1932

Abstract

Coiled-coil protein motifs have become widely employed in the design of biomaterials. Some of these designs have been studied for use in drug delivery due to the unique ability of coiled-coils to impart stability, oligomerization, and supramolecular assembly. To leverage these properties and improve drug delivery, release, and targeting, a variety of nano- to mesoscale architectures have been adopted. Coiled-coil drug delivery and therapeutics have been developed by using the coiled-coil alone, designing for higher-order assemblies such as fibers and hydrogels, and combining coiled-coil proteins with other biocompatible structures such as lipids and polymers. We review the recent development of these structures and the design criteria used to generate functional proteins of varying sizes and morphologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100722-122348
2024-07-24
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-100722-122348.html?itemId=/content/journals/10.1146/annurev-chembioeng-100722-122348&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Varanko A, Saha S, Chilkoti A. 2020.. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. . Adv. Drug Deliv. Rev. 156::13387
    [Crossref] [Google Scholar]
  2. 2.
    Katyal P, Meleties M, Montclare JK. 2019.. Self-assembled protein- and peptide-based nanomaterials. . ACS Biomater. Sci. Eng. 5:(9):413247
    [Crossref] [Google Scholar]
  3. 3.
    Soussan E, Cassel S, Blanzat M, Rico-Lattes I. 2009.. Drug delivery by soft matter: matrix and vesicular carriers. . Angew. Chem. Int. Ed. 48:(2):27488
    [Crossref] [Google Scholar]
  4. 4.
    Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H. 2016.. Recent progress on nanostructures for drug delivery applications. . J. Nanomater. 2016::5762431
    [Google Scholar]
  5. 5.
    Freeman A. 2017.. Protein-mediated biotemplating on the nanoscale. . Biomimetics 2:(3):14
    [Crossref] [Google Scholar]
  6. 6.
    Jacob J, Haponiuk JT, Thomas S, Gopi S. 2018.. Biopolymer based nanomaterials in drug delivery systems: a review. . Mater. Today Chem. 9::4355
    [Crossref] [Google Scholar]
  7. 7.
    Vulic K, Shoichet MS. 2014.. Affinity-based drug delivery systems for tissue repair and regeneration. . Biomacromolecules 15:(11):386780
    [Crossref] [Google Scholar]
  8. 8.
    Wang S, Liu R, Fu Y, Kao WJ. 2020.. Release mechanisms and applications of drug delivery systems for extended-release. . Expert Opin. Drug Deliv. 17:(9):1289304
    [Crossref] [Google Scholar]
  9. 9.
    Li Y, Tian R, Shi H, Xu J, Wang T, Liu J. 2023.. Protein assembly: controllable design strategies and applications in biology. . Aggregate 4:(3):e317
    [Crossref] [Google Scholar]
  10. 10.
    Choi Y, Verma D, Griswold KE, Bailey-Kellogg C. 2017.. EpiSweep: computationally driven reengineering of therapeutic proteins to reduce immunogenicity while maintaining function. . In Computational Protein Design, ed. I Samish , pp. 37598. New York:: Springer
    [Google Scholar]
  11. 11.
    Onda M. 2009.. Reducing the immunogenicity of protein therapeutics. . Curr. Drug Targets 10:(2):13139
    [Crossref] [Google Scholar]
  12. 12.
    Yachnin BJ, Mulligan VK, Khare SD, Bailey-Kellogg C. 2021.. MHCEpitopeEnergy, a flexible Rosetta-based biotherapeutic deimmunization platform. . J. Chem. Inform. Model. 61:(5):236882
    [Crossref] [Google Scholar]
  13. 13.
    Boyle AL. 2018.. Applications of de novo designed peptides. . In Peptide Applications in Biomedicine, ed. S Koutsopoulos , pp. 5186. Biotechnol. Bioeng. Cambridge, MA:: Woodhead Publ.
    [Google Scholar]
  14. 14.
    Yin L, Yuvienco C, Montclare JK. 2017.. Protein based therapeutic delivery agents: contemporary developments and challenges. . Biomaterials 134::91116
    [Crossref] [Google Scholar]
  15. 15.
    Woolfson DN. 2005.. The design of coiled-coil structures and assemblies. . Adv. Protein Chem. 70::79112
    [Crossref] [Google Scholar]
  16. 16.
    Woolfson DN. 2017.. Coiled-coil design: updated and upgraded. . In Fibrous Proteins: Structures and Mechanisms, ed. DAD Parry, JM Squire , pp. 3561. Cham, Switz.:: Springer Int. Publ.
