1932

Abstract

In the past two decades, we have witnessed a rapid emergence of new and powerful photochemical and photocatalytic synthetic methods. Although these methods have been used mostly on a small scale, there is a growing need for efficient scale-up of photochemistry in the chemical industry. This review summarizes and contextualizes the advancements made in the past decade regarding the scale-up of photo-mediated synthetic transformations. Simple scale-up concepts and important fundamental photochemical laws have been provided along with a discussion concerning suitable reactor designs that should facilitate scale-up of this challenging class of organic reactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101121-074313
2023-06-08
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/14/1/annurev-chembioeng-101121-074313.html?itemId=/content/journals/10.1146/annurev-chembioeng-101121-074313&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Melchiorre P. 2022.. Introduction: photochemical catalytic processes. . Chem. Rev. 122:(2):148384
    [Google Scholar]
  2. 2.
    Balzani V, Ceroni P, Juris A. 2014.. Photochemistry and Photophysics: Concepts, Research, Applications. Hoboken, NJ:: John Wiley & Sons
    [Google Scholar]
  3. 3.
    Turro NJ, Ramamurthy V, Scaiano JC. 2010.. Modern Molecular Photochemistry of Organic Molecules. Sausalito, CA:: Univ. Sci. Books
    [Google Scholar]
  4. 4.
    Albini A, Fagnoni M. 2013.. Photochemically-Generated Intermediates in Synthesis. Hoboken, NJ:: John Wiley & Sons
    [Google Scholar]
  5. 5.
    Kärkäs MD, Porco JA, Stephenson CRJ. 2016.. Photochemical approaches to complex chemotypes: applications in natural product synthesis. . Chem. Rev. 116:(17):9683747
    [Google Scholar]
  6. 6.
    Kavarnos GJ. 1993.. Fundamentals of Photoinduced Electron Transfer. Weinheim, Ger.:: VCH Publ
    [Google Scholar]
  7. 7.
    Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. 2018.. Energy transfer catalysis mediated by visible light: principles, applications, directions. . Chem. Soc. Rev. 47:(19):7190202
    [Google Scholar]
  8. 8.
    Capaldo L, Ravelli D, Fagnoni M. 2022.. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C-H bonds elaboration. . Chem. Rev. 122:(2):1875924
    [Google Scholar]
  9. 9.
    Stephenson CRJ, Studer A, Curran DP. 2013.. The renaissance of organic radical chemistry—deja vu all over again. . Beilstein J. Org. Chem. 9::277880
    [Google Scholar]
  10. 10.
    Anastas PT, Warner JC. 1998.. Green Chemistry: Theory and Practice. New York:: Oxford Univ. Press
    [Google Scholar]
  11. 11.
    Yoon TP, Ischay MA, Du J. 2010.. Visible light photocatalysis as a greener approach to photochemical synthesis. . Nat. Chem. 2:(7):52732
    [Google Scholar]
  12. 12.
    Crisenza GEM, Melchiorre P. 2020.. Chemistry glows green with photoredox catalysis. . Nat. Commun. 11::803
    [Google Scholar]
  13. 13.
    Noël T, Zysman-Colman E. 2022.. The promise and pitfalls of photocatalysis for organic synthesis. . Chem. Catal. 2:(3):46876
    [Google Scholar]
  14. 14.
    Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. 2022.. Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. . Chem. Rev. 122:(2):2752906
    [Google Scholar]
  15. 15.
    Darvas F, Hessel V, Dorman G 2014.. Flow Chemistry—Fundamentals. Berlin:: De Gruyter
    [Google Scholar]
  16. 16.
    Gavriilidis A, Constantinou A, Hellgardt K, Hii KK(M), Hutchings GJ, et al. 2016.. Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. . React. Chem. Eng. 1:(6):595612
    [Google Scholar]
  17. 17.
    Burange AS, Osman SM, Luque R. 2022.. Understanding flow chemistry for the production of active pharmaceutical ingredients. . iScience 25:(3):103892
    [Google Scholar]
  18. 18.
    Holtze C, Boehling R. 2022.. Batch or flow chemistry?—A current industrial opinion on process selection. . Curr. Opin. Chem. Eng. 36::100798
    [Google Scholar]
  19. 19.
