1932

Abstract

Electrocatalytic conversion of carbon dioxide to valuable chemicals and fuels driven by renewable energy plays a crucial role in achieving net-zero carbon emissions. Understanding the structure–activity relationship and the reaction mechanism is significant for tuning electrocatalyst selectivity. Therefore, characterizing catalyst dynamic evolution and reaction intermediates under reaction conditions is necessary but still challenging. We first summarize the most recent progress in mechanistic understanding of heterogeneous CO/CO reduction using in situ/operando techniques, including surface-enhanced vibrational spectroscopies, X-ray- and electron-based techniques, and mass spectroscopy, along with discussing remaining limitations. We then offer insights and perspectives to accelerate the future development of in situ/operando techniques.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101121-071735
2023-06-08
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/14/1/annurev-chembioeng-101121-071735.html?itemId=/content/journals/10.1146/annurev-chembioeng-101121-071735&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, Mac Dowell N et al. 2019. The technological and economic prospects for CO2 utilization and removal. Nature 575:87–97
    [Google Scholar]
  2. 2.
    Jouny M, Luc W, Jiao F. 2018. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1:748–55
    [Google Scholar]
  3. 3.
    Luc W, Fu X, Shi J, Lv J-J, Jouny M et al. 2019. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2:423–30
    [Google Scholar]
  4. 4.
    De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. 2019. What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science 364:350
    [Google Scholar]
  5. 5.
    Gabardo CM, O'Brien CP, Edwards JP, McCallum C, Xu Y et al. 2019. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3:2777–91
    [Google Scholar]
  6. 6.
    Handoko AD, Wei F, Jenndy Yeo BS, Seh ZW 2018. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1:922–34
    [Google Scholar]
  7. 7.
    Zhu Y, Wang J, Chu H, Chu Y-C, Chen HM. 2020. In situ/operando studies for designing next-generation electrocatalysts. ACS Energy Lett. 5:1281–91
    [Google Scholar]
  8. 8.
    Khanipour P, Loffler M, Reichert AM, Haase FT, Mayrhofer KJJ, Katsounaros I. 2019. Electrochemical real-time mass spectrometry (EC-RTMS): monitoring electrochemical reaction products in real time. Angew. Chem. Int. Ed. 58:7273–77
    [Google Scholar]
  9. 9.
    Löffler M, Khanipour P, Kulyk N, Mayrhofer KJJ, Katsounaros I. 2020. Insights into liquid product formation during carbon dioxide reduction on copper and oxide-derived copper from quantitative real-time measurements. ACS Catal. 10:6735–40
    [Google Scholar]
  10. 10.
    Dutta A, Rahaman M, Hecker B, Drnec J, Kiran K et al. 2020. CO2 electrolysis—complementary operando XRD, XAS and Raman spectroscopy study on the stability of CuxO foam catalysts. J. Catal. 389:592–603
    [Google Scholar]
  11. 11.
    Schlüter N, Novák P, Schröder D. 2022. Nonlinear electrochemical analysis: worth the effort to reveal new insights into energy materials. Adv. Energy Mater. 12:2200708.
    [Google Scholar]
  12. 12.
    Mendoza D, Dong S-T, Lassalle-Kaiser B. 2022. In situ/operando X-ray spectroscopy applied to electrocatalytic CO2 reduction: status and perspectives. Curr. Opin. Colloid Interface Sci. 61:101635
    [Google Scholar]
  13. 13.
    Li X, Wang S, Li L, Sun Y, Xie Y. 2020. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 142:9567–81
    [Google Scholar]
  14. 14.
    Cao X, Tan D, Wulan B, Hui KS, Hui KN et al. 2021. In situ characterization for boosting electrocatalytic carbon dioxide reduction. Small Methods 5:2100700
    [Google Scholar]
  15. 15.
    Zhao Y, Chang X, Malkani AS, Yang X, Thompson L et al. 2020. Speciation of Cu surfaces during the electrochemical CO reduction reaction. J. Am. Chem. Soc. 142:9735–43
    [Google Scholar]
  16. 16.