    [Google Scholar]
  17. 17.
    Woolfson DN. 2023.. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. . J. Biol. Chem. 299:(4):104579
    [Crossref] [Google Scholar]
  18. 18.
    Truebestein L, Leonard TA. 2016.. Coiled-coils: the long and short of it. . BioEssays 38:(9):90316
    [Crossref] [Google Scholar]
  19. 19.
    Utterström J, Naeimipour S, Selegård R, Aili D. 2021.. Coiled coil-based therapeutics and drug delivery systems. . Adv. Drug Deliv. Rev. 170::2643
    [Crossref] [Google Scholar]
  20. 20.
    McFarlane AA, Orriss GL, Stetefeld J. 2009.. The use of coiled-coil proteins in drug delivery systems. . Eur. J. Pharmacol. 625:(1–3):1017
    [Crossref] [Google Scholar]
  21. 21.
    Pechar M, Pola R. 2013.. The coiled coil motif in polymer drug delivery systems. . Biotechnol. Adv. 31:(1):9096
    [Crossref] [Google Scholar]
  22. 22.
    Yu YB. 2002.. Coiled-coils: stability, specificity, and drug delivery potential. . Adv. Drug Deliv. Rev. 54:(8):111329
    [Crossref] [Google Scholar]
  23. 23.
    Mörgelin M, Heinegård D, Engel J, Paulsson M. 1992.. Electron microscopy of native cartilage oligomeric matrix protein purified from the Swarm rat chondrosarcoma reveals a five-armed structure. . J. Biol. Chem. 267:(9):613741
    [Crossref] [Google Scholar]
  24. 24.
    Ozbek S, Engel J, Stetefeld J. 2002.. Storage function of cartilage oligomeric matrix protein: the crystal structure of the coiled-coil domain in complex with vitamin D(3). . EMBO J. 21:(22):596068
    [Crossref] [Google Scholar]
  25. 25.
    Sharma U, Carrique L, Vadon-Le Goff S, Mariano N, Georges R-N, et al. 2017.. Structural basis of homo- and heterotrimerization of collagen I. . Nat. Commun. 8::14671
    [Crossref] [Google Scholar]
  26. 26.
    More HT, Zhang KS, Srivastava N, Frezzo JA, Montclare JK. 2015.. Influence of fluorination on protein-engineered coiled-coil fibers. . Biomacromolecules 16:(4):121017
    [Crossref] [Google Scholar]
  27. 27.
    Guo Y, Bozic D, Malashkevich VN, Kammerer RA, Schulthess T, Engel J. 1998.. All-trans retinol, vitamin D and other hydrophobic compounds bind in the axial pore of the five-stranded coiled-coil domain of cartilage oligomeric matrix protein. . EMBO J. 17:(18):526572
    [Crossref] [Google Scholar]
  28. 28.
    McFarlane A, Orriss G, Okun N, Meier M, Klonisch T, et al. 2012.. The pentameric channel of COMPcc in complex with different fatty acids. . PLOS ONE 7:(11):e48130
    [Crossref] [Google Scholar]
  29. 29.
    Hill LK, Britton D, Jihad T, Punia K, Xie X, et al. 2022.. Engineered protein–iron oxide hybrid biomaterial for MRI-traceable drug encapsulation. . Mol. Syst. Des. Eng. 7:(8):91532
    [Crossref] [Google Scholar]
  30. 30.
    Wu K, Liu J, Johnson RN, Yang J, Kopeček J. 2010.. Drug-free macromolecular therapeutics: induction of apoptosis by coiled-coil-mediated cross-linking of antigens on the cell surface. . Angew. Chem. Int. Ed. 49:(8):145155
    [Crossref] [Google Scholar]
  31. 31.
    Yang J, Xu C, Wang C, Kopeček J. 2006.. Refolding hydrogels self-assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. . Biomacromolecules 7:(4):118795
    [Crossref] [Google Scholar]
  32. 32.
    Kushal S, Lao BB, Henchey LK, Dubey R, Mesallati H, et al. 2013.. Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling. . PNAS 110:(39):156027
    [Crossref] [Google Scholar]
  33. 33.
    Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ, Arora PS. 2010.. Inhibition of hypoxia inducible factor 1—transcription coactivator interaction by a hydrogen bond surrogate α-helix. . J. Am. Chem. Soc. 132:(3):94143
    [Crossref] [Google Scholar]
  34. 34.
