1932

Abstract

From the first clinical trial by Dr. W.F. Anderson to the most recent US Food and Drug Administration–approved Luxturna (Spark Therapeutics, 2017) and Zolgensma (Novartis, 2019), gene therapy has revamped thinking and practice around cancer treatment and improved survival rates for adult and pediatric patients with genetic diseases. A major challenge to advancing gene therapies for a broader array of applications lies in safely delivering nucleic acids to their intended sites of action. Peptides offer unique potential to improve nucleic acid delivery based on their versatile and tunable interactions with biomolecules and cells. Cell-penetrating peptides and intracellular targeting peptides have received particular focus due to their promise for improving the delivery of gene therapies into cells. We highlight key examples of peptide-assisted, targeted gene delivery to cancer-specific signatures involved in tumor growth and subcellular organelle–targeting peptides, as well as emerging strategies to enhance peptide stability and bioavailability that will support long-term implementation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101121-070232
2023-06-08
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/14/1/annurev-chembioeng-101121-070232.html?itemId=/content/journals/10.1146/annurev-chembioeng-101121-070232&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    US Food Drug Adm. 2021.. FDA, NIH, and 15 private organizations join forces to increase effective gene therapies for rare diseases. News Release, Oct. 27. https://www.fda.gov/news-events/press-announcements/fda-nih-and-15-private-organizations-join-forces-increase-effective-gene-therapies-rare-diseases
    [Google Scholar]
  2. 2.
    Seyhan AA. 2019.. Lost in translation: the valley of death across preclinical and clinical divide—identification of problems and overcoming obstacles. . Transl. Med. Commun. 4::18
    [Google Scholar]
  3. 3.
    Fogel DB. 2018.. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. . Contemp. Clin. Trials Commun. 11::15664
    [Google Scholar]
  4. 4.
    Mendonça SA, Lorincz R, Boucher P, Curiel DT. 2021.. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. . npj Vaccines 6::97
    [Google Scholar]
  5. 5.
    Yusuf H, Kett V. 2017.. Current prospects and future challenges for nasal vaccine delivery. . Hum. Vaccin. Immunother. 13::3445
    [Google Scholar]
  6. 6.
    Urello M, Hsu W-H, Christie RJ. 2020.. Peptides as a material platform for gene delivery: emerging concepts and converging technologies. . Acta Biomater. 117::4059
    [Google Scholar]
  7. 7.
    Kang Z, Meng Q, Liu K. 2019.. Peptide-based gene delivery vectors. . J. Mater. Chem. B 7::182441
    [Google Scholar]
  8. 8.
    Hadianamrei R, Zhao X. 2022.. Current state of the art in peptide-based gene delivery. . J. Control. Release 343::60019
    [Google Scholar]
  9. 9.
    Guo N, Gao C, Liu J, Li J, Liu N, et al. 2018.. Reversal of ovarian cancer multidrug resistance by a combination of LAH4-L1-siMDR1 nanocomplexes with chemotherapeutics. . Mol. Pharm. 15::185361
    [Google Scholar]
  10. 10.
    Zorko M, Langel Ü. 2022.. Studies of cell-penetrating peptides by biophysical methods. . Q. R. Biophys. 55::e3
    [Google Scholar]
  11. 11.
    Kong X, Xu J, Yang X, Zhai Y, Ji J, Zhai G. 2022.. Progress in tumour-targeted drug delivery based on cell-penetrating peptides. . J. Drug Target. 30::4660
    [Google Scholar]
  12. 12.
    Zorko M, Jones S, Langel Ü. 2022.. Cell-penetrating peptides in protein mimicry and cancer therapeutics. . Adv. Drug Deliv. Rev. 180::114044
    [Google Scholar]
  13. 13.
    Cerrato CP, Langel Ü. 2022.. An update on cell-penetrating peptides with intracellular organelle targeting. . Expert Opin. Drug Deliv. 19::13346
    [Google Scholar]
  14. 14.