    Chang X, Zhao Y, Xu B. 2020. pH dependence of Cu surface speciation in the electrochemical CO reduction reaction. ACS Catal. 10:13737–47
    [Google Scholar]
  17. 17.
    Malkani AS, Li J, Oliveira NJ, He M, Chang X et al. 2020. Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. Sci. Adv. 6:eabd2569
    [Google Scholar]
  18. 18.
    Malkani AS, Anibal J, Chang X, Xu B. 2020. Bridging the gap in the mechanistic understanding of electrocatalysis via in situ characterizations. iScience 23:101776
    [Google Scholar]
  19. 19.
    Wang X, de Araujo JF, Ju W, Bagger A, Schmies H et al. 2019. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14:1063–70
    [Google Scholar]
  20. 20.
    Moller T, Scholten F, Thanh TN, Sinev I, Timoshenko J et al. 2020. Electrocatalytic CO2 reduction on CuOx nanocubes: tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem. Int. Ed. 59:17974–83
    [Google Scholar]
  21. 21.
    Lin SC, Chang CC, Chiu SY, Pai HT, Liao TY et al. 2020. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 11:3525
    [Google Scholar]
  22. 22.
    Farmand M, Landers AT, Lin JC, Feaster JT, Beeman JW et al. 2019. Electrochemical flow cell enabling operando probing of electrocatalyst surfaces by X-ray spectroscopy and diffraction. Phys. Chem. Chem. Phys. 21:5402–8
    [Google Scholar]
  23. 23.
    Arán-Ais RM, Rizo R, Grosse P, Algara-Siller G, Dembele K et al. 2020. Imaging electrochemically synthesized Cu2O cubes and their morphological evolution under conditions relevant to CO2 electroreduction. Nat. Commun. 11:3489
    [Google Scholar]
  24. 24.
    Simon GH, Kley CS, Roldan Cuenya B. 2020. Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 60:2561–68
    [Google Scholar]
  25. 25.
    Grosse P, Gao D, Scholten F, Sinev I, Mistry H, Roldan Cuenya B. 2018. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew. Chem. Int. Ed. 57:6192–97
    [Google Scholar]
  26. 26.
    Jiang K, Huang Y, Zeng G, Toma FM, Goddard WA, Bell AT. 2020. Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Lett. 5:1206–14
    [Google Scholar]
  27. 27.
    Bergmann A, Roldan Cuenya B. 2019. Operando insights into nanoparticle transformations during catalysis. ACS Catal. 9:10020–43
    [Google Scholar]
  28. 28.
    Zhang Y, Guo S-X, Zhang X, Bond AM, Zhang J. 2020. Mechanistic understanding of the electrocatalytic CO2 reduction reaction—new developments based on advanced instrumental techniques. Nano Today 31:100835
    [Google Scholar]
  29. 29.
    Dwyer JR, Harb M. 2017. Through a window, brightly: a review of selected nanofabricated thin-film platforms for spectroscopy, imaging, and detection. Appl. Spectrosc. 71:2051–75
    [Google Scholar]
  30. 30.
    Vavra J, Shen TH, Stoian D, Tileli V, Buonsanti R. 2021. Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. Int. Ed. 60:1347–54
    [Google Scholar]
  31. 31.
    Kaliva M, Vamvakaki M. 2020. Chapter 17: nanomaterials characterization. Polymer Science and Nanotechnology R Narain 401–33. Amsterdam: Elsevier
    [Google Scholar]
  32. 32.
    Scott SB, Hogg TV, Landers AT, Maagaard T, Bertheussen E et al. 2019. Absence of oxidized phases in Cu under CO reduction conditions. ACS Energy Lett. 4:803–4
    [Google Scholar]
  33. 33.
    Ahn S, Klyukin K, Wakeham RJ, Rudd JA, Lewis AR et al. 2018. Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 8:4132–42
    [Google Scholar]
  34. 34.
