 28:(4):20514
    [Crossref] [Google Scholar]
  82. 82.
    Paugh BS, Baranyi L, Roy A, He H-J, Harris L, et al. 2021.. Reference standards for accurate validation and optimization of assays that determine integrated lentiviral vector copy number in transduced cells. . Sci. Rep. 11::389
    [Crossref] [Google Scholar]
  83. 83.
    Mao Z, Bozzella M, Seluanov A, Gorbunova V. 2008.. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. . Cell Cycle 7:(18):29026
    [Crossref] [Google Scholar]
  84. 84.
    Noh SM, Shin S, Lee GM. 2018.. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies. . Sci. Rep. 8::5361
    [Crossref] [Google Scholar]
  85. 85.
    Fan L, Kadura I, Krebs LE, Hatfield CC, Shaw MM, Frye CC. 2012.. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. . Biotechnol. Bioeng. 109:(4):100715
    [Crossref] [Google Scholar]
  86. 86.
    Chen YH, Pallant C, Sampson CJ, Boiti A, Johnson S, et al. 2020.. Rapid lentiviral vector producer cell line generation using a single DNA construct. . Mol. Ther. Methods Clin. Dev. 19::4757
    [Crossref] [Google Scholar]
  87. 87.
    Lee Z, Lu M, Irfanullah E, Soukup M, Hu W-S. 2022.. Construction of an rAAV producer cell line through synthetic biology. . ACS Synth. Biol. 11:(10):328595
    [Crossref] [Google Scholar]
  88. 88.
    Maetzig T, Galla M, Baum C, Schambach A. 2011.. Gammaretroviral vectors: biology, technology and application. . Viruses 3:(6):677713
    [Crossref] [Google Scholar]
  89. 89.
    Coffin JM, Hughes SH, Varmus HE. 1997.. Principles of retroviral vector design. . In Retroviruses, ed. JM Coffin, SH Hughes, HE Varmus . Cold Spring Harbor, NY:: Cold Spring Harbor Lab. Press
    [Google Scholar]
  90. 90.
    Poznansky M, Lever A, Bergeron L, Haseltine W, Sodroski J. 1991.. Gene transfer into human lymphocytes by a defective human immunodeficiency virus type 1 vector. . J. Virol. 65:(1):53236
    [Crossref] [Google Scholar]
  91. 91.
    Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, et al. 1995.. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. . Science 270:(5235):47580
    [Crossref] [Google Scholar]
  92. 92.
    Bushman FD. 2020.. Retroviral insertional mutagenesis in humans: evidence for four genetic mechanisms promoting expansion of cell clones. . Mol. Ther. 28:(2):35256
    [Crossref] [Google Scholar]
  93. 93.
    Cattoglio C, Pellin D, Rizzi E, Maruggi G, Corti G, et al. 2010.. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. . Blood 116:(25):550717
    [Crossref] [Google Scholar]
  94. 94.
    Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, et al. 2010.. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. . Nat. Med. 16:(2):198204
    [Crossref] [Google Scholar]
  95. 95.
    Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, et al. 2008.. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. . J. Clin. Invest. 118:(9):314350
    [Crossref] [Google Scholar]
  96. 96.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, et al. 2003.. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. . N. Engl. J. Med. 348:(3):25556
    [Crossref] [Google Scholar]
  97. 97.
    Williams DA. 2007.. Are lentivirus vectors safer?. Mol. Ther. 15:(3):439
    [Crossref] [Google Scholar]
  98. 98.
    Osten P, Dittgen T, Licznerski P. 2006.. Lentivirus-based genetic manipulations in neurons in vivo. . In The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology, ed. JT Kittler, SJ Moss, chapter 13 . Boca Raton, FL:: CRC Press/Taylor & Francis
    [Google Scholar]
  99. 99.
    Di Pasquale E, Latronico MVG, Jotti GS, Condorelli G. 2012.. Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function. . Gene Ther. 19:(6):64248
    [Crossref] [Google Scholar]
  100. 100.