    Torchilin V. 2008.. Intracellular delivery of protein and peptide therapeutics. . Drug Discov. Today 5::e95e103
    [Google Scholar]
  15. 15.
    Simons M, Gordon E, Claesson-Welsh L. 2016.. Mechanisms and regulation of endothelial VEGF receptor signalling. . Nat. Rev. Mol. Cell Biol. 17::61125
    [Google Scholar]
  16. 16.
    Roth L, Prahst C, Ruckdeschel T, Savant S, Weström S, et al. 2016.. Neuropilin-1 mediates vascular permeability independently of vascular endothelial growth factor receptor-2 activation. . Sci. Signal. 9::ra42
    [Google Scholar]
  17. 17.
    Liu Y, Wu X, Gao Y, Zhang J, Zhang D, et al. 2016.. Aptamer-functionalized peptide H3CR5C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma. . Int. J. Nanomed. 11::3891905
    [Google Scholar]
  18. 18.
    Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, et al. 2000.. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. . EMBO J. 19::152533
    [Google Scholar]
  19. 19.
    Lu L, Chen H, Wang L, Zhao L, Cheng Y, et al. 2020.. A dual receptor targeting- and BBB penetrating- peptide functionalized polyethyleneimine nanocomplex for secretory endostatin gene delivery to malignant glioma. . Int. J. Nanomed. 15::887592
    [Google Scholar]
  20. 20.
    Bausch D, Thomas S, Mino-Kenudson M, Fernández-del CC, Bauer TW, et al. 2011.. Plectin-1 as a novel biomarker for pancreatic cancer. . Clin. Cancer Res. 17::3029
    [Google Scholar]
  21. 21.
    Leung K. 2011.. 111In-tetrameric plectin-1 targeting peptide (4(βAKTLLPTP-GGS (PEG5000))KKK-111In-DOTA-βA-NH2). . In Molecular Imaging and Contrast Agent Database. Bethesda, MD:: Natl. Cent. Biotechnol. Inf.
    [Google Scholar]
  22. 22.
    Li Y, Wang H, Wang K, Hu Q, Yao Q, et al. 2017.. Targeted co-delivery of PTX and TR3 siRNA by PTP peptide modified dendrimer for the treatment of pancreatic cancer. . Small 2::1602697
    [Google Scholar]
  23. 23.
    Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. 2003.. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. . J. Clin. Investig. 112::153340
    [Google Scholar]
  24. 24.
    Yamamoto M, Ikeda K, Ohshima K, Tsugu H, Kimura H, Tomonaga M. 1998.. Expression and cellular localization of low-density lipoprotein receptor-related protein/α2-macroglobulin receptor in human glioblastoma in vivo. . Brain Tumor Pathol. 15::2330
    [Google Scholar]
  25. 25.
    Demeule M, Currie J-C, Bertrand Y, Ché C, Nguyen T, et al. 2008.. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. . J. Neurochem. 106::153444
    [Google Scholar]
  26. 26.
    Srimanee A, Arvanitidou M, Kim K, Hällbrink M, Langel Ü. 2018.. Cell-penetrating peptides for siRNA delivery to glioblastomas. . Peptides 104::6269
    [Google Scholar]
  27. 27.
    Grosse SM, Tagalakis AD, Mustapa MFM, Elbs M, Meng QH, et al. 2010.. Tumor-specific gene transfer with receptor-mediated nanocomplexes modified by polyethylene glycol shielding and endosomally cleavable lipid and peptide linkers. . FASEB J. 24::230113
    [Google Scholar]
  28. 28.
    Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, et al. 1994.. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. . Cell 79::115764
    [Google Scholar]
  29. 29.
    Cen B, Wei Y, Huang W, Teng M, He S, et al. 2018.. An efficient bivalent cyclic RGD-PIK3CB siRNA conjugate for specific targeted therapy against glioblastoma in vitro and in vivo. . Mol. Ther. 13::22032
    [Google Scholar]
  30. 30.
