In the past two decades, we have witnessed a rapid emergence of new and powerful photochemical and photocatalytic synthetic methods. Although these methods have been used mostly on a small scale, there is a growing need for efficient scale-up of photochemistry in the chemical industry. This review summarizes and contextualizes the advancements made in the past decade regarding the scale-up of photo-mediated synthetic transformations. Simple scale-up concepts and important fundamental photochemical laws have been provided along with a discussion concerning suitable reactor designs that should facilitate scale-up of this challenging class of organic reactions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1.
    Melchiorre P. 2022. Introduction: photochemical catalytic processes. Chem. Rev. 122:21483–84
    [Google Scholar]
  2. 2.
    Balzani V, Ceroni P, Juris A. 2014. Photochemistry and Photophysics: Concepts, Research, Applications Hoboken, NJ: John Wiley & Sons
  3. 3.
    Turro NJ, Ramamurthy V, Scaiano JC. 2010. Modern Molecular Photochemistry of Organic Molecules Sausalito, CA: Univ. Sci. Books
  4. 4.
    Albini A, Fagnoni M. 2013. Photochemically-Generated Intermediates in Synthesis Hoboken, NJ: John Wiley & Sons
  5. 5.
    Kärkäs MD, Porco JA, Stephenson CRJ. 2016. Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem. Rev. 116:179683–747
    [Google Scholar]
  6. 6.
    Kavarnos GJ. 1993. Fundamentals of Photoinduced Electron Transfer Weinheim, Ger.: VCH Publ.
  7. 7.
    Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. 2018. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47:197190–202
    [Google Scholar]
  8. 8.
    Capaldo L, Ravelli D, Fagnoni M. 2022. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C-H bonds elaboration. Chem. Rev. 122:21875–924
    [Google Scholar]
  9. 9.
    Stephenson CRJ, Studer A, Curran DP. 2013. The renaissance of organic radical chemistry—deja vu all over again. Beilstein J. Org. Chem. 9:2778–80
    [Google Scholar]
  10. 10.
    Anastas PT, Warner JC. 1998. Green Chemistry: Theory and Practice New York: Oxford Univ. Press
  11. 11.
    Yoon TP, Ischay MA, Du J. 2010. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2:7527–32
    [Google Scholar]
  12. 12.
    Crisenza GEM, Melchiorre P. 2020. Chemistry glows green with photoredox catalysis. Nat. Commun. 11:803
    [Google Scholar]
  13. 13.
    Noël T, Zysman-Colman E. 2022. The promise and pitfalls of photocatalysis for organic synthesis. Chem. Catal. 2:3468–76
    [Google Scholar]
  14. 14.
    Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. 2022. Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chem. Rev. 122:22752–906
    [Google Scholar]
  15. 15.
    Darvas F, Hessel V, Dorman G, eds. 2014. Flow Chemistry—Fundamentals Berlin: De Gruyter
  16. 16.
    Gavriilidis A, Constantinou A, Hellgardt K, Hii KK(M), Hutchings GJ et al. 2016. Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. React. Chem. Eng. 1:6595–612
    [Google Scholar]
  17. 17.
    Burange AS, Osman SM, Luque R. 2022. Understanding flow chemistry for the production of active pharmaceutical ingredients. iScience 25:3103892
    [Google Scholar]
  18. 18.
    Holtze C, Boehling R. 2022. Batch or flow chemistry?—A current industrial opinion on process selection. Curr. Opin. Chem. Eng. 36:100798
    [Google Scholar]
  19. 19.
    Jensen KF. 2017. Flow chemistry—Microreaction technology comes of age. AIChE J. 63:3858–69
    [Google Scholar]
  20. 20.
    Rogers L, Jensen KF. 2019. Continuous manufacturing—the Green Chemistry promise?. Green Chem. 21:133481–98
    [Google Scholar]
  21. 21.
