Alternative polymer feedstocks are highly desirable to address environmental, social, and security concerns associated with petrochemical-based materials. Lignocellulosic biomass (LCB) has emerged as one critical feedstock in this regard because it is an abundant and ubiquitous renewable resource. LCB can be deconstructed to generate valuable fuels, chemicals, and small molecules/oligomers that are amenable to modification and polymerization. However, the diversity of LCB complicates the evaluation of biorefinery concepts in areas including process scale-up, production outputs, plant economics, and life-cycle management. We discuss aspects of current LCB biorefinery research with a focus on the major process stages, including feedstock selection, fractionation/deconstruction, and characterization, along with product purification, functionalization, and polymerization to manufacture valuable macromolecular materials. We highlight opportunities to valorize underutilized and complex feedstocks, leverage advanced characterization techniques to predict and manage biorefinery outputs, and increase the fraction of biomass converted into valuable products.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1.
    Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:e1700782
    [Google Scholar]
  2. 2.
    Korley LTJ, Epps TH III, Helms BA, Ryan AJ 2021. Toward polymer upcycling—adding value and tackling circularity. Science 373:66–69
    [Google Scholar]
  3. 3.
    Hamilton LA, Feit S, Muffett C, Kelso M, Rubright SM et al. 2019. Plastic & Climate: The Hidden Costs of a Plastic Planet Washington, DC: Cent. Int. Environ. Law
  4. 4.
    Karan H, Funk C, Grabert M, Oey M, Hankamer B. 2019. Green bioplastics as part of a circular bioeconomy. Trends Plant Sci. 24:237–49
    [Google Scholar]
  5. 5.
    Davis R, Grundl N, Tao L, Biddy MJ, Tan ECD et al. 2018. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels and coproducts: 2018 biochemical design case update. Rep. NREL/TP-5100-71949 Natl. Renew. Energy Lab. Golden, CO:
  6. 6.
    Bioenergy Technol. Off 2020. 2019 Project Peer Review Report: Lignin Utilization Technology Area Denver: Dep. Energy
  7. 7.
    O'Dea RM, Pranda PA, Luo Y, Amitrano A, Ebikade EO et al. 2022. Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. Sci. Adv. 8:eabj7523
    [Google Scholar]
  8. 8.
    Gallagher JJ, Hillmyer MA, Reineke TM. 2016. Acrylic triblock copolymers incorporating isosorbide for pressure sensitive adhesives. ACS Sustain. Chem. Eng. 4:3379–87
    [Google Scholar]
  9. 9.
    Ding R, Du Y, Goncalves RB, Francis LF, Reineke TM. 2019. Sustainable near UV-curable acrylates based on natural phenolics for stereolithography 3D printing. Polym. Chem. 10:1067–77
    [Google Scholar]
  10. 10.
    Nonoyama Y, Satoh K, Kamigaito M. 2014. Renewable β-methylstyrenes for bio-based heat-resistant styrenic copolymers: radical copolymerization enhanced by fluoroalcohol and controlled/living copolymerization by RAFT. Polym. Chem. 5:3182–89
    [Google Scholar]
  11. 11.
    Takeshima H, Satoh K, Kamigaito M. 2017. Bio-based functional styrene monomers derived from naturally occurring ferulic acid for poly(vinylcatechol) and poly(vinylguaiacol) via controlled radical polymerization. Macromolecules 50:4206–16
    [Google Scholar]
  12. 12.
    Cui M, Nguyen NA, Bonnesen PV, Uhrig D, Keum JK, Naskar AK. 2018. Rigid oligomer from lignin in designing of tough, self-healing elastomers. ACS Macro Lett. 7:1328–32
    [Google Scholar]
  13. 13.
    Vendamme R, Behaghel de Bueren J, Gracia-Vitoria J, Isnard F, Mulunda MM et al. 2020. Aldehyde-assisted lignocellulose fractionation provides unique lignin oligomers for the design of tunable polyurethane bioresins. Biomacromolecules 21:4135–48
    [Google Scholar]
  14. 14.
    Dashek WV, Miglani GS. 2016. Plant Cells and Their Organelles Chichester, UK: Wiley Blackwell
  15. 15.
    Food Agric. Organ 2022. FAO yearbook of forest products https://www.fao.org/forestry/statistics/80570/en/
  16. 16.
    Paper TR. 2021. Brief history of paper mills. Sectoral News April 29. https://www.papertr.com/brief-history-of-paper-mills/
    [Google Scholar]
  17. 17.