    Malik G, Knowles LM, Dhir R, Xu S, Yang S, et al. 2010.. Plasma fibronectin promotes lung metastasis by contributions to fibrin clots and tumor cell. . Cancer Res. 70::432734
    [Google Scholar]
  31. 31.
    Yao ES, Zhang H, Chen Y-Y, Lee B, Chew K, et al. 2007.. Increased β1 integrin is associated with decreased survival in invasive breast cancer. . Cancer Res. 67::65964
    [Google Scholar]
  32. 32.
    Zhang C, Yuan W, Wu Y, Wan X, Gong Y. 2021.. Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. . Life Sci. 266::118886
    [Google Scholar]
  33. 33.
    Lee HS, Park CB, Kim JM, Jang SA, Park IY, et al. 2008.. Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. . Cancer Lett. 271::4755
    [Google Scholar]
  34. 34.
    Cho JH, Sung BH, Kim SC. 2009.. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. . Biochim. Biophys. Acta Biomembr. 1788::156469
    [Google Scholar]
  35. 35.
    Lee YW, Hwang YE, Lee JY, Sohn J-H, BH Sung, Kim SC. 2018.. VEGF siRNA delivery by a cancer-specific cell-penetrating peptide. . J. Microbiol. Biotechnol. 28::36774
    [Google Scholar]
  36. 36.
    Ji F, Sha H, Meng F, Zhu A, Ding N, et al. 2018.. Tumor-penetrating peptide fused EGFR single-domain antibody enhances radiation responses following EGFR inhibition in gastric cancer. . Oncol. Rep. 40::158391
    [Google Scholar]
  37. 37.
    Pierantoni GM, Paladino S. 2020.. Cell-penetrating peptides: two faces of the same coin. . Biochem. J. 477::136366
    [Google Scholar]
  38. 38.
    Meehan TF, Masci AM, Abdulla A, Cowell LG, Blake JA, et al. 2011.. Logical development of the cell ontology. . BMC Bioinform. 12::6
    [Google Scholar]
  39. 39.
    Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, et al. 2009.. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. . Hum. Mol. Genet. 18::207890
    [Google Scholar]
  40. 40.
    Bauer-Mehren A, Rautschka M, Sanz F, Furlong LI. 2010.. DisGeNET: a Cytoscape plugin to visualize, integrate, search and analyze gene–disease networks. . Bioinformatics 26::292426
    [Google Scholar]
  41. 41.
    Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. 2007.. The human disease network. . PNAS 104::868590
    [Google Scholar]
  42. 42.
    Rutishauser J, Spiess M. 2002.. Endoplasmic reticulum storage diseases. . Swiss Med. Wkly. 132::21122
    [Google Scholar]
  43. 43.
    Durymanov M, Reineke J. 2018.. Non-viral delivery of nucleic acids: insight into mechanisms of overcoming intracellular barriers. . Front. Pharmacol. 9::971
    [Google Scholar]
  44. 44.
    Pollard H, Remy J-S, Loussouarn G, Demolombe S, Behr J-P, Escande D. 1998.. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. . J. Biol. Chem. 273::750711
    [Google Scholar]
  45. 45.
    Strunze S, Trotman LC, Boucke K, Greber UF. 2005.. Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. . Mol. Biol. Cell 16::29993009
    [Google Scholar]
  46. 46.
    Escriou V, Carrière M, Scherman D, Wils P. 2003.. NLS bioconjugates for targeting therapeutic genes to the nucleus. . Adv. Drug Deliv. Rev. 55::295306
    [Google Scholar]
  47. 47.
    Yasuhara N, Takeda E, Inoue H, Kotera I, Yoneda Y. 2004.. Importin α/β-mediated nuclear protein import is regulated in a cell cycle-dependent manner. . Exp. Cell Res. 297::28593
    [Google Scholar]
  48. 48.
    Robbins J, Dilworth SM, Laskey RA, Dingwall C. 1991.. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. . Cell 64::61523
    [Google Scholar]
  49. 49.
    Wang H-Y, Chen J-X, Sun Y-X, Deng J-Z, Li C, et al. 2011.. Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. . J. Control. Release 155::2633
    [Google Scholar]
  50. 50.