    Dong Z, Wen Z, Zhao F, Kuhn S, Noël T. 2021. Scale-up of micro- and milli-reactors: an overview of strategies, design principles and applications. Chem. Eng. Sci. X 10:100097
    [Google Scholar]
  22. 22.
    Berton M, de Souza JM, Abdiaj I, McQuade DT, Snead DR. 2020. Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. J. Flow Chem. 10:173–92
    [Google Scholar]
  23. 23.
    Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G. 2017. Design and scaling up of microchemical systems: a review. Annu. Rev. Chem. Biomol. Eng. 8:285–305
    [Google Scholar]
  24. 24.
    Kuijpers KPL, van Dijk MAH, Rumeur QG, Hessel V, Su Y, Noël T. 2017. A sensitivity analysis of a numbered-up photomicroreactor system. React. Chem. Eng. 2:2109–15
    [Google Scholar]
  25. 25.
    Bonfield HE, Knauber T, Lévesque F, Moschetta EG, Susanne F, Edwards LJ 2020. Photons as a 21st century reagent. Nat. Commun. 11:804
    [Google Scholar]
  26. 26.
    Aillet T, Loubiere K, Dechy-Cabaret O, Prat L. 2014. Accurate measurement of the photon flux received inside two continuous flow microphotoreactors by actinometry. Int. J. Chem. React. Eng. 12:1257–69
    [Google Scholar]
  27. 27.
    Studer A, Curran DP. 2016. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55:158–102
    [Google Scholar]
  28. 28.
    Cismesia MA, Yoon TP. 2015. Characterizing chain processes in visible light photoredox catalysis. Chem. Sci. 6:105426–34
    [Google Scholar]
  29. 29.
    Buzzetti L, Crisenza GEM, Melchiorre P. 2019. Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 58:123730–47
    [Google Scholar]
  30. 30.
    Corcoran EB, McMullen JP, Lévesque F, Wismer MK, Naber JR. 2020. Photon equivalents as a parameter for scaling photoredox reactions in flow: translation of photocatalytic C−N cross-coupling from lab scale to multikilogram scale. Angew. Chem. Int. Ed. 59:2911964–68
    [Google Scholar]
  31. 31.
    Bloh JZ. 2019. A holistic approach to model the kinetics of photocatalytic reactions. Front. Chem. 7:128
    [Google Scholar]
  32. 32.
    Donnelly K, Baumann M. 2021. Scalability of photochemical reactions in continuous flow mode. J. Flow Chem. 11:3223–41
    [Google Scholar]
  33. 33.
    Di Filippo M, Bracken C, Baumann M. 2020. Continuous flow photochemistry for the preparation of bioactive molecules. Molecules 25:2356
    [Google Scholar]
  34. 34.
    Kayahan E, Jacobs M, Braeken L, Thomassen LCJ, Kuhn S et al. 2020. Dawn of a new era in industrial photochemistry: the scale-up of micro: the mesostructured photoreactors. Beilstein J. Org. Chem. 16:2484–504
    [Google Scholar]
  35. 35.
    Noël T. 2017. Photochemical Processes in Continuous-Flow Reactors: From Engineering Principles to Chemical Applications London: World Sci.
  36. 36.
    Hook BDA, Dohle W, Hirst PR, Pickworth M, Berry MB, Booker-Milburn KI. 2005. A practical flow reactor for continuous organic photochemistry. J. Org. Chem. 70:197558–64
    [Google Scholar]
  37. 37.
    Beatty JW, Douglas JJ, Miller R, McAtee RC, Cole KP, Stephenson CRJJ. 2016. Photochemical perfluoroalkylation with pyridine N-oxides: mechanistic insights and performance on a kilogram scale. Chemistry 1:3456–72
    [Google Scholar]
  38. 38.
    Yayla HG, Peng F, Mangion IK, McLaughlin M, Campeau L-C et al. 2016. Discovery and mechanistic study of a photocatalytic indoline dehydrogenation for the synthesis of elbasvir. Chem. Sci. 7:32066–73
    [Google Scholar]
  39. 39.