    Zhai Y, Han P, Yun Q, Ge Y, Zhang X et al. 2022. Phase engineering of metal nanocatalysts for electrochemical CO2 reduction. eScience 2:467–85
    [Google Scholar]
  35. 35.
    Sheng W, Kattel S, Yao S, Yan B, Liang Z et al. 2017. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 10:1180–85
    [Google Scholar]
  36. 36.
    Timoshenko J, Roldan Cuenya B. 2021. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121:882–961
    [Google Scholar]
  37. 37.
    Jeon HS, Timoshenko J, Scholten F, Sinev I, Herzog A et al. 2019. Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction. J. Am. Chem. Soc. 141:19879–87
    [Google Scholar]
  38. 38.
    Ebaid M, Jiang K, Zhang Z, Drisdell WS, Bell AT, Cooper JK. 2020. Production of C2/C3 oxygenates from planar copper nitride-derived mesoporous copper via electrochemical reduction of CO2. Chem. Mater. 32:3304–11
    [Google Scholar]
  39. 39.
    Gao D, Arán-Ais RM, Jeon HS, Roldan Cuenya B. 2019. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2:198–210
    [Google Scholar]
  40. 40.
    Li F, Li YC, Wang Z, Li J, Nam D-H et al. 2019. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3:75–82
    [Google Scholar]
  41. 41.
    Chou TC, Chang CC, Yu HL, Yu WY, Dong CL et al. 2020. Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. J. Am. Chem. Soc. 142:2857–67
    [Google Scholar]
  42. 42.
    Ko BH, Hasa B, Shin H, Jeng E, Overa S et al. 2020. The impact of nitrogen oxides on electrochemical carbon dioxide reduction. Nat. Commun. 11:5856
    [Google Scholar]
  43. 43.
    Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT et al. 2015. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137:9808–11
    [Google Scholar]
  44. 44.
    Lee SH, Sullivan I, Larson DM, Liu G, Toma FM et al. 2020. Correlating oxidation state and surface area to activity from operando studies of copper CO electroreduction catalysts in a gas-fed device. ACS Catal. 10:8000–11
    [Google Scholar]
  45. 45.
    Zhao Y, Du L, Li H, Xie W, Chen J 2019. Is the Suzuki-Miyaura cross-coupling reaction in the presence of Pd nanoparticles heterogeneously or homogeneously catalyzed? An interfacial surface-enhanced Raman spectroscopy study. J. Phys. Chem. Lett. 10:1286–91
    [Google Scholar]
  46. 46.
    Zhao Y, Zhang X-G, Bodappa N, Yang W-M, Liang Q et al. 2022. Elucidating electrochemical CO2 reduction reaction processes on Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy. Energy Environ. Sci. 15:3968–77
    [Google Scholar]
  47. 47.
    Ren D, Ang BS-H, Yeo BS. 2016. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6:8239–47
    [Google Scholar]
  48. 48.
    Dutta A, Kuzume A, Rahaman M, Vesztergom S, Broekmann P. 2015. Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study. ACS Catal. 5:7498–502
    [Google Scholar]
  49. 49.
    Yang H, Hu Y-W, Chen J-J, Balogun MS, Fang P-P et al. 2019. Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 9:1901396
    [Google Scholar]
  50. 50.
    He M, Li C, Zhang H, Chang X, Chen JG et al. 2020. Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis. Nat. Commun. 11:3844
    [Google Scholar]
  51. 51.
    Li F, Thevenon A, Rosas-Hernández A, Wang Z, Li Y et al. 2020. Molecular tuning of CO2-to-ethylene conversion. Nature 577:509–13
    [Google Scholar]
  52. 52.
    Weitzner SE, Akhade SA, Varley JB, Wood BC, Otani M et al. 2020. Toward engineering of solution microenvironments for the CO2 reduction reaction: unraveling pH and voltage effects from a combined density-functional–continuum theory. J. Phys. Chem. Lett. 11:4113–18
    [Google Scholar]
  53. 53.