    Dehghani S, Alibolandi M, Tehranizadeh ZA, Oskuee RK, Nosrati R, et al. 2021.. Self-assembly of an aptamer-decorated chimeric peptide nanocarrier for targeted cancer gene delivery. . Colloids Surf. B 208::112047
    [Google Scholar]
  51. 51.
    Yan C, Gu J, Zhang Y, Ma K, Lee RJ. 2022.. Efficient delivery of the Bcl-2 antisense oligonucleotide G3139 via nucleus-targeted aCD33-NKSN nanoparticles. . Int. J. Pharm. 625::122074
    [Google Scholar]
  52. 52.
    Zwerger M, Ho CY, Lammerding J. 2011.. Nuclear mechanics in disease. . Annu. Rev. Biomed. Eng. 13::397428
    [Google Scholar]
  53. 53.
    Anna A, Monika G. 2018.. Splicing mutations in human genetic disorders: examples, detection, and confirmation. . J. Appl. Genet. 59::25368
    [Google Scholar]
  54. 54.
    Tarvirdipour S, Skowicki M, Schoenenberger C-A, Kapinos LE, Lim RYH, et al. 2022.. A self-assembling peptidic platform to boost the cellular uptake and nuclear delivery of oligonucleotides. . Biomater. Sci. 10::430923
    [Google Scholar]
  55. 55.
    Panigrahi B, Singh RK, Suryakant U, Mishra S, Potnis AA, et al. 2022.. Cyclic peptides nanospheres: a ‘2-in-1’ self-assembled delivery system for targeting nucleus and cytoplasm. . Eur. J. Pharm. Sci. 171::106125
    [Google Scholar]
  56. 56.
    Panigrahi B, Singh RK, Mishra S, Mandal D. 2018.. Cyclic peptide-based nanostructures as efficient siRNA carriers. . Artif. Cells Nanomed. Biotechnol. 46::S763S73
    [Google Scholar]
  57. 57.
    Gaurav N, Tripathi PK, Kumar V, Chugh A, Sundd M, Patel AK. 2021.. Role of nuclear localization signals in the DNA delivery function of Chikungunya virus capsid protein. . Arch. Biochem. Biophys. 702::108822
    [Google Scholar]
  58. 58.
    Gronewold A, Horn M, Neundorf I. 2018.. Design and biological characterization of novel cell-penetrating peptides preferentially targeting cell nuclei and subnuclear regions. . Beilstein J. Org. Chem. 14::137888
    [Google Scholar]
  59. 59.
    Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, et al. 2016.. Mitochondrial diseases. . Nat. Rev. Dis. Primers 2::16080
    [Google Scholar]
  60. 60.
    Faria R, Vivés E, Boisguerin P, Sousa A, Costa D. 2021.. Development of peptide-based nanoparticles for mitochondrial plasmid DNA delivery. . Polymers 13::1836
    [Google Scholar]
  61. 61.
    Yoshinaga N, Numata K. 2022.. Rational designs at the forefront of mitochondria-targeted gene delivery: recent progress and future perspectives. . ACS Biomater. Sci. Eng. 8::34859
    [Google Scholar]
  62. 62.
    Cerrato CP, Kivijärvi T, Tozzi R, Lehto T, Gestin M, Langel Ü. 2020.. Intracellular delivery of therapeutic antisense oligonucleotides targeting mRNA coding mitochondrial proteins by cell-penetrating peptides. . J. Mater. Chem. B 8::1082536
    [Google Scholar]
  63. 63.
    Chuah J-A, Matsugami A, Hayashi F, Numata K. 2016.. Self-assembled peptide-based system for mitochondrial-targeted gene delivery: functional and structural insights. . Biomacromolecules 17::354757
    [Google Scholar]
  64. 64.
    Ishikawa T, Somiya K, Munechika R, Harashima H, Yamada Y. 2018.. Mitochondrial transgene expression via an artificial mitochondrial DNA vector in cells from a patient with a mitochondrial disease. . J. Control. Release 274::10917
    [Google Scholar]
  65. 65.