    Milone MC, O'Doherty U. 2018.. Clinical use of lentiviral vectors. . Leukemia 32:(7):152941
    [Crossref] [Google Scholar]
  101. 101.
    Cent. Biol. Eval. Res. 2023.. Approved cellular and gene therapy products. Ref. , US Food Drug Adm., Washington, DC:. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products
    [Google Scholar]
  102. 102.
    Zhang Y, Zhang Z, Ding Y, Fang Y, Wang P, et al. 2021.. Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. . J. Cancer Res. Clin. Oncol. 147:(12):372534
    [Crossref] [Google Scholar]
  103. 103.
    Prommersberger S, Reiser M, Beckmann J, Danhof S, Amberger M, et al. 2021.. CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma. . Gene Ther. 28:(9):56071
    [Crossref] [Google Scholar]
  104. 104.
    Zu H, Gao D. 2021.. Non-viral vectors in gene therapy: recent development, challenges, and prospects. . AAPS J. 23:(4):78
    [Crossref] [Google Scholar]
  105. 105.
    Miskey C, Kesselring L, Querques I, Abrusán G, Barabas O, Ivics Z. 2022.. Engineered Sleeping Beauty transposase redirects transposon integration away from genes. . Nucleic Acids Res. 50:(5):280725
    [Crossref] [Google Scholar]
  106. 106.
    Galvan DL, Nakazawa Y, Kaja A, Kettlun C, Cooper LJN, et al. 2009.. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. . J. Immunother. 32:(8):83744
    [Crossref] [Google Scholar]
  107. 107.
    Bexte T, Botezatu L, Miskey C, Campe J, Reindl LM, et al. 2021.. Non-viral Sleeping Beauty transposon engineered CD19-CAR-NK cells show a safe genomic integration profile and high antileukemic efficiency. . Blood 138:(Suppl. 1):2797
    [Crossref] [Google Scholar]
  108. 108.
    Liang Q, Kong J, Stalker J, Bradley A. 2009.. Chromosomal mobilization and reintegration of Sleeping Beauty and PiggyBac transposons. . Genesis 47:(6):4048
    [Crossref] [Google Scholar]
  109. 109.
    Chakraborty S, Ji H, Chen J, Gersbach CA, Leong KW. 2014.. Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis. . Sci. Rep. 4::7403
    [Crossref] [Google Scholar]
  110. 110.
    Bire S, Ley D, Casteret S, Mermod N, Bigot Y, Rouleux-Bonnin F. 2013.. Optimization of the piggyBac transposon using mRNA and insulators: toward a more reliable gene delivery system. . PLOS ONE 8:(12):e82559
    [Crossref] [Google Scholar]
  111. 111.
    Chandrasegaran S, Carroll D. 2016.. Origins of programmable nucleases for genome engineering. . J. Mol. Biol. 428:(5 Pt. B):96389
    [Crossref] [Google Scholar]
  112. 112.
    Doudna JA, Charpentier E. 2014.. The new frontier of genome engineering with CRISPR-Cas9. . Science 346:(6213):1258096
    [Crossref] [Google Scholar]
  113. 113.
    Yang H, Wang J, Zhao M, Zhu J, Zhang M, et al. 2019.. Feasible development of stable HEK293 clones by CRISPR/Cas9-mediated site-specific integration for biopharmaceuticals production. . Biotechnol. Lett. 41:(8–9):94150
    [Crossref] [Google Scholar]
  114. 114.
    Rothemejer FH, Lauritsen NP, Juhl AK, Schleimann MH, König S, et al. 2023.. Development of HIV-resistant CAR T cells by CRISPR/Cas-mediated CAR integration into the CCR5 locus. . Viruses 15:(1):202
    [Crossref] [Google Scholar]
  115. 115.
    Oceguera-Yanez F, Kim S-I, Matsumoto T, Tan GW, Xiang L, et al. 2016.. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. . Methods 101::4355
    [Crossref] [Google Scholar]
  116. 116.
    Duportet X, Wroblewska L, Guye P, Li Y, Eyquem J, et al. 2014.. A platform for rapid prototyping of synthetic gene networks in mammalian cells. . Nucleic Acids Res. 42:(21):1344051
    [Crossref] [Google Scholar]
  117. 117.