    Raj T, Chandrasekhar K, Naresh Kumar A, Rajesh Banu J, Yoon J-J et al. 2022. Recent advances in commercial biorefineries for lignocellulosic ethanol production: current status, challenges and future perspectives. Bioresour. Technol. 344:126292
    [Google Scholar]
  18. 18.
    Hirtzer J, Renshaw J. 2017. DuPont to sell cellulosic ethanol plant in blow to biofuel. Reuters Novemb. 2. https://www.reuters.com/article/us-dowdupont-ethanol-idUSKBN1D22T5
    [Google Scholar]
  19. 19.
    Brandt A, Gräsvik J, Hallett JP, Welton T. 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15:550–83
    [Google Scholar]
  20. 20.
    Bajwa DS, Pourhashem G, Ullah AH, Bajwa SG. 2019. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 139:111526
    [Google Scholar]
  21. 21.
    Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M et al. 2016. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55:8164–215
    [Google Scholar]
  22. 22.
    Dessbesell L, Paleologou M, Leitch M, Pulkki R, Xu C. 2020. Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers. Renew. Sustain. Energy Rev. 123:109768
    [Google Scholar]
  23. 23.
    Bass GF, Epps TH III. 2021. Recent developments towards performance-enhancing lignin-based polymers. Polym. Chem. 12:4130–58
    [Google Scholar]
  24. 24.
    Bartling AW, Stone ML, Hanes RJ, Bhatt A, Zhang Y et al. 2021. Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation. Energy Environ. Sci. 14:4147–68
    [Google Scholar]
  25. 25.
    Abu-Omar MM, Barta K, Beckham GT, Luterbacher JS, Ralph J et al. 2021. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 14:262–92
    [Google Scholar]
  26. 26.
    Renders T, Van den Bosch S, Koelewijn SF, Schutyser W, Sels BF. 2017. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10:1551–57
    [Google Scholar]
  27. 27.
    Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y et al. 2016. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354:329–33
    [Google Scholar]
  28. 28.
    Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. 2018. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47:852–908
    [Google Scholar]
  29. 29.
    Ovejero-Pérez A, Ayuso M, Rigual V, Domínguez JC, García J et al. 2021. Technoeconomic assessment of a biomass pretreatment + ionic liquid recovery process with aprotic and choline derived ionic liquids. ACS Sustain. Chem. Eng. 9:8467–76
    [Google Scholar]
  30. 30.
    Mamilla JLK, Novak U, Grilc M, Likozar B. 2019. Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals. Biomass Bioenergy 120:417–25
    [Google Scholar]
  31. 31.
    Zaib Q, Eckelman MJ, Yang Y, Kyung D 2022. Are deep eutectic solvents really green? A life-cycle perspective. Green Chem. 24:7924–30
    [Google Scholar]
  32. 32.
    Sadula S, Oesterling O, Nardone A, Dinkelacker B, Saha B. 2017. One-pot integrated processing of biopolymers to furfurals in molten salt hydrate: understanding synergy in acidity. Green Chem. 19:3888–98
    [Google Scholar]
  33. 33.
    Smit AT, van Zomeren A, Dussan K, Riddell LA, Huijgen WJJ et al. 2022. Biomass pre-extraction as a versatile strategy to improve biorefinery feedstock flexibility, sugar yields, and lignin purity. ACS Sustain. Chem. Eng. 10:6012–22
    [Google Scholar]
  34. 34.
    Islam MK, Guan J, Rehman S, Patria RD, Hu C et al. 2022. N-methyl-2-pyrrolidone pre-treatment of lignocellulose for high lignin yield and cellulose digestibility. Biomass Convers. Biorefinery https://doi.org/10.1007/s13399-022-02655-2
    [Crossref] [Google Scholar]
  35. 35.
    Serna-Loaiza S, Adamcyk J, Beisl S, Miltner M, Friedl A. 2022. Sequential pretreatment of wheat straw: liquid hot water followed by organosolv for the production of hemicellulosic sugars, lignin, and a cellulose-enriched pulp. Waste Biomass Valoriz. 13:4771–84
    [Google Scholar]
  36. 36.
    Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT et al. 2014. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science 343:277–80
    [Google Scholar]
  37. 37.