    Yamada Y, Furukawa R, Harashima H. 2016.. A dual-ligand liposomal system composed of a cell-penetrating peptide and a mitochondrial RNA aptamer synergistically facilitates cellular uptake and mitochondrial targeting. . J. Pharm. Sci. 105::170513
    [Google Scholar]
  66. 66.
    Rajkumar V, Dumpa V. 2020.. Lysosomal storage disease. . In StatPearls. Treasure Island, FL:: StatPearls Publ
    [Google Scholar]
  67. 67.
    Arends M, Wanner C, Hughes D, Mehta A, Oder D, et al. 2017.. Characterization of classical and nonclassical Fabry disease: a multicenter study. . J. Am. Soc. Nephrol. 28::163141
    [Google Scholar]
  68. 68.
    Iwasaki T, Murakami N, Kawano T. 2020.. A polylysine–polyhistidine fusion peptide for lysosome-targeted protein delivery. . Biochem. Biophys. Res. Commun. 533::90512
    [Google Scholar]
  69. 69.
    Hayashi T, Shinagawa M, Kawano T, Iwasaki T. 2018.. Drug delivery using polyhistidine peptide-modified liposomes that target endogenous lysosome. . Biochem. Biophs. Res. Commun. 501::64853
    [Google Scholar]
  70. 70.
    Liu J, Huang Y, Li T, Jiang Z, Zeng L, Hu Z. 2021.. The role of the Golgi apparatus in disease (review). . Int. J. Mol. Med. 47::38
    [Google Scholar]
  71. 71.
    Acharya S, Hill RA. 2014.. High efficacy gold-KDEL peptide-siRNA nanoconstruct-mediated transfection in C2C12 myoblasts and myotubes. . Nanomedicine 10::32937
    [Google Scholar]
  72. 72.
    Townsley FM, Wilson DW, Pelham HR. 1993.. Mutational analysis of the human KDEL receptor: distinct structural requirements for Golgi retention, ligand binding and retrograde transport. . EMBO J. 12::282129
    [Google Scholar]
  73. 73.
    Shi Y, Zhu C, Liu Y, Lu Y, Li X, et al. 2021.. A vaccination with boosted cross presentation by ER-targeted antigen delivery for anti-tumor immunotherapy. . Adv. Healthc. Mater. 10::2001934
    [Google Scholar]
  74. 74.
    Shai Y, Fox J, Caratsch C, Shih Y-L, Edwards C, Lazarovici P. 1988.. Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity. . FEBS Lett. 242::16166
    [Google Scholar]
  75. 75.
    Cavaco M, Andreu D, Castanho MA. 2021.. The challenge of peptide proteolytic stability studies: scarce data, difficult readability, and the need for harmonization. . Angew. Chem. Int. Ed. 60::168688
    [Google Scholar]
  76. 76.
    Di L. 2015.. Strategic approaches to optimizing peptide ADME properties. . AAPS J. 17::13443
    [Google Scholar]
  77. 77.
    Avan I, Hall CD, Katritzky AR. 2014.. Peptidomimetics via modifications of amino acids and peptide bonds. . Chem. Soc. Rev. 43::357594
    [Google Scholar]
  78. 78.
    Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, et al. 2009.. A new potent secondary amphipathic cell–penetrating peptide for siRNA delivery into mammalian cells. . Mol. Ther. 17::95103
    [Google Scholar]
  79. 79.
    Vaissière A, Aldrian G, Konate K, Lindberg MF, Jourdan C, et al. 2017.. A retro-inverso cell-penetrating peptide for siRNA delivery. . J. Nanobiotechnol. 15::34
    [Google Scholar]
  80. 80.
    Li X, Xie Z, Xie C, Lu W, Gao C, et al. 2015.. D-SP5 peptide-modified highly branched polyethylenimine for gene therapy of gastric adenocarcinoma. . Bioconj. Chem. 26::1494503
    [Google Scholar]
  81. 81.