    Gao J, Zhang H, Guo X, Luo J, Zakeeruddin SM et al. 2019. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141:18704–14
    [Google Scholar]
  54. 54.
    Chen X, Henckel DA, Nwabara UO, Li Y, Frenkel AI et al. 2020. Controlling speciation during CO2 reduction on Cu-alloy electrodes. ACS Catal. 10:672–82
    [Google Scholar]
  55. 55.
    Zeng Z-C, Hu S, Huang S-C, Zhang Y-J, Zhao W-X et al. 2016. Novel electrochemical Raman spectroscopy enabled by water immersion objective. Anal. Chem. 88:9381–85
    [Google Scholar]
  56. 56.
    Luo M, Wang Z, Li YC, Li J, Li F et al. 2019. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 10:5814
    [Google Scholar]
  57. 57.
    Lu X, Zhu C, Wu Z, Xuan J, Francisco JS, Wang H 2020. In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. 142:15438–44
    [Google Scholar]
  58. 58.
    Henckel DA, Counihan MJ, Holmes HE, Chen X, Nwabara UO et al. 2020. Potential dependence of the local pH in a CO2 reduction electrolyzer. ACS Catal. 11:255–63
    [Google Scholar]
  59. 59.
    Lv J-J, Jouny M, Luc W, Zhu W, Zhu J-J, Jiao F. 2018. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30:1803111
    [Google Scholar]
  60. 60.
    Yang KL, Kas R, Smith WA. 2019. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 141:15891–900
    [Google Scholar]
  61. 61.
    Wright D, Lin Q, Berta D, Földes T, Wagner A et al. 2021. Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry. Nat. Catal. 4:157–63
    [Google Scholar]
  62. 62.
    Malkani AS, Li J, Anibal J, Lu Q, Xu B 2020. Impact of forced convection on spectroscopic observations of the electrochemical CO reduction reaction. ACS Catal. 10:941–46
    [Google Scholar]
  63. 63.
    Gunathunge CM, Li X, Li J, Hicks RP, Ovalle VJ, Waegele MM. 2017. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121:12337–44
    [Google Scholar]
  64. 64.
    Gunathunge CM, Li JY, Li X, Hong JLJ, Waegele MM. 2020. Revealing the predominant surface facets of rough Cu electrodes under electrochemical conditions. ACS Catal. 10:6908–23
    [Google Scholar]
  65. 65.
    Malkani AS, Dunwell M, Xu B. 2019. Operando spectroscopic investigations of copper and oxide-derived copper catalysts for electrochemical CO reduction. ACS Catal. 9:474–78
    [Google Scholar]
  66. 66.
    Corson ER, Kas R, Kostecki R, Urban JJ, Smith WA et al. 2020. In situ ATR-SEIRAS of carbon dioxide reduction at a plasmonic silver cathode. J. Am. Chem. Soc. 142:11750–62
    [Google Scholar]
  67. 67.
    Li JY, Li X, Gunathunge CM, Waegele MM. 2019. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. PNAS 116:9220–29
    [Google Scholar]
  68. 68.
    Firet NJ, Smith WA. 2016. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 7:606–12
    [Google Scholar]
  69. 69.
    Kim Y, Park S, Shin SJ, Choi W, Min BK et al. 2020. Time-resolved observation of C-C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13:4301–11
    [Google Scholar]
  70. 70.
    Pérez-Gallent E, Figueiredo MC, Calle-Vallejo F, Koper MTM. 2017. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56:3621–24
    [Google Scholar]
  71. 71.
    Patra KK, Park S, Song H, Kim B, Kim W, Oh J 2020. Operando spectroscopic investigation of a boron-doped CuO catalyst and its role in selective electrochemical C–C coupling. ACS Appl. Energy Mater. 3:11343–49
    [Google Scholar]
  72. 72.
    Iijima G, Inomata T, Yamaguchi H, Ito M, Masuda H. 2019. Role of a hydroxide layer on Cu electrodes in electrochemical CO2 reduction. ACS Catal. 9:6305–19
    [Google Scholar]
  73. 73.