    Lao BB, Grishagin I, Mesallati H, Brewer TF, Olenyuk BZ, Arora PS. 2014.. In vivo modulation of hypoxia-inducible signaling by topographical helix mimetics. . PNAS 111:(21):753136
    [Crossref] [Google Scholar]
  35. 35.
    Sawyer N, Watkins AM, Arora PS. 2017.. Protein domain mimics as modulators of protein–protein interactions. . Acc. Chem. Res. 50:(6):131322
    [Crossref] [Google Scholar]
  36. 36.
    Trang VH, Zhang X, Yumul RC, Zeng W, Stone IJ, et al. 2019.. A coiled-coil masking domain for selective activation of therapeutic antibodies. . Nat. Biotechnol. 37:(7):76165
    [Crossref] [Google Scholar]
  37. 37.
    Zhang Y, Goswami D, Wang D, Wang TS, Sen S, et al. 2014.. An antibody with a variable-region coiled-coil “knob” domain. . Angew. Chem. Int. Ed. 53:(1):13235
    [Crossref] [Google Scholar]
  38. 38.
    Zhang Y, Liu Y, Wang Y, Schultz PG, Wang F. 2015.. Rational design of humanized dual-agonist antibodies. . J. Am. Chem. Soc. 137:(1):3841
    [Crossref] [Google Scholar]
  39. 39.
    Britton D, Punia K, Mahmoudinobar F, Tada T, Jiang X, et al. 2022.. Engineered multivalent self-assembled binder protein against SARS-CoV-2 RBD. . Biochem. Eng. J. 187::108596
    [Crossref] [Google Scholar]
  40. 40.
    Cao L, Goreshnik I, Coventry B, Case JB, Miller L, et al. 2020.. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. . Science 370:(6515):42631
    [Crossref] [Google Scholar]
  41. 41.
    Liu CF, Chen R, Frezzo JA, Katyal P, Hill LK, et al. 2017.. Efficient dual siRNA and drug delivery using engineered lipoproteoplexes. . Biomacromolecules 18::268898
    [Crossref] [Google Scholar]
  42. 42.
    Rabbani PS, Zhou A, Borab ZM, Frezzo JA, Srivastava N, et al. 2017.. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. . Biomaterials 132::115
    [Crossref] [Google Scholar]
  43. 43.
    Thomas J, Punia K, Montclare JK. 2021.. Peptides as key components in the design of non-viral vectors for gene delivery. . Peptide Sci. 113:(2):e24189
    [Crossref] [Google Scholar]
  44. 44.
    Ford LK, Fioriti L. 2020.. Coiled-coil motifs of RNA-binding proteins: dynamicity in RNA regulation. . Front. Cell Dev. Biol. 8::607947
    [Crossref] [Google Scholar]
  45. 45.
    Rose A, Schraegle SJ, Stahlberg EA, Meier I. 2005.. Coiled-coil protein composition of 22 proteomes—differences and common themes in subcellular infrastructure and traffic control. . BMC Evol. Biol. 5::66
    [Crossref] [Google Scholar]
  46. 46.
    Fukuda Y, Pazyra-Murphy MF, Silagi ES, Tasdemir-Yilmaz OE, Li Y, et al. 2020.. Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. . J. Cell Biol. 220:(1):e202005051
    [Crossref] [Google Scholar]
  47. 47.
    Liao YC, Fernandopulle MS, Wang G, Choi H, Hao L, et al. 2019.. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. . Cell 179:(1):14764.e20
    [Crossref] [Google Scholar]
  48. 48.
    More HT, Frezzo JA, Dai J, Yamano S, Montclare JK. 2014.. Gene delivery from supercharged coiled-coil protein and cationic lipid hybrid complex. . Biomaterials 35:(25):718893
    [Crossref] [Google Scholar]
  49. 49.
    Whitehead KA, Langer R, Anderson DG. 2009.. Knocking down barriers: advances in siRNA delivery. . Nat. Rev. Drug Discov. 8:(2):12938
    [Crossref] [Google Scholar]
  50. 50.
    Reischl D, Zimmer A. 2009.. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. . Nanomedicine 5:(1):820
    [Crossref] [Google Scholar]
  51. 51.
    Thomas J, Monkovic J, Frezzo JA, Katyal P, Punia K, Montclare JK. 2023.. Increased alpha-helicity of a supercharged coiled-coil protein increases siRNA delivery efficiency of protein-lipid hybrid vehicle. . bioRxiv 442303. https://doi.org/10.1101/2021:2021.05.03.442303
  52. 52.