    Jensen KF. 2017.. Flow chemistry—Microreaction technology comes of age. . AIChE J. 63:(3):85869
    [Google Scholar]
  20. 20.
    Rogers L, Jensen KF. 2019.. Continuous manufacturing—the Green Chemistry promise?. Green Chem. 21:(13):348198
    [Google Scholar]
  21. 21.
    Dong Z, Wen Z, Zhao F, Kuhn S, Noël T. 2021.. Scale-up of micro- and milli-reactors: an overview of strategies, design principles and applications. . Chem. Eng. Sci. X 10::100097
    [Google Scholar]
  22. 22.
    Berton M, de Souza JM, Abdiaj I, McQuade DT, Snead DR. 2020.. Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. . J. Flow Chem. 10:(1):7392
    [Google Scholar]
  23. 23.
    Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G. 2017.. Design and scaling up of microchemical systems: a review. . Annu. Rev. Chem. Biomol. Eng. 8::285305
    [Google Scholar]
  24. 24.
    Kuijpers KPL, van Dijk MAH, Rumeur QG, Hessel V, Su Y, Noël T. 2017.. A sensitivity analysis of a numbered-up photomicroreactor system. . React. Chem. Eng. 2:(2):10915
    [Google Scholar]
  25. 25.
    Bonfield HE, Knauber T, Lévesque F, Moschetta EG, Susanne F, Edwards LJ. 2020.. Photons as a 21st century reagent. . Nat. Commun. 11::804
    [Google Scholar]
  26. 26.
    Aillet T, Loubiere K, Dechy-Cabaret O, Prat L. 2014.. Accurate measurement of the photon flux received inside two continuous flow microphotoreactors by actinometry. . Int. J. Chem. React. Eng. 12:(1):25769
    [Google Scholar]
  27. 27.
    Studer A, Curran DP. 2016.. Catalysis of radical reactions: a radical chemistry perspective. . Angew. Chem. Int. Ed. 55:(1):58102
    [Google Scholar]
  28. 28.
    Cismesia MA, Yoon TP. 2015.. Characterizing chain processes in visible light photoredox catalysis. . Chem. Sci. 6:(10):542634
    [Google Scholar]
  29. 29.
    Buzzetti L, Crisenza GEM, Melchiorre P. 2019.. Mechanistic studies in photocatalysis. . Angew. Chem. Int. Ed. 58:(12):373047
    [Google Scholar]
  30. 30.
    Corcoran EB, McMullen JP, Lévesque F, Wismer MK, Naber JR. 2020.. Photon equivalents as a parameter for scaling photoredox reactions in flow: translation of photocatalytic C−N cross-coupling from lab scale to multikilogram scale. . Angew. Chem. Int. Ed. 59:(29):1196468
    [Google Scholar]
  31. 31.
    Bloh JZ. 2019.. A holistic approach to model the kinetics of photocatalytic reactions. . Front. Chem. 7::128
    [Google Scholar]
  32. 32.
    Donnelly K, Baumann M. 2021.. Scalability of photochemical reactions in continuous flow mode. . J. Flow Chem. 11:(3):22341
    [Google Scholar]
  33. 33.
    Di Filippo M, Bracken C, Baumann M. 2020.. Continuous flow photochemistry for the preparation of bioactive molecules. . Molecules 25:(2):356
    [Google Scholar]
  34. 34.
    Kayahan E, Jacobs M, Braeken L, Thomassen LCJ, Kuhn S, et al. 2020.. Dawn of a new era in industrial photochemistry: the scale-up of micro: the mesostructured photoreactors. . Beilstein J. Org. Chem. 16::2484504
    [Google Scholar]
  35. 35.
    Noël T. 2017.. Photochemical Processes in Continuous-Flow Reactors: From Engineering Principles to Chemical Applications. London:: World Sci.
    [Google Scholar]
  36. 36.
    Hook BDA, Dohle W, Hirst PR, Pickworth M, Berry MB, Booker-Milburn KI. 2005.. A practical flow reactor for continuous organic photochemistry. . J. Org. Chem. 70:(19):755864
    [Google Scholar]
  37. 37.
    Beatty JW, Douglas JJ, Miller R, McAtee RC, Cole KP, Stephenson CRJJ. 2016.. Photochemical perfluoroalkylation with pyridine N-oxides: mechanistic insights and performance on a kilogram scale. . Chemistry 1:(3):45672
    [Google Scholar]
  38. 38.