    Chen Z, Wang T, Liu B, Cheng D, Hu C et al. 2020. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J. Am. Chem. Soc. 142:6878–83
    [Google Scholar]
  74. 74.
    Schouten KJ, Qin Z, Perez Gallent E, Koper MT 2012. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134:9864–67
    [Google Scholar]
  75. 75.
    Grote J-P, Zeradjanin AR, Cherevko S, Savan A, Breitbach B et al. 2016. Screening of material libraries for electrochemical CO2 reduction catalysts—improving selectivity of Cu by mixing with Co. J. Catal. 343:248–56
    [Google Scholar]
  76. 76.
    Mandal L, Yang KR, Motapothula MR, Ren D, Lobaccaro P et al. 2018. Investigating the role of copper oxide in electrochemical CO2 reduction in real time. ACS Appl. Mater. Interfaces 10:8574–84
    [Google Scholar]
  77. 77.
    Hasa B, Jouny M, Ko BH, Xu B, Jiao F. 2020. Flow electrolyzer mass spectrometry with a gas-diffusion electrode design. Angew. Chem. Int. Ed. 60:3277–82
    [Google Scholar]
  78. 78.
    Arán-Ais RM, Scholten F, Kunze S, Rizo R, Roldan Cuenya B. 2020. The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5:317–25
    [Google Scholar]
  79. 79.
    Clark EL, Bell AT. 2018. Direct observation of the local reaction environment during the electrochemical reduction of CO2. J. Am. Chem. Soc. 140:7012–20
    [Google Scholar]
  80. 80.
    Cheng T, Fortunelli A, Goddard WA 3rd. 2019. Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics. PNAS 116:7718–22
    [Google Scholar]
  81. 81.
    Calle-Vallejo F, Koper MT 2013. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52:7282–85
    [Google Scholar]
  82. 82.
    Jouny M, Hutchings GS, Jiao F. 2019. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2:1062–70
    [Google Scholar]
  83. 83.
    An H, Wu L, Mandemaker LDB, Yang S, Ruiter J et al. 2021. Sub-second time-resolved surface-enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 60:16576–84
    [Google Scholar]
  84. 84.
    Shi R, Guo J, Zhang X, Waterhouse GIN, Han Z et al. 2020. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 11:3028
    [Google Scholar]
  85. 85.
    Jovanovič P, Pavlišič A, Šelih VS, Šala M, Hodnik N et al. 2014. New insight into platinum dissolution from nanoparticulate platinum-based electrocatalysts using highly sensitive insitu concentration measurements. ChemCatChem 6:449–53
    [Google Scholar]
  86. 86.
    Meyer Q, Zeng Y, Zhao C. 2019. In situ and operando characterization of proton exchange membrane fuel cells. Adv. Mater. 31:e1901900
    [Google Scholar]
  87. 87.
    Grajciar L, Heard CJ, Bondarenko AA, Polynski MV, Meeprasert J et al. 2018. Towards operando computational modeling in heterogeneous catalysis. Chem. Soc. Rev. 47:8307–48
    [Google Scholar]
  88. 88.
    Ebikade EO, Wang Y, Samulewicz N, Hasa B, Vlachos D. 2020. Active learning-driven quantitative synthesis–structure–property relations for improving performance and revealing active sites of nitrogen-doped carbon for the hydrogen evolution reaction. React. Chem. Eng. 5:2134–47
    [Google Scholar]
  89. 89.
    Lansford JL, Vlachos DG. 2020. Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials. Nat. Commun. 11:1513
    [Google Scholar]
  90. 90.
    Chen Y, Huang Y, Cheng T, Goddard WA. 2019. Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations. J. Am. Chem. Soc. 141:11651–57
    [Google Scholar]
  91. 91.
    Zhong M, Tran K, Min Y, Wang C, Wang Z et al. 2020. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581:178–83
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101121-071735
Loading
/content/journals/10.1146/annurev-chembioeng-101121-071735
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error