    Stetefeld J, Jenny M, Schulthess T, Landwehr R, Engel J, Kammerer RA. 2000.. Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer. . Nat. Struct. Biol. 7:(9):77276
    [Crossref] [Google Scholar]
  53. 53.
    Thanasupawat T, Bergen H, Hombach-Klonisch S, Krcek J, Ghavami S, et al. 2015.. Platinum (IV) coiled coil nanotubes selectively kill human glioblastoma cells. . Nanomedicine 11:(4):91325
    [Crossref] [Google Scholar]
  54. 54.
    Rosenberg B, Van Camp L, Krigas T. 1965.. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. . Nature 205:(4972):69899
    [Crossref] [Google Scholar]
  55. 55.
    Siafaca K. 1999.. Oncology trends product markets—part 1: platinum-based anticancer agents. . Future Oncol. 5:(2/3):104571
    [Google Scholar]
  56. 56.
    Piel IJ, Meyer D, Perlia CP, Wolfe VI. 1974.. Effects of cis-diamminedichloroplatinum (NSC-119875) on hearing function in man. . Cancer Chemother. Rep. 58:(6):87175
    [Google Scholar]
  57. 57.
    Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, et al. 2021.. Chemotherapy-induced peripheral neuropathy: epidemiology, pathomechanisms and treatment. . Oncol. Ther. 9:(2):385450
    [Crossref] [Google Scholar]
  58. 58.
    Gunasekar SK, Asnani M, Limbad C, Haghpanah JS, Hom W, et al. 2009.. N-terminal aliphatic residues dictate the structure, stability, assembly, and small molecule binding of the coiled-coil region of cartilage oligomeric matrix protein. . Biochemistry 48:(36):855967
    [Crossref] [Google Scholar]
  59. 59.
    Yin L, Agustinus AS, Yuvienco C, Miniashima T, Schnabel NS, et al. 2018.. Engineered coiled-coil protein for delivery of inverse agonist for osteoarthritis. . Biomacromolecules 19:(5):161424
    [Crossref] [Google Scholar]
  60. 60.
    Davies MR, Ribeiro LR, Downey-Jones M, Needham MRC, Oakley C, Wardale J. 2009.. Ligands for retinoic acid receptors are elevated in osteoarthritis and may contribute to pathologic processes in the osteoarthritic joint. . Arthritis Rheum. 60:(6):172232
    [Crossref] [Google Scholar]
  61. 61.
    Dreier R. 2010.. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. . Arthritis Res. Ther. 12:(5):216
    [Crossref] [Google Scholar]
  62. 62.
    de Lera AR, Bourguet W, Altucci L, Gronemeyer H. 2007.. Design of selective nuclear receptor modulators: RAR and RXR as a case study. . Nat. Rev. Drug Discov. 6:(10):81120
    [Crossref] [Google Scholar]
  63. 63.
    Germain P, Gaudon C, Pogenberg V, Sanglier S, Van Dorsselaer A, et al. 2009.. Differential action on coregulator interaction defines inverse retinoid agonists and neutral antagonists. . Chem. Biol. 16:(5):47989
    [Crossref] [Google Scholar]
  64. 64.
    Bourguet W, de Lera AR, Gronemeyer H. 2010.. Inverse agonists and antagonists of retinoid receptors. . Methods Enzymol. 485::16195
    [Crossref] [Google Scholar]
  65. 65.
    Hume J, Sun J, Jacquet R, Renfrew PD, Martin JA, et al. 2014.. Engineered coiled-coil protein microfibers. . Biomacromolecules 15:(10):350310
    [Crossref] [Google Scholar]
  66. 66.
    More HT, Zhang KS, Srivastava N, Frezzo JA, Montclare JK. 2015.. Influence of fluorination on protein-engineered coiled-coil fibers. . Biomacromolecules 16:(4):121017
    [Crossref] [Google Scholar]
  67. 67.
    Britton D, Monkovic J, Jia S, Liu C, Mahmoudinobar F, et al. 2022.. Supramolecular assembly and small-molecule binding by protein-engineered coiled-coil fibers. . Biomacromolecules 23:(11):485159
    [Crossref] [Google Scholar]
  68. 68.
    Punia K, Britton D, Hüll K, Yin L, Wang Y, et al. 2023.. Fluorescent azobenzene-confined coiled-coil mesofibers. . Soft Matter 19:(3):497501
    [Crossref] [Google Scholar]
  69. 69.
    Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT. 2010.. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. . J. Chem. Inf. Model. 50:(4):57284
    [Crossref] [Google Scholar]
  70. 70.