    Yayla HG, Peng F, Mangion IK, McLaughlin M, Campeau L-C, et al. 2016.. Discovery and mechanistic study of a photocatalytic indoline dehydrogenation for the synthesis of elbasvir. . Chem. Sci. 7:(3):206673
    [Google Scholar]
  39. 39.
    Mazzarella D, Pulcinella A, Bovy L, Broersma R, Noël T. 2021.. Rapid and direct photocatalytic C(sp3)−H acylation and arylation in flow. . Angew. Chem. Int. Ed. 60:(39):2127782
    [Google Scholar]
  40. 40.
    Wan T, Wen Z, Laudadio G, Capaldo L, Lammers R, et al. 2022.. Accelerated and scalable C(sp3)-H amination via decatungstate photocatalysis using a flow photoreactor equipped with high-intensity LEDs. . ACS Cent. Sci. 8:(1):5156
    [Google Scholar]
  41. 41.
    Bottecchia C, Lévesque F, McMullen JP, Ji Y, Reibarkh M, et al. 2022.. Manufacturing process development for belzutifan, part 2: a continuous flow visible-light-induced benzylic bromination. . Org. Process Res. Dev. 26:(3):51624
    [Google Scholar]
  42. 42.
    Elliott LD, Berry M, Harji B, Klauber D, Leonard J, Booker-Milburn KI. 2016.. A small-footprint, high-capacity flow reactor for UV photochemical synthesis on the kilogram scale. . Org. Process Res. Dev. 20:(10):180611
    [Google Scholar]
  43. 43.
    Abdiaj I, Horn CR, Alcazar J. 2019.. Scalability of visible-light-induced nickel Negishi reactions: a combination of flow photochemistry, use of solid reagents, and in-line NMR monitoring. . J. Org. Chem. 84:(8):474853
    [Google Scholar]
  44. 44.
    Abdiaj I, Fontana A, Gomez MV, de la Hoz A, Alcázar J. 2018.. Visible-light-induced nickel-catalyzed Negishi cross-couplings by exogenous-photosensitizer-free photocatalysis. . Angew. Chem. Int. Ed. 57:(28):847377
    [Google Scholar]
  45. 45.
    Steiner A, Williams JD, de Frutos O, Rincón JA, Mateos C, Kappe CO. 2020.. Continuous photochemical benzylic bromination using in situ generated Br2: process intensification towards optimal PMI and throughput. . Green Chem. 22:(2):44854
    [Google Scholar]
  46. 46.
    Steiner A, Roth PMC, Strauss FJ, Gauron G, Tekautz G, et al. 2020.. Multikilogram per hour continuous photochemical benzylic brominations applying a smart dimensioning scale-up strategy. . Org. Process Res. Dev. 24:(10):220816
    [Google Scholar]
  47. 47.
    Corning. 2022.. Advanced-Flow™Reactors: flipping the chemical engineering world upside down. https://www.corning.com/emea/en/innovation/corning-emerging-innovations/advanced-flow-reactors.html
    [Google Scholar]
  48. 48.
    Hessel V, Löwe H, Schönfeld F. 2005.. Micromixers—a review on passive and active mixing principles. . Chem. Eng. Sci. 60:(8–9):2479501
    [Google Scholar]
  49. 49.
    Green J, Holdø A, Khan A. 2007.. A review of passive and active mixing systems in microfluidic devices. . Int. J. Multiphys. 1:(1):132
    [Google Scholar]
  50. 50.
    Bianchi P, Williams JD, Kappe CO. 2020.. Oscillatory flow reactors for synthetic chemistry applications. . J. Flow Chem. 10:(3):47590
    [Google Scholar]
  51. 51.
    Debrouwer W, Kimpe W, Dangreau R, Huvaere K, Gemoets HPL, et al. 2020.. Ir/Ni photoredox dual catalysis with heterogeneous base enabled by an oscillatory plug flow photoreactor. . Org. Process Res. Dev. 24:(10):231925
    [Google Scholar]
  52. 52.
    Hartman RL. 2012.. Managing solids in microreactors for the upstream continuous processing of fine chemicals. . Org. Process Res. Dev. 16:(5):87087
    [Google Scholar]
  53. 53.