    Wang J, Rajan K, Annamraju A, Chmely SC, Pingali SV et al. 2021. A sequential autohydrolysis-ionic liquid fractionation process for high quality lignin production. Energy Fuels 35:2293–302
    [Google Scholar]
  38. 38.
    Deuss PJ, Lancefield CS, Narani A, De Vries JG, Westwood NJ, Barta K. 2017. Phenolic acetals from lignins of varying compositions via iron(III) triflate catalysed depolymerisation. Green Chem. 19:2774–82
    [Google Scholar]
  39. 39.
    Cherubini F. 2010. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51:1412–21
    [Google Scholar]
  40. 40.
    Berry MD, Sessions J. 2018. A forest-to-product biomass supply chain in the Pacific Northwest, USA: a multi-product approach. Appl. Eng. Agric. 34:109–24
    [Google Scholar]
  41. 41.
    Vangeel T, Neiva DM, Quilhó T, Costa RA, Sousa V et al. 2023. Tree bark characterization envisioning an integrated use in a biorefinery. Biomass Convers. Biorefinery 13:2029–43
    [Google Scholar]
  42. 42.
    Sun Q, Hong S, Xiao M-Z, Li H-Y, Sun S-N et al. 2022. Ultrastructural elucidation of lignin macromolecule from different growth stages of Chinese pine. Int. J. Biol. Macromol. 209:B1792–800
    [Google Scholar]
  43. 43.
    Luo Y, O'Dea RM, Gupta Y, Chang J, Sadula S et al. 2022. A life cycle greenhouse gas model of a yellow poplar forest residue reductive catalytic fractionation biorefinery. Environ. Eng. Sci. 39:821–33
    [Google Scholar]
  44. 44.
    Larraz R. 2021. A brief history of oil refining. Substantia 5:129–52
    [Google Scholar]
  45. 45.
    Ögmundarson Ó, Sukumara S, Herrgård MJ, Fantke P. 2020. Combining environmental and economic performance for bioprocess optimization. Trends Biotechnol. 38:1203–14
    [Google Scholar]
  46. 46.
    Langholtz MH, Stokes BJ, Eaton LM. 2016. 2016 billion-ton report: advancing domestic resources for a thriving bioeconomy. Rep. DOE/EE-1440, ORNL/TM-2016/160, 1271651 Dep. Energy Oak Ridge, TN:
  47. 47.
    Bergman R, Berry M, Bilek EMT, Bowers T, Eastin I et al. 2018. Utilizing forest residues for the production of bioenergy and biobased products Final Rep., Biomass Res. Dev. Initiat. Program Award DE-EE0006297 US Dep. Energy Washington, DC:
  48. 48.
    US Environ. Prot. Agency 2020. Inventory of U.S. greenhouse gas emissions and sinks 1990–2018. Rep. EPA 430-R-20-002 US Environ. Prot. Agency Washington, DC:
  49. 49.
    Clay DE, Alverson R, Johnson JM, Karlen DL, Clay S et al. 2019. Crop residue management challenges: a special issue overview. Agronomy J. 111:1–3
    [Google Scholar]
  50. 50.
    Johnston HJ, Mueller W, Steinle S, Vardoulakis S, Tantrakarnapa K et al. 2019. How harmful is particulate matter emitted from biomass burning? A Thailand perspective. Curr. Pollut. Rep. 5:353–77
    [Google Scholar]
  51. 51.
    Or. Dep. Agric 2022. Grower resources accessed July 2022. https://www.oregon.gov/oda/programs/MarketAccess/SmokeBurning/Pages/GrowerResources.aspx
  52. 52.
    McBride DB. 2007. S.J. Res. 2. 144th Gen. Assembly (Del. 2007)
  53. 53.
    US Dep. Agric 2012. USDA/NASS QuickStats ad-hoc query tool https://quickstats.nass.usda.gov/
  54. 54.
    US Dep. Agric 2020. Crop Production 2019 Summary Washington, DC: US Dep. Agric.
  55. 55.
    Mittal A, Katahira R, Donohoe BS, Black BA, Pattathil S et al. 2017. Alkaline peroxide delignification of corn stover. ACS Sustain. Chem. Eng. 5:6310–21
    [Google Scholar]
  56. 56.
    Sarkar N, Ghosh SK, Bannerjee S, Aikat K. 2012. Bioethanol production from agricultural wastes: an overview. Renew. Energy 37:19–27
    [Google Scholar]
  57. 57.