    Shin S, Kim SH, Lee JS, Lee GM. 2021.. Streamlined human cell-based recombinase-mediated cassette exchange platform enables multigene expression for the production of therapeutic proteins. . ACS Synth. Biol. 10:(7):171527
    [Crossref] [Google Scholar]
  118. 118.
    Zhu F, Gamboa M, Farruggio AP, Hippenmeyer S, Tasic B, et al. 2014.. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. . Nucleic Acids Res. 42:(5):e34
    [Crossref] [Google Scholar]
  119. 119.
    Blanch-Asensio A, Grandela C, Brandão KO, de Korte T, Mei H, et al. 2022.. STRAIGHT-IN enables high-throughput targeting of large DNA payloads in human pluripotent stem cells. . Cell Rep. Methods 2:(10):100300
    [Crossref] [Google Scholar]
  120. 120.
    Liu M, Rehman S, Tang X, Gu K, Fan Q, et al. 2019.. Methodologies for improving HDR efficiency. . Front. Genet. 9::691
    [Crossref] [Google Scholar]
  121. 121.
    Joung JK, Sander JD. 2013.. TALENs: a widely applicable technology for targeted genome editing. . Nat. Rev. Mol. Cell Biol. 14:(1):4955
    [Crossref] [Google Scholar]
  122. 122.
    Adli M. 2018.. The CRISPR tool kit for genome editing and beyond. . Nat. Commun. 9::1911
    [Crossref] [Google Scholar]
  123. 123.
    Bhardwaj A, Nain V. 2021.. TALENs—an indispensable tool in the era of CRISPR: a mini review. . J. Genet. Eng. Biotechnol. 19::125
    [Crossref] [Google Scholar]
  124. 124.
    Jain S, Shukla S, Yang C, Zhang M, Fatma Z, et al. 2021.. TALEN outperforms Cas9 in editing heterochromatin target sites. . Nat. Commun. 12::606
    [Crossref] [Google Scholar]
  125. 125.
    Kim Y, Kim N, Okafor I, Choi S, Min S, et al. 2023.. Sniper2L is a high-fidelity Cas9 variant with high activity. . Nat. Chem. Biol. 19:(8):97280
    [Crossref] [Google Scholar]
  126. 126.
    Hu JH, Miller SM, Geurts MH, Tang W, Chen L, et al. 2018.. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. . Nature 556:(7699):5763
    [Crossref] [Google Scholar]
  127. 127.
    Wu T, Liu C, Zou S, Lyu R, Yang B, et al. 2023.. An engineered hypercompact CRISPR-Cas12f system with boosted gene-editing activity. . Nat. Chem. Biol. 19::138493
    [Crossref] [Google Scholar]
  128. 128.
    Xu X, Chemparathy A, Zeng L, Kempton HR, Shang S, et al. 2021.. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. . Mol. Cell 81:(20):43334345.e4
    [Crossref] [Google Scholar]
  129. 129.
    Selvaraj S, Feist WN, Viel S, Vaidyanathan S, Dudek AM, et al. 2023.. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. . Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01888-4
    [Google Scholar]
  130. 130.
    Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L. 2016.. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. . Cell Rep. 14:(6):155566
    [Crossref] [Google Scholar]
  131. 131.
    Han W, Li Z, Guo Y, He K, Li W, et al. 2023.. Efficient precise integration of large DNA sequences with 3′-overhang dsDNA donors using CRISPR/Cas9. . PNAS 120:(22):e2221127120
    [Crossref] [Google Scholar]
  132. 132.
    Carusillo A, Haider S, Schäfer R, Rhiel M, Türk D, et al. 2023.. A novel Cas9 fusion protein promotes targeted genome editing with reduced mutational burden in primary human cells. . Nucleic Acids Res. 51:(9):466073
    [Crossref] [Google Scholar]
  133. 133.