    Mazzarella D, Pulcinella A, Bovy L, Broersma R, Noël T. 2021. Rapid and direct photocatalytic C(sp3)−H acylation and arylation in flow. Angew. Chem. Int. Ed. 60:3921277–82
    [Google Scholar]
  40. 40.
    Wan T, Wen Z, Laudadio G, Capaldo L, Lammers R et al. 2022. Accelerated and scalable C(sp3)-H amination via decatungstate photocatalysis using a flow photoreactor equipped with high-intensity LEDs. ACS Cent. Sci. 8:151–56
    [Google Scholar]
  41. 41.
    Bottecchia C, Lévesque F, McMullen JP, Ji Y, Reibarkh M et al. 2022. Manufacturing process development for belzutifan, part 2: a continuous flow visible-light-induced benzylic bromination. Org. Process Res. Dev. 26:3516–24
    [Google Scholar]
  42. 42.
    Elliott LD, Berry M, Harji B, Klauber D, Leonard J, Booker-Milburn KI. 2016. A small-footprint, high-capacity flow reactor for UV photochemical synthesis on the kilogram scale. Org. Process Res. Dev. 20:101806–11
    [Google Scholar]
  43. 43.
    Abdiaj I, Horn CR, Alcazar J. 2019. Scalability of visible-light-induced nickel Negishi reactions: a combination of flow photochemistry, use of solid reagents, and in-line NMR monitoring. J. Org. Chem. 84:84748–53
    [Google Scholar]
  44. 44.
    Abdiaj I, Fontana A, Gomez MV, de la Hoz A, Alcázar J. 2018. Visible-light-induced nickel-catalyzed Negishi cross-couplings by exogenous-photosensitizer-free photocatalysis. Angew. Chem. Int. Ed. 57:288473–77
    [Google Scholar]
  45. 45.
    Steiner A, Williams JD, de Frutos O, Rincón JA, Mateos C, Kappe CO. 2020. Continuous photochemical benzylic bromination using in situ generated Br2: process intensification towards optimal PMI and throughput. Green Chem. 22:2448–54
    [Google Scholar]
  46. 46.
    Steiner A, Roth PMC, Strauss FJ, Gauron G, Tekautz G et al. 2020. Multikilogram per hour continuous photochemical benzylic brominations applying a smart dimensioning scale-up strategy. Org. Process Res. Dev. 24:102208–16
    [Google Scholar]
  47. 47.
    Corning 2022. Advanced-Flow™Reactors: flipping the chemical engineering world upside down. https://www.corning.com/emea/en/innovation/corning-emerging-innovations/advanced-flow-reactors.html
  48. 48.
    Hessel V, Löwe H, Schönfeld F. 2005. Micromixers—a review on passive and active mixing principles. Chem. Eng. Sci. 60:8–92479–501
    [Google Scholar]
  49. 49.
    Green J, Holdø A, Khan A. 2007. A review of passive and active mixing systems in microfluidic devices. Int. J. Multiphys 1:11–32
    [Google Scholar]
  50. 50.
    Bianchi P, Williams JD, Kappe CO. 2020. Oscillatory flow reactors for synthetic chemistry applications. J. Flow Chem. 10:3475–90
    [Google Scholar]
  51. 51.
    Debrouwer W, Kimpe W, Dangreau R, Huvaere K, Gemoets HPL et al. 2020. Ir/Ni photoredox dual catalysis with heterogeneous base enabled by an oscillatory plug flow photoreactor. Org. Process Res. Dev. 24:102319–25
    [Google Scholar]
  52. 52.
    Hartman RL. 2012. Managing solids in microreactors for the upstream continuous processing of fine chemicals. Org. Process Res. Dev. 16:5870–87
    [Google Scholar]
  53. 53.
    Wen Z, Maheshwari A, Sambiagio C, Deng Y, Laudadio G et al. 2020. Optimization of a decatungstate-catalyzed C(sp3)-H alkylation using a continuous oscillatory millistructured photoreactor. Org. Process Res. Dev. 24:102356–61
    [Google Scholar]
  54. 54.