    Kumar S, Paritosh K, Pareek N, Chawade A, Vivekanand V. 2018. De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: an overview. Renew. Sustain. Energy Rev. 90:160–70
    [Google Scholar]
  58. 58.
    Aul E, Pechan EH. 1993. Emission factor documentation for AP-42 Section 1.8 bagasse combustion in sugar mills Rep. Off. Air Qual. Plan. Stand., US Environ. Prot. Agency Research Triangle Park, NC:
  59. 59.
    Alves B. 2022. Average costs of fossil fuels for electricity generation in the U.S. 2005–2020 Stat., Statista Hamburg, Ger.: https://www.statista.com/statistics/183992/average-costs-of-fossil-fuels-for-us-electricity-generation-from-2005
  60. 60.
    Welker C, Balasubramanian V, Petti C, Rai K, DeBolt S, Mendu V. 2015. Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies 8:7654–76
    [Google Scholar]
  61. 61.
    Nishide RN, Truong JH, Abu-Omar MM. 2021. Organosolv fractionation of walnut shell biomass to isolate lignocellulosic components for chemical upgrading of lignin to aromatics. ACS Omega 6:8142–50
    [Google Scholar]
  62. 62.
    Koopmans A, Koppejan J. 1998. Agricultural and forest residues: generation, utilization, and availability Presented at the Regional Consultation on Modern Applications of Biomass Energy Jan. 6–10 Kuala Lumpur:
  63. 63.
    Gordon-Pullar T. 1990. The potential use of wood residues for energy generation. For. Pap. 93 UN Food Agric. Organ Rome:
  64. 64.
    Sahoo K, Bergman R, Runge T. 2021. Life-cycle assessment of redwood lumber products in the US. Int. J. Life Cycle Assess. 26:1702–20
    [Google Scholar]
  65. 65.
    US For. Serv 2022. Confronting the wildfire crisis. Rep. FS-1187a US Dep. Agric. Washington, DC:
  66. 66.
    Kaza S, Yao LC, Bhada-Tata P, Van Woerden F. 2018. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank
  67. 67.
    Waste Today 2019. EREF releases analysis on national landfill tipping fees. Waste Today Oct. 29. https://www.wastetodaymagazine.com/article/eref-releases-analysis-national-msw-landfill-tipping-fees/
    [Google Scholar]
  68. 68.
    Vazquez YV, Barragán F, Castillo LA, Barbosa SE. 2020. Analysis of the relationship between the amount and type of MSW and population socioeconomic level: Bahía Blanca case study, Argentina. Heliyon 6:e04343
    [Google Scholar]
  69. 69.
    US Environ. Prot. Agency 2022. National overview: facts and figures on materials, wastes, and recycling accessed July 2022. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials
  70. 70.
    Van den Bossche G, Vangeel T, Van Aelst K, Arts W, Trullemans L et al. 2021. Reductive catalytic fractionation: from waste wood to functional phenolic oligomers for attractive, value-added applications. Lignin Utilization Strategies: From Processing to Applications CG Yoo, A Ragauskas 37–60. Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  71. 71.
    Ebikade EO, Sadula S, Gupta Y, Vlachos DG. 2021. A review of thermal and thermocatalytic valorization of food waste. Green Chem. 23:2806–33
    [Google Scholar]
  72. 72.
    BioCycle 2022. New law in Washington State requires food and yard waste collection. BioCycle March 8. https://www.biocycle.net/bill-to-reduce-food-and-yard-waste-in-landfills-passes-in-washington/
    [Google Scholar]
  73. 73.
    Granger T. 2017. What's banned in landfills: a state-by-state guide. Earth911 Nov. 27. https://earth911.com/business-policy/landfill-bans/
    [Google Scholar]
  74. 74.
    Méndez CA, Grossmann IE, Harjunkoski I, Kaboré P. 2006. A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations. Comput. Chem. Eng. 30:614–34
    [Google Scholar]
  75. 75.
    Kenney KL, Smith WA, Gresham GL, Westover TL. 2013. Understanding biomass feedstock variability. Biofuels 4:111–27
    [Google Scholar]
  76. 76.
    Kizha AR, Han H-S. 2016. Processing and sorting forest residues: cost, productivity and managerial impacts. Biomass Bioenergy 93:97–106
    [Google Scholar]
  77. 77.
    Wang Y, Bouri E, Fareed Z, Dai Y. 2022. Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine. Finance Res. Lett. 49:103066
    [Google Scholar]
  78. 78.