    Shakirova A, Karpov T, Komarova Y, Lepik K. 2023.. In search of an ideal template for therapeutic genome editing: a review of current developments for structure optimization. . Front. Genome Ed. 5::1068637
    [Crossref] [Google Scholar]
  134. 134.
    Kosicki M, Allen F, Steward F, Tomberg K, Pan Y, Bradley A. 2022.. Cas9-induced large deletions and small indels are controlled in a convergent fashion. . Nat. Commun. 13::3422
    [Crossref] [Google Scholar]
  135. 135.
    Cullot G, Boutin J, Toutain J, Prat F, Pennamen P, et al. 2019.. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. . Nat. Commun. 10::1136
    [Crossref] [Google Scholar]
  136. 136.
    Cullot G, Boutin J, Fayet S, Prat F, Rosier J, et al. 2023.. Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR-Cas9. . Nat. Commun. 14::4072
    [Crossref] [Google Scholar]
  137. 137.
    Jiang L, Ingelshed K, Shen Y, Boddul SV, Iyer VS, et al. 2022.. CRISPR/Cas9-induced DNA damage enriches for mutations in a p53-linked interactome: implications for CRISPR-based therapies. . Cancer Res. 82:(1):3645
    [Crossref] [Google Scholar]
  138. 138.
    Bunting M, Bernstein KE, Greer JM, Capecchi MR, Thomas KR. 1999.. Targeting genes for self-excision in the germ line. . Genes Dev. 13:(12):152428
    [Crossref] [Google Scholar]
  139. 139.
    Matreyek KA, Stephany JJ, Chiasson MA, Hasle N, Fowler DM. 2020.. An improved platform for functional assessment of large protein libraries in mammalian cells. . Nucleic Acids Res. 48:(1):e1
    [Crossref] [Google Scholar]
  140. 140.
    Brosh R, Laurent JM, Ordoñez R, Huang E, Hogan MS, et al. 2021.. A versatile platform for locus-scale genome rewriting and verification. . PNAS 118:(10):e2023952118
    [Crossref] [Google Scholar]
  141. 141.
    Blanch-Asensio A, van der Vaart B, Vinagre M, Groen E, Arendzen C, et al. 2023.. Generation of AAVS1 and CLYBL STRAIGHT-IN v2 acceptor human iPSC lines for integrating DNA payloads. . Stem Cell Res. 66::102991
    [Crossref] [Google Scholar]
  142. 142.
    Muñoz-López M, García-Pérez JL. 2010.. DNA transposons: nature and applications in genomics. . Curr. Genom. 11:(2):11528
    [Crossref] [Google Scholar]
  143. 143.
    Durrant MG, Fanton A, Tycko J, Hinks M, Chandrasekaran SS, et al. 2023.. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. . Nat. Biotechnol. 41:(4):48899
    [Crossref] [Google Scholar]
  144. 144.
    Yarnall MTN, Ioannidi EI, Schmitt-Ulms C, Krajeski RN, Lim J, et al. 2023.. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. . Nat. Biotechnol. 41:(4):50012
    [Crossref] [Google Scholar]
  145. 145.
    Lin Y, Wagner E, Lächelt U. 2022.. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. . Biomater. Sci. 10:(5):116692
    [Crossref] [Google Scholar]
  146. 146.
    Shrestha D, Bag A, Wu R, Zhang Y, Tang X, et al. 2022.. Genomics and epigenetics guided identification of tissue-specific genomic safe harbors. . Genome Biol. 23::199
    [Crossref] [Google Scholar]
  147. 147.
    Aznauryan E, Yermanos A, Kinzina E, Devaux A, Kapetanovic E, et al. 2022.. Discovery and validation of human genomic safe harbor sites for gene and cell therapies. . Cell Rep. Methods 2:(1):100154
    [Crossref] [Google Scholar]
  148. 148.
    Shin S, Kim SH, Shin SW, Grav LM, Pedersen LE, et al. 2020.. Comprehensive analysis of genomic safe harbors as target sites for stable expression of the heterologous gene in HEK293 cells. . ACS Synth. Biol. 9:(6):126369
    [Crossref] [Google Scholar]
  149. 149.