    Park H, Zhou G, Baek M, Baker D, DiMaio F. 2021.. Force field optimization guided by small molecule crystal lattice data enables consistent sub-angstrom protein–ligand docking. . J. Chem. Theory Comput. 17:(3):200010
    [Crossref] [Google Scholar]
  71. 71.
    Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, et al. 2006.. DrugBank: a comprehensive resource for in silico drug discovery and exploration. . Nucleic Acids Res. 34:(Database issue):D66872
    [Crossref] [Google Scholar]
  72. 72.
    Huang F, Duan R, Zhou Z, Vázquez-González M, Xia F, Willner I. 2020.. Near-infrared light-activated membrane fusion for cancer cell therapeutic applications. . Chem. Sci. 11:(21):5592600
    [Crossref] [Google Scholar]
  73. 73.
    Hill LK, Meleties M, Xie X, Delgado-Fukushima E, Jihad T, et al. 2019.. Thermoresponsive protein-engineered coiled-coil hydrogel for sustained small molecule release. . Biomacromolecules 20::334051
    [Crossref] [Google Scholar]
  74. 74.
    Britton D, Meleties M, Liu C, Jia S, Mahmoudinobar F, et al. 2022.. Tuning a coiled-coil hydrogel via computational design of supramolecular fiber assembly. . Mol. Syst. Des. Eng. 8::21726
    [Crossref] [Google Scholar]
  75. 75.
    Morris C, Glennie SJ, Lam HS, Baum HE, Kandage D, et al. 2019.. A modular vaccine platform combining self-assembled peptide cages and immunogenic peptides. . Adv. Funct. Mater. 29:(8):1807357
    [Crossref] [Google Scholar]
  76. 76.
    Hill LK, Frezzo JA, Katyal P, Hoang DM, Ben Youss Gironda Z, et al. 2019.. Protein-engineered nanoscale micelles for dynamic 19F magnetic resonance and therapeutic drug delivery. . ACS Nano 13:(3):296985
    [Crossref] [Google Scholar]
  77. 77.
    Katyal P, Hettinghouse A, Meleties M, Hasan S, Chen C, et al. 2022.. Injectable recombinant block polymer gel for sustained delivery of therapeutic protein in post traumatic osteoarthritis. . Biomaterials 281::121370
    [Crossref] [Google Scholar]
  78. 78.
    Apostolovic B, Deacon SPE, Duncan R, Klok H-A. 2011.. Cell uptake and trafficking behavior of non-covalent, coiled-coil based polymer–drug conjugates. . Macromol. Rapid Commun. 32:(1):1118
    [Crossref] [Google Scholar]
  79. 79.
    Ding L, Jiang Y, Zhang J, Klok H-A, Zhong Z. 2018.. pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels: synthesis and targeted intracellular protein delivery to CD44 positive cancer cells. . Biomacromolecules 19:(2):55562
    [Crossref] [Google Scholar]
  80. 80.
    Deacon SPE, Apostolovic B, Carbajo RJ, Schott A-K, Beck K, et al. 2011.. Polymer coiled-coil conjugates: potential for development as a new class of therapeutic “molecular switch. .” Biomacromolecules 12:(1):1927
    [Crossref] [Google Scholar]
  81. 81.
    Yang J, Shimada Y, Olsthoorn RCL, Snaar-Jagalska BE, Spaink HP, Kros A. 2016.. Application of coiled coil peptides in liposomal anticancer drug delivery using a zebrafish xenograft model. . ACS Nano 10:(8):742835
    [Crossref] [Google Scholar]
  82. 82.
    Zeng Y, Shen M, Singhal A, Sevink GJA, Crone N, et al. 2023.. Enhanced liposomal drug delivery via membrane fusion triggered by dimeric coiled-coil peptides. . Small 19:(37):e2301133
    [Crossref] [Google Scholar]
  83. 83.
    Kong L, Chen Q, Campbell F, Snaar-Jagalska E, Kros A. 2020.. Light-triggered cancer cell specific targeting and liposomal drug delivery in a zebrafish xenograft model. . Adv. Healthc. Mater. 9:(6):1901489
    [Crossref] [Google Scholar]
  84. 84.
    Zope HR, Versluis F, Ordas A, Voskuhl J, Spaink HP, Kros A. 2013.. In vitro and in vivo supramolecular modification of biomembranes using a lipidated coiled-coil motif. . Angew. Chem. Int. Ed. 52:(52):1424751
    [Crossref] [Google Scholar]
  85. 85.