    Rosso C, Gisbertz S, Williams JD, Gemoets HPL, Debrouwer W et al. 2020. An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C-N couplings. React. Chem. Eng. 5:3597–604
    [Google Scholar]
  55. 55.
    Bianchi P, Williams JD, Kappe CO. 2021. Continuous flow processing of bismuth-photocatalyzed atom transfer radical addition reactions using an oscillatory flow reactor. Green Chem. 23:72685–93
    [Google Scholar]
  56. 56.
    Dong Z, Zondag SDA, Schmid M, Wen Z, Noël T. 2022. A meso-scale ultrasonic milli-reactor enables gas-liquid-solid photocatalytic reactions in flow. Chem. Eng. J. 428:130968
    [Google Scholar]
  57. 57.
    Harper KC, Moschetta EG, Bordawekar SV, Wittenberger SJ. 2019. A laser driven flow chemistry platform for scaling photochemical reactions with visible light. ACS Cent. Sci. 5:1109–15
    [Google Scholar]
  58. 58.
    Harper KC, Zhang E-X, Liu Z, Grieme T, Towne TB et al. 2022. Commercial-scale visible light trifluoromethylation of 2-chlorothiophenol using CF3I gas. Org. Process Res. Dev. 26:2404–12
    [Google Scholar]
  59. 59.
    Hu C. 2021. Reactor design and selection for effective continuous manufacturing of pharmaceuticals. J. Flow Chem. 11:3243–63
    [Google Scholar]
  60. 60.
    Pomberger A, Mo Y, Nandiwale KY, Schultz VL, Duvadie R et al. 2019. A continuous stirred-tank reactor (CSTR) cascade for handling solid-containing photochemical reactions. Org. Process Res. Dev. 23:122699–706
    [Google Scholar]
  61. 61.
    Visscher F, van der Schaaf J, Nijhuis TA, Schouten JC. 2013. Rotating reactors—a review. Chem. Eng. Res. Des. 91:101923–40
    [Google Scholar]
  62. 62.
    Lee DS, Amara Z, Clark CA, Xu Z, Kakimpa B et al. 2017. Continuous photo-oxidation in a vortex reactor: efficient operations using air drawn from the laboratory. Org. Process Res. Dev. 21:71042–50
    [Google Scholar]
  63. 63.
    Lee DS, Sharabi M, Jefferson-Loveday R, Pickering SJ, Poliakoff M, George MW. 2020. Scalable continuous vortex reactor for gram to kilo scale for UV and visible photochemistry. Org. Process Res. Dev. 24:2201–6
    [Google Scholar]
  64. 64.
    Chaudhuri A, Kuijpers KPL, Hendrix RBJ, Shivaprasad P, Hacking JA et al. 2020. Process intensification of a photochemical oxidation reaction using a rotor-stator spinning disk reactor: a strategy for scale up. Chem. Eng. J. 400:125875
    [Google Scholar]
  65. 65.
    Chaudhuri A, Zondag SDA, Schuurmans JHA, van der Schaaf J, Noël T. 2022. Scale-up of a heterogeneous photocatalytic degradation using a photochemical rotor-stator spinning disk reactor. Org. Process Res. Dev. 26:41279–88
    [Google Scholar]
  66. 66.
    Zondag SDA, Masson TM, Debije MG, Noël T. 2022. The development of luminescent solar concentrator-based photomicroreactors: a cheap reactor enabling efficient solar-powered photochemistry. Photochem. Photobiol. Sci. 21:5705–17
    [Google Scholar]
  67. 67.
    Masson TM, Zondag SDA, Kuijpers KPL, Cambié D, Debije MG, Noël T. 2021. Development of an off-grid solar-powered autonomous chemical mini-plant for producing fine chemicals. ChemSusChem 14:245417–23
    [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error