    Wen Z, Maheshwari A, Sambiagio C, Deng Y, Laudadio G, et al. 2020.. Optimization of a decatungstate-catalyzed C(sp3)-H alkylation using a continuous oscillatory millistructured photoreactor. . Org. Process Res. Dev. 24:(10):235661
    [Google Scholar]
  54. 54.
    Rosso C, Gisbertz S, Williams JD, Gemoets HPL, Debrouwer W, et al. 2020.. An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C-N couplings. . React. Chem. Eng. 5:(3):597604
    [Google Scholar]
  55. 55.
    Bianchi P, Williams JD, Kappe CO. 2021.. Continuous flow processing of bismuth-photocatalyzed atom transfer radical addition reactions using an oscillatory flow reactor. . Green Chem. 23:(7):268593
    [Google Scholar]
  56. 56.
    Dong Z, Zondag SDA, Schmid M, Wen Z, Noël T. 2022.. A meso-scale ultrasonic milli-reactor enables gas-liquid-solid photocatalytic reactions in flow. . Chem. Eng. J. 428::130968
    [Google Scholar]
  57. 57.
    Harper KC, Moschetta EG, Bordawekar SV, Wittenberger SJ. 2019.. A laser driven flow chemistry platform for scaling photochemical reactions with visible light. . ACS Cent. Sci. 5:(1):10915
    [Google Scholar]
  58. 58.
    Harper KC, Zhang E-X, Liu Z, Grieme T, Towne TB, et al. 2022.. Commercial-scale visible light trifluoromethylation of 2-chlorothiophenol using CF3I gas. . Org. Process Res. Dev. 26:(2):40412
    [Google Scholar]
  59. 59.
    Hu C. 2021.. Reactor design and selection for effective continuous manufacturing of pharmaceuticals. . J. Flow Chem. 11:(3):24363
    [Google Scholar]
  60. 60.
    Pomberger A, Mo Y, Nandiwale KY, Schultz VL, Duvadie R, et al. 2019.. A continuous stirred-tank reactor (CSTR) cascade for handling solid-containing photochemical reactions. . Org. Process Res. Dev. 23:(12):2699706
    [Google Scholar]
  61. 61.
    Visscher F, van der Schaaf J, Nijhuis TA, Schouten JC. 2013.. Rotating reactors—a review. . Chem. Eng. Res. Des. 91:(10):192340
    [Google Scholar]
  62. 62.
    Lee DS, Amara Z, Clark CA, Xu Z, Kakimpa B, et al. 2017.. Continuous photo-oxidation in a vortex reactor: efficient operations using air drawn from the laboratory. . Org. Process Res. Dev. 21:(7):104250
    [Google Scholar]
  63. 63.
    Lee DS, Sharabi M, Jefferson-Loveday R, Pickering SJ, Poliakoff M, George MW. 2020.. Scalable continuous vortex reactor for gram to kilo scale for UV and visible photochemistry. . Org. Process Res. Dev. 24:(2):2016
    [Google Scholar]
  64. 64.
    Chaudhuri A, Kuijpers KPL, Hendrix RBJ, Shivaprasad P, Hacking JA, et al. 2020.. Process intensification of a photochemical oxidation reaction using a rotor-stator spinning disk reactor: a strategy for scale up. . Chem. Eng. J. 400::125875
    [Google Scholar]
  65. 65.
    Chaudhuri A, Zondag SDA, Schuurmans JHA, van der Schaaf J, Noël T. 2022.. Scale-up of a heterogeneous photocatalytic degradation using a photochemical rotor-stator spinning disk reactor. . Org. Process Res. Dev. 26:(4):127988
    [Google Scholar]
  66. 66.
    Zondag SDA, Masson TM, Debije MG, Noël T. 2022.. The development of luminescent solar concentrator-based photomicroreactors: a cheap reactor enabling efficient solar-powered photochemistry. . Photochem. Photobiol. Sci. 21:(5):70517
    [Google Scholar]
  67. 67.
    Masson TM, Zondag SDA, Kuijpers KPL, Cambié D, Debije MG, Noël T. 2021.. Development of an off-grid solar-powered autonomous chemical mini-plant for producing fine chemicals. . ChemSusChem 14:(24):541723
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101121-074313
Loading
/content/journals/10.1146/annurev-chembioeng-101121-074313
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error