    Jadhav SV, Singh SK, Reja RM, Gopi HN. 2013.. γ-Amino acid mutated α-coiled coils as mild thermal triggers for liposome delivery. . Chem. Commun. 49:(94):1106567
    [Crossref] [Google Scholar]
  86. 86.
    Al-Ahmady ZS, Al-Jamal WT, Bossche JV, Bui TT, Drake AF, et al. 2012.. Lipid–peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. . ACS Nano 6:(10):933546
    [Crossref] [Google Scholar]
  87. 87.
    Reja RM, Khan M, Singh SK, Misra R, Shiras A, Gopi HN. 2016.. pH sensitive coiled coils: a strategy for enhanced liposomal drug delivery. . Nanoscale 8:(9):513945
    [Crossref] [Google Scholar]
  88. 88.
    Lim SK, Sandén C, Selegård R, Liedberg B, Aili D. 2016.. Tuning liposome membrane permeability by competitive peptide dimerization and partitioning-folding interactions regulated by proteolytic activity. . Sci. Rep. 6::21123
    [Crossref] [Google Scholar]
  89. 89.
    Li J, Tuma J, Han H, Kim H, Wilson RC, et al. 2022.. The coiled-coil forming peptide (KVSALKE)5 is a cell penetrating peptide that enhances the intracellular delivery of proteins. . Adv. Healthc. Mater. 11:(9):2102118
    [Crossref] [Google Scholar]
  90. 90.
    Lupas A. 1996.. Coiled coils: new structures and new functions. . Trends Biochem. Sci. 21:(10):37582
    [Crossref] [Google Scholar]
  91. 91.
    Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A, Woolfson DN. 2000.. Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. . Biochemistry 39:(30):872834
    [Crossref] [Google Scholar]
  92. 92.
    Papapostolou D, Bromley EH, Bano C, Woolfson DN. 2008.. Electrostatic control of thickness and stiffness in a designed protein fiber. . J. Am. Chem. Soc. 130:(15):512430
    [Crossref] [Google Scholar]
  93. 93.
    Dong H, Paramonov SE, Hartgerink JD. 2008.. Self-assembly of α-helical coiled coil nanofibers. . J. Am. Chem. Soc. 130:(41):1369195
    [Crossref] [Google Scholar]
  94. 94.
    Fathima NN, Dhathathreyan A, Ramasami T. 2010.. Directed 2-dimensional organisation of collagen: role of cross-linking and denaturing agents. . J. Chem. Sci. 122:(6):88189
    [Crossref] [Google Scholar]
  95. 95.
    Nishad Fathima N, Saranya Devi R, Rekha KB, Dhathathreyan A. 2009.. Collagen-curcumin interaction—a physico-chemical study. . J. Chem. Sci. 121:(4):50914
    [Crossref] [Google Scholar]
  96. 96.
    Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA. 1998.. Reversible hydrogels from self-assembling artificial proteins. . Science 281:(5375):38992
    [Crossref] [Google Scholar]
  97. 97.
    Meleties M, Katyal P, Lin B, Britton D, Montclare JK. 2021.. Self-assembly of stimuli-responsive coiled-coil hydrogels. . Soft Matter 17::647076
    [Crossref] [Google Scholar]
  98. 98.
    Meleties M, Britton D, Katyal P, Lin B, Martineau RL, et al. 2022.. High-throughput microrheology for the assessment of protein gelation kinetics. . Macromolecules 55:(4):123947
    [Crossref] [Google Scholar]
  99. 99.
    Fletcher JM, Harniman RL, Barnes FRH, Boyle AL, Collins A, et al. 2013.. Self-assembling cages from coiled-coil peptide modules. . Science 340:(6132):59599
    [Crossref] [Google Scholar]
  100. 100.
    Ross JF, Bridges A, Fletcher JM, Shoemark D, Alibhai D, et al. 2017.. Decorating self-assembled peptide cages with proteins. . ACS Nano 11:(8):790114
    [Crossref] [Google Scholar]
  101. 101.
    Beesley JL, Baum HE, Hodgson LR, Verkade P, Banting GS, Woolfson DN. 2018.. Modifying self-assembled peptide cages to control internalization into mammalian cells. . Nano Lett. 18:(9):593337
    [Crossref] [Google Scholar]
  102. 102.
    Božič Abram S, Gradišar H, Aupič J, Round AR, Jerala R. 2021.. Triangular in vivo self-assembling coiled-coil protein origami. . ACS Chem. Biol. 16:(2):31015
    [Crossref] [Google Scholar]
  103. 103.