    Chen W, Tan L, Zhou Q, Li W, Li T, et al. 2020.. AAVS1 site-specific integration of the CAR gene into human primary T cells using a linear closed-ended AAV-based DNA vector. . J. Gene Med. 22:(4):e3157
    [Crossref] [Google Scholar]
  150. 150.
    Inderbitzin A, Loosli T, Kouyos RD, Metzner KJ. 2022.. Quantification of transgene expression in GSH AAVS1 with a novel CRISPR/Cas9-based approach reveals high transcriptional variation. . Mol. Ther. Methods Clin. Dev. 26::10718
    [Crossref] [Google Scholar]
  151. 151.
    Bhagwan JR, Collins E, Mosqueira D, Bakar M, Johnson BB, et al. 2020.. Variable expression and silencing of CRISPR-Cas9 targeted transgenes identifies the AAVS1 locus as not an entirely safe harbour. . F1000Research 8::1911
    [Crossref] [Google Scholar]
  152. 152.
    Klatt D, Cheng E, Hoffmann D, Santilli G, Thrasher AJ, et al. 2020.. Differential transgene silencing of myeloid-specific promoters in the AAVS1 safe harbor locus of induced pluripotent stem cell-derived myeloid cells. . Hum. Gene Ther. 31:(3–4):199210
    [Crossref] [Google Scholar]
  153. 153.
    Ordovás L, Boon R, Pistoni M, Chen Y, Wolfs E, et al. 2015.. Efficient recombinase-mediated cassette exchange in hPSCs to study the hepatocyte lineage reveals AAVS1 locus-mediated transgene inhibition. . Stem Cell Rep. 5:(5):91831
    [Crossref] [Google Scholar]
  154. 154.
    Kirouac DC, Zmurchok C, Deyati A, Sicherman J, Bond C, Zandstra PW. 2023.. Deconvolution of clinical variance in CAR-T cell pharmacology and response. . Nat. Biotechnol. 41::160617
    [Crossref] [Google Scholar]
  155. 155.
    Michaels YS, Edgar JM, Major MC, Castle EL, Zimmerman C, et al. 2022.. DLL4 and VCAM1 enhance the emergence of T cell-competent hematopoietic progenitors from human pluripotent stem cells. . Sci. Adv. 8:(34):eabn5522
    [Crossref] [Google Scholar]
  156. 156.
    Rodriguez J, Ren G, Day CR, Zhao K, Chow CC, Larson DR. 2019.. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. . Cell 176:(1):21326.e18
    [Crossref] [Google Scholar]
  157. 157.
    Henninger JE, Oksuz O, Shrinivas K, Sagi I, LeRoy G, et al. 2021.. RNA-mediated feedback control of transcriptional condensates. . Cell 184:(1):20725.e24
    [Crossref] [Google Scholar]
  158. 158.
    Shakiba N, Jones RD, Weiss R, Del Vecchio D. 2021.. Context-aware synthetic biology by controller design: engineering the mammalian cell. . Cell Syst. 12:(6):56192
    [Crossref] [Google Scholar]
  159. 159.
    Liu Y, Huang W, Cai Z. 2020.. Synthesizing AND gate minigene circuits based on CRISPReader for identification of bladder cancer cells. . Nat. Commun. 11::5486
    [Crossref] [Google Scholar]
  160. 160.
    Kim T, Weinberg B, Wong W, Lu TK. 2021.. Scalable recombinase-based gene expression cascades. . Nat. Commun. 12::2711
    [Crossref] [Google Scholar]
  161. 161.
    Johnstone CP, Galloway KE. 2022.. Supercoiling-mediated feedback rapidly couples and tunes transcription. . Cell Rep. 41:(3):111492
    [Crossref] [Google Scholar]
  162. 162.
    Yeung E, Dy AJ, Martin KB, Ng AH, Del Vecchio D, et al. 2017.. Biophysical constraints arising from compositional context in synthetic gene networks. . Cell Syst. 5:(1):1124.e12
    [Crossref] [Google Scholar]
  163. 163.