    Zheng W, Magid MS, Kramer EE, Chen Y-T. 1996.. Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. . Am. J. Pathol. 148::4753
    [Google Scholar]
  82. 82.
    Agris PF, Guenther RH, Sierzputowska-Gracz H, Easter L, Smith W, et al. 1992.. Solution structure of a synthetic peptide corresponding to a receptor binding region of FSH (hFSH-β 33–53). . J. Protein Chem. 11::495507
    [Google Scholar]
  83. 83.
    Zhang M, Zhang M, Wang J, Cai Q, Zhao R, et al. 2018.. Retro-inverso follicle-stimulating hormone peptide-mediated polyethylenimine complexes for targeted ovarian cancer gene therapy. . Drug Deliv. 25::9951003
    [Google Scholar]
  84. 84.
    Mandal D, Mohammed EHM, Lohan S, Mandipoor P, Baradaran D, et al. 2022.. Redox-responsive disulfide cyclic peptides: a new strategy for siRNA delivery. . Mol. Pharm. 19::133855
    [Google Scholar]
  85. 85.
    Egorova A, Shtykalova S, Maretina M, Selutin A, Shved N, et al. 2022.. Polycondensed peptide carriers modified with cyclic RGD ligand for targeted suicide gene delivery to uterine fibroid cells. . Int. J. Mol. Sci. 23::1164
    [Google Scholar]
  86. 86.
    Buyanova M, Sahni A, Yang R, Sarkar A, Salim H, Pei D. 2022.. Discovery of a cyclic cell-penetrating peptide with improved endosomal escape and cytosolic delivery efficiency. . Mol. Pharm. 19::137888
    [Google Scholar]
  87. 87.
    Lopes LB, Furnish EJ, Komalavilas P, Flynn CR, Ashby P, et al. 2009.. Cell permeant peptide analogues of the small heat shock protein, HSP20, reduce TGF-β1-induced CTGF expression in keloid fibroblasts. . J. Investig. Dermatol. 129::59098
    [Google Scholar]
  88. 88.
    Flynn CR, Cheung-Flynn J, Smoke CC, Lowry D, Roberson R, et al. 2010.. Internalization and intracellular trafficking of a PTD-conjugated anti-fibrotic peptide, AZX100, in human dermal keloid fibroblasts. . J. Pharm. Sci. 99::310021
    [Google Scholar]
  89. 89.
    PEP Ther. 2022.. Products. https://pep-therapy.com/products/
    [Google Scholar]
  90. 90.
    Boehringer Ingelheim. 2022.. KISIMA™ cancer vaccine (ATP-128). https://www.inoncology.com/us/ourpipeline/KISIMAcancervaccine
    [Google Scholar]
  91. 91.
    [Google Scholar]
  92. 92.
    Meric-Bernstam F, Somaiah N, DuBois S, Dumbrava EI, Shapiro G, et al. 2019.. A phase IIa clinical trial combining ALRN-6924 and palbociclib for the treatment of patients with tumours harboring wild-type p53 and MDM2 amplification or MDM2/CDK4 co-amplification. . Ann. Oncol. 30::v179v80
    [Google Scholar]
  93. 93.
    Kristensen M, Birch D, Mørck Nielsen H. 2016.. Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. . Int. J. Mol. Sci. 17::185
    [Google Scholar]
  94. 94.
    Sarepta Ther. 2022.. Sarepta Therapeutics announces that FDA has lifted its clinical hold on SRP-5051 for the treatment of Duchenne muscular dystrophy. . Global Newswire, Sept. 6. https://www.globenewswire.com/news-release/2022/09/06/2510416/36419/en/Sarepta-Therapeutics-Announces-That-FDA-has-Lifted-its-Clinical-Hold-on-SRP-5051-for-the-Treatment-of-Duchenne-Muscular-Dystrophy.html
    [Google Scholar]
  95. 95.