    Raman S, Machaidze G, Lustig A, Aebi U, Burkhard P. 2006.. Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles. . Nanomedicine 2:(2):95102
    [Crossref] [Google Scholar]
  104. 104.
    He B, Wu JP, Chen HH, Kirk TB, Xu J. 2013.. Elastin fibers display a versatile microfibril network in articular cartilage depending on the mechanical microenvironments. . J. Orthop. Res. 31:(9):134553
    [Crossref] [Google Scholar]
  105. 105.
    Nettles DL, Chilkoti A, Setton LA. 2010.. Applications of elastin-like polypeptides in tissue engineering. . Adv. Drug Deliv. Rev. 62:(15):147985
    [Crossref] [Google Scholar]
  106. 106.
    Betre H, Setton LA, Meyer DE, Chilkoti A. 2002.. Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. . Biomacromolecules 3:(5):91016
    [Crossref] [Google Scholar]
  107. 107.
    Aaron BB, Gosline JM. 1981.. Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibers. . Biopolymers 20:(6):124760
    [Crossref] [Google Scholar]
  108. 108.
    Gosline JM. 1978.. Hydrophobic interaction and a model for the elasticity of elastin. . Biopolymers 17:(3):67795
    [Crossref] [Google Scholar]
  109. 109.
    Moll JR, Ruvinov SB, Pastan I, Vinson C. 2001.. Designed heterodimerizing leucine zippers with a ranger of pIs and stabilities up to 10−15 M. . Protein Sci. 10:(3):64955
    [Crossref] [Google Scholar]
  110. 110.
    Park WM, Champion JA. 2014.. Thermally triggered self-assembly of folded proteins into vesicles. . J. Am. Chem. Soc. 136:(52):179069
    [Crossref] [Google Scholar]
  111. 111.
    Dai M, Haghpanah J, Singh N, Roth EW, Liang A, et al. 2011.. Artificial protein block polymer libraries bearing two SADs: effects of elastin domain repeats. . Biomacromolecules 12:(12):424046
    [Crossref] [Google Scholar]
  112. 112.
    Olsen AJ, Haghpanah JS, Katyal P, Schnabel NS, Dai M, et al. 2018.. Protein engineered triblock polymers comprised of two SADs: enhanced mechanical properties and binding abilities. . Biomacromolecules 19:(5):155261
    [Crossref] [Google Scholar]
  113. 113.
    Haghpanah JS, Yuvienco C, Roth EW, Liang A, Tu RS, Montclare JK. 2010.. Supramolecular assembly and small molecule recognition by genetically engineered protein block polymers composed of two SADs. . Mol. BioSyst. 6:(9):166267
    [Crossref] [Google Scholar]
  114. 114.
    Haghpanah JS, Yuvienco C, Civay DE, Barra H, Baker PJ, et al. 2009.. Artificial protein block copolymers blocks comprising two distinct self-assembling domains. . ChemBioChem. 10:(17):273335
    [Crossref] [Google Scholar]
  115. 115.
    Assal Y, Mizuguchi Y, Mie M, Kobatake E. 2015.. Growth factor tethering to protein nanoparticles via coiled-coil formation for targeted drug delivery. . Bioconjug. Chem. 26:(8):167277
    [Crossref] [Google Scholar]
  116. 116.
    Baig N, Kammakakam I, Falath W. 2021.. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. . Mater. Adv. 2:(6):182171
    [Crossref] [Google Scholar]
  117. 117.
    Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. 2022.. Liposomes: structure, composition, types, and clinical applications. . Heliyon 8:(5):e09394
    [Crossref] [Google Scholar]
  118. 118.
    Liu P, Chen G, Zhang J. 2022.. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. . Molecules 27:(4):1372
    [Crossref] [Google Scholar]
  119. 119.
    Dånmark S, Aronsson C, Aili D. 2016.. Tailoring supramolecular peptide-poly(ethylene glycol) hydrogels by coiled coil self-assembly and self-sorting. . Biomacromolecules 17:(6):226067
    [Crossref] [Google Scholar]
  120. 120.
    Wang C, Stewart RJ, Kopeček J. 1999.. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. . Nature 397:(6718):41720
    [Crossref] [Google Scholar]
  121. 121.
    Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. 2010.. Polymers for drug delivery systems. . Annu. Rev. Chem. Biomol. Eng. 1::14973
    [Crossref] [Google Scholar]
  122. 122.
    Sung YK, Kim SW. 2020.. Recent advances in polymeric drug delivery systems. . Biomater. Res. 24::12
    [Crossref] [Google Scholar]
  123. 123.