    Patel HP, Coppola S, Pomp W, Aiello U, Brouwer I, et al. 2023.. DNA supercoiling restricts the transcriptional bursting of neighboring eukaryotic genes. . Mol. Cell 83:(10):157387.e8
    [Crossref] [Google Scholar]
  164. 164.
    Grohens T, Meyer S, Beslon G. 2023.. Emergence of supercoiling-mediated regulatory networks through bacterial chromosome organization. . bioRxiv 509185. https://doi.org/10.1101/2022.09.23.509185
  165. 165.
    Fu Z, Guo MS, Zhou W, Xiao J. 2022.. Differential roles of positive and negative supercoiling in compacting the E. coli genome. . bioRxiv 522362. https://doi.org/10.1101/2022.12.30.522362
  166. 166.
    Wang J, Zhang J, Yuan Z, Zhou T. 2007.. Noise-induced switches in network systems of the genetic toggle switch. . BMC Syst. Biol. 1::50
    [Crossref] [Google Scholar]
  167. 167.
    Das AT, Tenenbaum L, Berkhout B. 2016.. Tet-On systems for doxycycline-inducible gene expression. . Curr. Gene Ther. 16:(3):15667
    [Crossref] [Google Scholar]
  168. 168.
    Elsner C, Bohne J. 2017.. The retroviral vector family: something for everyone. . Virus Genes 53:(5):71422
    [Crossref] [Google Scholar]
  169. 169.
    Heinz N, Schambach A, Galla M, Maetzig T, Baum C, et al. 2011.. Retroviral and transposon-based Tet-regulated all-in-one vectors with reduced background expression and improved dynamic range. . Hum. Gene Ther. 22:(2):16676
    [Crossref] [Google Scholar]
  170. 170.
    Lillacci G, Benenson Y, Khammash M. 2018.. Synthetic control systems for high performance gene expression in mammalian cells. . Nucleic Acids Res. 46:(18):985563
    [Crossref] [Google Scholar]
  171. 171.
    Frei T, Cella F, Tedeschi F, Gutiérrez J, Stan G-B, et al. 2020.. Characterization and mitigation of gene expression burden in mammalian cells. . Nat. Commun. 11::4641
    [Crossref] [Google Scholar]
  172. 172.
    Ilia K, Shakiba N, Bingham T, Jones RD, Kaminski MM, et al. 2023.. Synthetic genetic circuits to uncover and enforce the OCT4 trajectories of successful reprogramming of human fibroblasts. . bioRxiv 525529. https://doi.org/10.1101/2023.01.25.525529
  173. 173.
    Yang J, Lee J, Land MA, Lai S, Igoshin OA, St-Pierre F. 2021.. A synthetic circuit for buffering gene dosage variation between individual mammalian cells. . Nat. Commun. 12::4132
    [Crossref] [Google Scholar]
  174. 174.
    Gupta A, Khammash M. 2019.. An antithetic integral rein controller for bio-molecular networks. . In Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 280813. Piscataway, NJ:: IEEE
    [Google Scholar]
  175. 175.
    Baetica A-A, Leong YP, Murray RM. 2020.. Guidelines for designing the antithetic feedback motif. . Phys. Biol. 17:(5):055002
    [Crossref] [Google Scholar]
  176. 176.
    Briat C, Gupta A, Khammash M. 2018.. Antithetic proportional-integral feedback for reduced variance and improved control performance of stochastic reaction networks. . J. R. Soc. Interface 15:(143):20180079
    [Crossref] [Google Scholar]
  177. 177.
    Smole A, Benton A, Poussin MA, Eiva MA, Mezzanotte C, et al. 2022.. Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. . Cancer Cell 40:(12):147087.e7
    [Crossref] [Google Scholar]
  178. 178.
    Cerulus B, New AM, Pougach K, Verstrepen KJ. 2016.. Noise and epigenetic inheritance of single-cell division times influence population fitness. . Curr. Biol. 26:(9):113847
    [Crossref] [Google Scholar]
  179. 179.