    Revance. 2022.. Revance announces FDA approval of DAXXIFYTM(daxibotulinumtoxinA-lanm) for injection, the first and only peptide-formulated neuromodulator with long-lasting results. Press Release, Sept. 8. https://investors.revance.com/news-releases/news-release-details/revance-announces-fda-approval-daxxifytm-daxibotulinumtoxina
    [Google Scholar]
  96. 96.
    US Food Drug Adm. 2021.. FDA D.I.S.C.O. Burst: approval of Pepaxto (melphalan flufenamide) in combination with dexamethasone for adult patients with relapsed or refractory multiple myeloma who have received at least four lines of prior therapy. Resour. , US Food Drug Adm., Washington, DC:. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-approval-pepaxto-melphalan-flufenamide-combination-dexamethasone-adult-patients
    [Google Scholar]
  97. 97.
    Twyffels L, Gueydan C, Kruys V. 2014.. Transportin-1 and Transportin-2: protein nuclear import and beyond. . FEBS Lett. 588::185768
    [Google Scholar]
  98. 98.
    Huang S, Zhu Z, Jia B, Zhang W, Song J. 2021.. Design of acid-activated cell-penetrating peptides with nuclear localization capacity for anticancer drug delivery. . J. Peptide Sci. 27::e3354
    [Google Scholar]
  99. 99.
    Ding Y, Zhao X, Geng J, Guo X, Ma J, et al. 2019.. Intracellular delivery of nucleic acid by cell-permeable hPP10 peptide. . J. Cell. Physiol. 234::1167078
    [Google Scholar]
  100. 100.
    Cosme PJ, Ye J, Sears S, Wojcikiewicz EP, Terentis AC. 2018.. Label-free confocal Raman mapping of transportan in melanoma cells. . Mol. Pharm. 15::85160
    [Google Scholar]
  101. 101.
    Dang CV, Lee W. 1988.. Identification of the human c-myc protein nuclear translocation signal. . Mol. Cell. Biol. 8::404854
    [Google Scholar]
  102. 102.
    Nakielny S, Siomi MC, Siomi H, Michael WM, Pollard V, Dreyfuss G. 1996.. Transportin: nuclear transport receptor of a novel nuclear protein import pathway. . Exp. Cell Res. 229::26166
    [Google Scholar]
  103. 103.
    Jenkins Y, McEntee M, Weis K, Greene WC. 1998.. Characterization of HIV-1 Vpr nuclear import: analysis of signals and pathways. . J. Cell Biol. 143::87585
    [Google Scholar]
  104. 104.
    Hurt EC, Müller U, Schatz G. 1985.. The first twelve amino acids of a yeast mitochondrial outer membrane protein can direct a nuclear-coded cytochrome oxidase subunit to the mitochondrial inner membrane. . EMBO J. 4::350918
    [Google Scholar]
  105. 105.
    Yilmaz N, Kodama Y, Numata K. 2021.. Lipid membrane interaction of peptide/DNA complexes designed for gene delivery. . Langmuir 37::188293
    [Google Scholar]
  106. 106.
    Mink C, Strandberg E, Wadhwani P, Melo MN, Reichert J, et al. 2021.. Overlapping properties of the short membrane-active peptide BP100 with (i) polycationic TAT and (ii) α-helical magainin family peptides. . Front. Cell Infect. Microbiol. 11::609542
    [Google Scholar]
  107. 107.
    Howl J, Howl L, Jones S. 2018.. The cationic tetradecapeptide mastoparan as a privileged structure for drug discovery: enhanced antimicrobial properties of mitoparan analogues modified at position-14. . Peptides 101::95105
    [Google Scholar]
  108. 108.
    Cerrato CP, Pirisinu M, Vlachos EN, Langel Ü. 2015.. Novel cell-penetrating peptide targeting mitochondria. . FASEB J. 29::458999
    [Google Scholar]
  109. 109.
    Soliman A, Laurie J, Bilichak A, Ziemienowicz A. 2022.. Applications of CPPs in genome editing of plants. . In Cell Penetrating Peptides, ed. Ü Langel , pp. 595616 Meth. Mol. Biol. 2383 . New York:: Humana
    [Google Scholar]
  110. 110.