    Olsen BD, Kornfield JA, Tirrell DA. 2010.. Yielding behavior in injectable hydrogels from telechelic proteins. . Macromolecules 43:(21):909499
    [Crossref] [Google Scholar]
  124. 124.
    Pechar M, Pola R, Laga R, Ulbrich K, Bednárová L, et al. 2011.. Coiled coil peptides as universal linkers for the attachment of recombinant proteins to polymer therapeutics. . Biomacromolecules 12:(10):364555
    [Crossref] [Google Scholar]
  125. 125.
    Pola R, Laga R, Ulbrich K, Sieglová I, Král V, et al. 2013.. Polymer therapeutics with a coiled coil motif targeted against murine BCL1 leukemia. . Biomacromolecules 14:(3):88189
    [Crossref] [Google Scholar]
  126. 126.
    Wu K, Yang J, Liu J, Kopeček J. 2012.. Coiled-coil based drug-free macromolecular therapeutics: in vivo efficacy. . J. Control. Release 157:(1):12631
    [Crossref] [Google Scholar]
  127. 127.
    Apostolovic B, Klok H-A. 2008.. pH-sensitivity of the E3/K3 heterodimeric coiled coil. . Biomacromolecules 9:(11):317380
    [Crossref] [Google Scholar]
  128. 128.
    Apostolovic B, Klok H-A. 2010.. Copolymerization behavior of N-(2-hydroxypropyl)methacrylamide and a methacrylated coiled-coil peptide derivative. . Biomacromolecules 11:(7):189195
    [Crossref] [Google Scholar]
  129. 129.
    Griffiths PC, Paul A, Apostolovic B, Klok H-A, de Luca E, et al. 2011.. Conformational consequences of cooperative binding of a coiled-coil peptide motif to poly(N-(2-hydroxypropyl) methacrylamide) HPMA copolymers. . J. Control. Release 153:(2):17379
    [Crossref] [Google Scholar]
  130. 130.
    Glover JNM, Harrison SC. 1995.. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. . Nature 373:(6511):25761
    [Crossref] [Google Scholar]
  131. 131.
    Aronson MR, Medina SH, Mitchell MJ. 2021.. Peptide functionalized liposomes for receptor targeted cancer therapy. . APL Bioeng. 5:(1):011501
    [Crossref] [Google Scholar]
  132. 132.
    Rizo J, Südhof TC. 2002.. Snares and munc18 in synaptic vesicle fusion. . Nat. Rev. Neurosci. 3:(8):64153
    [Crossref] [Google Scholar]
  133. 133.
    Daudey GA, Zope HR, Voskuhl J, Kros A, Boyle AL. 2017.. Membrane-fusogen distance is critical for efficient coiled-coil-peptide-mediated liposome fusion. . Langmuir 33:(43):1244352
    [Crossref] [Google Scholar]
  134. 134.
    Crone NSA, Minnee D, Kros A, Boyle AL. 2018.. Peptide-mediated liposome fusion: the effect of anchor positioning. . Int. J. Mol. Sci. 19:(1):211
    [Crossref] [Google Scholar]
  135. 135.
    van der Borg G, Crone N, Boyle AL, Kros A, Roos WH. 2023.. SNARE mimic peptide triggered membrane fusion kinetics revealed using single particle techniques. . Phys. Chem. Chem. Phys. 25:(18):1301926
    [Crossref] [Google Scholar]
  136. 136.
    RobsonMarsden H, Elbers NA, Bomans PHH, Sommerdijk NAJM, Kros A. 2009.. A reduced SNARE model for membrane fusion. . Angew. Chem. Int. Ed. 48:(13):233033
    [Crossref] [Google Scholar]
  137. 137.
    Ashwanikumar N, Plaut JS, Mostofian B, Patel S, Kwak P, et al. 2018.. Supramolecular self assembly of nanodrill-like structures for intracellular delivery. . J. Control. Release 282::7689
    [Crossref] [Google Scholar]
  138. 138.
    Al-Jamal WT, Kostarelos K. 2022.. Mild hyperthermia accelerates doxorubicin clearance from tumour-extravasated temperature-sensitive liposomes. . Nanotheranostics 6:(3):23042
    [Crossref] [Google Scholar]
  139. 139.
    Katyal P, Mahmoudinobar F, Montclare JK. 2020.. Recent trends in peptide and protein-based hydrogels. . Curr. Opin. Struct. Biol. 63::97105
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100722-122348
Loading
/content/journals/10.1146/annurev-chembioeng-100722-122348
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error