    Fernandopulle MS, Prestil R, Grunseich C, Wang C, Gan L, Ward ME. 2018.. Transcription factor-mediated differentiation of human iPSCs into neurons. . Curr. Protoc. Cell Biol. 79:(1):e51
    [Crossref] [Google Scholar]
  180. 180.
    Nickolls AR, Lee MM, Espinoza DF, Szczot M, Lam RM, et al. 2020.. Transcriptional programming of human mechanosensory neuron subtypes from pluripotent stem cells. . Cell Rep. 30:(3):93246.e7
    [Crossref] [Google Scholar]
  181. 181.
    Wang C, Ward ME, Chen R, Liu K, Tracy TE, et al. 2017.. Scalable production of iPSC-derived human neurons to identify tau-lowering compounds by high-content screening. . Stem Cell Rep. 9:(4):122133
    [Crossref] [Google Scholar]
  182. 182.
    Skylar-Scott MA, Huang JY, Lu A, Ng AHM, Duenki T, et al. 2020.. An orthogonal differentiation platform for genomically programming stem cells, organoids, and bioprinted tissues. . bioRxiv 198671. https://doi.org/10.1101/2020.07.11.198671
  183. 183.
    Del Vecchio D, Abdallah H, Qian Y, Collins JJ. 2017.. A blueprint for a synthetic genetic feedback controller to reprogram cell fate. . Cell Syst. 4:(1):10920.e11
    [Crossref] [Google Scholar]
  184. 184.
    Pantazis CB, Yang A, Lara E, McDonough JA, Blauwendraat C, et al. 2022.. A reference human induced pluripotent stem cell line for large-scale collaborative studies. . Cell Stem Cell 29:(12):1685702.e22
    [Crossref] [Google Scholar]
  185. 185.
    Dannert A, Klimmt J, Cardoso Gonçalves C, Crusius D, Paquet D. 2023.. Reproducible and scalable differentiation of highly pure cortical neurons from human induced pluripotent stem cells. . STAR Protoc. 4:(2):102266
    [Crossref] [Google Scholar]
  186. 186.
    Wang NB, Beitz AM, Galloway K. 2020.. Engineering cell fate: applying synthetic biology to cellular reprogramming. . Curr. Opin. Syst. Biol. 24::1831
    [Crossref] [Google Scholar]
  187. 187.
    Flitsch LJ, Laupman KE, Brüstle O. 2020.. Transcription factor-based fate specification and forward programming for neural regeneration. . Front. Cell. Neurosci. 14::121
    [Crossref] [Google Scholar]
  188. 188.
    Matsuda-Ito K, Matsuda T, Nakashima K. 2022.. Expression level of the reprogramming factor NeuroD1 is critical for neuronal conversion efficiency from different cell types. . Sci. Rep. 12:(1):17980
    [Crossref] [Google Scholar]
  189. 189.
    Yoo Y, Neumayer G, Shibuya Y, Mader MM-D, Wernig M. 2023.. A cell therapy approach to restore microglial Trem2 function in a mouse model of Alzheimer's disease. . Cell Stem Cell 30:(8):104353.e6
    [Crossref] [Google Scholar]
  190. 190.
    Chen S-W, Hung Y-S, Fuh J-L, Chen N-J, Chu Y-S, et al. 2021.. Efficient conversion of human induced pluripotent stem cells into microglia by defined transcription factors. . Stem Cell Rep. 16:(5):136380
    [Crossref] [Google Scholar]
  191. 191.
    Carbonell WS, Murase S-I, Horwitz AF, Mandell JW. 2005.. Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study. . J. Neurosci. 25:(30):704047
    [Crossref] [Google Scholar]
  192. 192.
    Dräger NM, Sattler SM, Huang CT-L, Teter OM, Leng K, et al. 2022.. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. . Nat. Neurosci. 25:(9):114962
    [Crossref] [Google Scholar]
  193. 193.
    Guttikonda SR, Sikkema L, Tchieu J, Saurat N, Walsh RM, et al. 2021.. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. . Nat. Neurosci. 24::34354
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100722-121610
Loading
/content/journals/10.1146/annurev-chembioeng-100722-121610
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error