    Lin R, Zhang P, Cheetham AG, Walston J, Abadir P, Cui H. 2015.. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. . Bioconjugate Chem. 26::7177
    [Google Scholar]
  111. 111.
    Qifan W, Fen N, Ying X, Xinwei F, Jun D, Ge Z. 2016.. iRGD-targeted delivery of a pro-apoptotic peptide activated by cathepsin B inhibits tumor growth and metastasis in mice. . Tumor Biol. 37::1064352
    [Google Scholar]
  112. 112.
    Jain A, Chugh A. 2016.. Mitochondrial transit peptide exhibits cell penetration ability and efficiently delivers macromolecules to mitochondria. . FEBS Lett. 590::2896905
    [Google Scholar]
  113. 113.
    Woldetsadik AD, Vogel MC, Rabeh WM, Magzoub M. 2017.. Hexokinase II–derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. . FASEB J. 31::216884
    [Google Scholar]
  114. 114.
    Hunt H, Simón-Gracia L, Tobi A, Kotamraju VR, Sharma S, et al. 2017.. Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. . J. Control. Release 260::14253
    [Google Scholar]
  115. 115.
    Behnke J, Eskelinen E-L, Saftig P, Schröder B. 2011.. Two dileucine motifs mediate late endosomal/lysosomal targeting of transmembrane protein 192 (TMEM192) and a C-terminal cysteine residue is responsible for disulfide bond formation in TMEM192 homodimers. . Biochem. J. 434::21931
    [Google Scholar]
  116. 116.
    Navarro AP, Cheeseman IM. 2022.. Identification of a Golgi-localized peptide reveals a minimal Golgi-targeting motif. . Mol. Biol. Cell 33::ar110
    [Google Scholar]
  117. 117.
    Sneh-Edri H, Likhtenshtein D, Stepensky D. 2011.. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. . Mol. Pharm. 8::126675
    [Google Scholar]
  118. 118.
    Munro S, Pelham HR. 1987.. A C-terminal signal prevents secretion of luminal ER proteins. . Cell 48::899907
    [Google Scholar]
  119. 119.
    Ting C-H, Huang H-N, Huang T-C, Wu C-J, Chen J-Y. 2014.. The mechanisms by which pardaxin, a natural cationic antimicrobial peptide, targets the endoplasmic reticulum and induces c-FOS. . Biomaterials 35::362740
    [Google Scholar]
  120. 120.
    Swiecicki J-M, Di Pisa M, Lippi F, Chwetzoff S, Mansuy C, et al. 2015.. Unsaturated acyl chains dramatically enhanced cellular uptake by direct translocation of a minimalist oligo-arginine lipopeptide. . Chem. Comm. 51::1465659
    [Google Scholar]
  121. 121.
    Cousins MJ, Pickthorn K, Huang S, Critchley L, Bell G. 2013.. The safety and efficacy of KAI-1678—an inhibitor of epsilon protein kinase C (ϵPKC)—versus lidocaine and placebo for the treatment of postherpetic neuralgia: a crossover study design. . Pain Med. 14::53340
    [Google Scholar]
  122. 122.
    Revance. 2022.. Setting the new standard in therapeutics. https://www.revance.com/therapeutics/
    [Google Scholar]
  123. 123.
    Xigen SA. 2016.. Efficacy and safety of XG-102 in reduction of post-cataract surgery intraocular inflammation and pain. Clin. Trial NCT02508337 , US Natl. Lib. Med., Natl. Inst. Health, Bethesda, MD:. https://clinicaltrials.gov/ct2/show/NCT02508337
    [Google Scholar]
  124. 124.
    Yamada T, Mehta RR, Lekmine F, Christov K, King ML, et al. 2009.. A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells. . Mol. Cancer Ther. 8::294758
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101121-070232
Loading
/content/journals/10.1146/annurev-chembioeng-101121-070232
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error