    Gil-Alana LA, Monge M. 2020. Crude oil prices and COVID-19: persistence of the shock. Energy Res. Lett. 1:13200
    [Google Scholar]
  79. 79.
    Kizha AR, Han H-S, Paulson J, Koirala A. 2018. Strategies for reducing moisture content in forest residues at the harvest site. Appl. Eng. Agric. 34:25–33
    [Google Scholar]
  80. 80.
    Cooreman E, Vangeel T, Van Aelst K, Van Aelst J, Lauwaert J et al. 2020. Perspective on overcoming scale-up hurdles for the reductive catalytic fractionation of lignocellulose biomass. Ind. Eng. Chem. Res. 59:17035–45
    [Google Scholar]
  81. 81.
    Vermaas JV, Crowley MF, Beckham GT. 2020. Molecular lignin solubility and structure in organic solvents. ACS Sustain. Chem. Eng. 8:17839–50
    [Google Scholar]
  82. 82.
    Pavlenko N. 2018. Failure to launch: why advanced biorefineries are so slow to ramp up production. International Council on Clean Transportation Blog Nov. 13. https://theicct.org/failure-to-launch-why-advanced-biorefineries-are-so-slow-to-ramp-up-production/
    [Google Scholar]
  83. 83.
    Mankar AR, Pandey A, Modak A, Pant KK. 2021. Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresource Technol. 334:125235
    [Google Scholar]
  84. 84.
    Lobato-Peralta DR, Duque-Brito E, Villafán-Vidales HI, Longoria A, Sebastian PJ et al. 2021. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications. J. Clean. Prod. 293:126123
    [Google Scholar]
  85. 85.
    Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR. 2016. Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42:40–53
    [Google Scholar]
  86. 86.
    Ferrini P, Rezende CA, Rinaldi R. 2016. Catalytic upstream biorefining through hydrogen transfer reactions: understanding the process from the pulp perspective. ChemSusChem 9:3171–80
    [Google Scholar]
  87. 87.
    Wu Y, Wen J, Su C, Jiang C, Zhang C et al. 2023. Inhibitions of microbial fermentation by residual reductive lignin oil: concerns on the bioconversion of reductive catalytic fractionated carbohydrate pulp. Chem. Eng. J. 452:139267
    [Google Scholar]
  88. 88.
    US Gov. Account. Off 2020. Technology readiness assessment guide Rep. GAO-20-48G US Gov. Account. Off Washington, DC:
  89. 89.
    Sangroniz L, Jang Y-J, Hillmyer MA, Müller AJ. 2022. The role of intermolecular interactions on melt memory and thermal fractionation of semicrystalline polymers. J. Chem. Phys. 156:144902
    [Google Scholar]
  90. 90.
    Thornburg NE, Pecha MB, Brandner DG, Reed ML, Vermaas JV et al. 2020. Mesoscale reaction–diffusion phenomena governing lignin-first biomass fractionation. ChemSusChem 13:4495–509
    [Google Scholar]
  91. 91.
    Anderson EM, Stone ML, Hülsey MJ, Beckham GT, Román-Leshkov Y. 2018. Kinetic studies of lignin solvolysis and reduction by reductive catalytic fractionation decoupled in flow-through reactors. ACS Sustain. Chem. Eng. 6:7951–59
    [Google Scholar]
  92. 92.
    Turkin A, Eyley S, Preegel G, Thielemans W, Makshina E, Sels BF. 2021. How trace impurities can strongly affect the hydroconversion of biobased 5-hydroxymethylfurfural?. ACS Catal. 11:9204–9
    [Google Scholar]
  93. 93.
    vanZandvoort I, Wang Y, Rasrendra CB, vanEck ERH, Bruijnincx PCA et al. 2013. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6:1745–58
    [Google Scholar]
  94. 94.
    Anderson EM, Stone ML, Katahira R, Reed M, Muchero W et al. 2019. Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields. Nat. Commun. 10:2033
    [Google Scholar]
  95. 95.
    Liu Q, Luo S, Fan W, Ouyang X, Qiu X. 2021. Separation of short-chain glucan oligomers from molten salt hydrate and hydrolysis to glucose. Green Chem. 23:4114–24
    [Google Scholar]
  96. 96.
    Hatfield R, Fukushima RS. 2005. Can lignin be accurately measured?. Crop Sci. 45:832–39
    [Google Scholar]
  97. 97.
    Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW. 2010. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 58:9043–53
    [Google Scholar]
  98. 98.
    Decker SR, Harman-Ware AE, Happs RM, Wolfrum EJ, Tuskan GA et al. 2018. High throughput screening technologies in biomass characterization. Front. Energy Res. 6:120
    [Google Scholar]
  99. 99.
    Moreira-Vilar FC, de Cássia Siqueira-Soares R, Finger-Teixeira A, de Oliveira DM, Ferro AP et al. 2014. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods. PLOS ONE 9:e110000
    [Google Scholar]
  100. 100.
    Lu F, Wang C, Chen M, Yue F, Ralph J. 2021. A facile spectroscopic method for measuring lignin content in lignocellulosic biomass. Green Chem. 23:5106–12
    [Google Scholar]
  101. 101.
    Blakeney AB, Harris PJ, Henry RJ, Stone BA. 1983. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 113:291–99
    [Google Scholar]
  102. 102.
    Anca-Couce A, Tsekos C, Retschitzegger S, Zimbardi F, Funke A et al. 2020. Biomass pyrolysis TGA assessment with an international round robin. Fuel 276:118002
    [Google Scholar]
  103. 103.
    Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Ham-Pichavant F et al. 2011. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307
    [Google Scholar]
  104. 104.
    Lyons G, Carmichael E, McRoberts C, Aubry A, Thomson A, Reynolds CK 2018. Prediction of lignin content in ruminant diets and fecal samples using rapid analytical techniques. J. Agric. Food Chem. 66:13031–40
    [Google Scholar]
  105. 105.
    Gani A, Naruse I. 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew. Energy 32:649–61
    [Google Scholar]
  106. 106.
    Kelley S. 2004. Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry. Biomass Bioenergy 27:77–88
    [Google Scholar]
  107. 107.
    Mullen CA, Boateng AA. 2010. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Proc. Technol. 91:1446–58
    [Google Scholar]
  108. 108.
    Ohra-aho T, Linnekoski J 2015. Catalytic pyrolysis of lignin by using analytical pyrolysis-GC–MS. J. Anal. Appl. Pyrolysis 113:186–92
    [Google Scholar]
  109. 109.
    Mansfield SD, Kim H, Lu F, Ralph J 2012. Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protoc. 7:1579–89
    [Google Scholar]
  110. 110.
    Rietzler B, Karlsson M, Kwan I, Lawoko M, Ek M. 2022. Fundamental insights on the physical and chemical properties of organosolv lignin from Norway spruce bark. Biomacromolecules 23:3349–58
    [Google Scholar]
  111. 111.
    Gujjala LKS, Kim J, Won W. 2022. Technical lignin to hydrogels: an eclectic review on suitability, synthesis, applications, challenges and future prospects. J. Clean. Prod. 363:132585
    [Google Scholar]
  112. 112.
    Amiri MT, Bertella S, Questell-Santiago YM, Luterbacher JS. 2019. Establishing lignin structure-upgradeability relationships using quantitative 1H–13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC-NMR) spectroscopy. Chem. Sci. 10:8135–42
    [Google Scholar]
  113. 113.
    Pu Y, Cao S, Ragauskas AJ. 2011. Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ. Sci. 4:3154–66
    [Google Scholar]
  114. 114.
    Argyropoulos DS. 1994. Quantitative phosphorus-31 NMR analysis of lignins, a new tool for the lignin chemist. J. Wood Chem. Technol. 14:45–63
    [Google Scholar]
  115. 115.
    Lancefield CS, Constant S, dePeinder P, Bruijnincx PCA. 2019. Linkage abundance and molecular weight characteristics of technical lignins by attenuated total reflection-FTIR spectroscopy combined with multivariate analysis. ChemSusChem 12:1139–46
    [Google Scholar]
  116. 116.
    Payne CE, Wolfrum EJ. 2015. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy. Biotechnol. Biofuels 8:43
    [Google Scholar]
  117. 117.
    Thi HD, Van Aelst K, Van den Bosch S, Katahira R, Beckham GT et al. 2022. Identification and quantification of lignin monomers and oligomers from reductive catalytic fractionation of pine wood with GC × GC – FID/MS. Green Chem. 24:191–206
    [Google Scholar]
  118. 118.
    Choi YS, Johnston PA, Brown RC, Shanks BH, Lee K-H 2014. Detailed characterization of red oak-derived pyrolysis oil: integrated use of GC, HPLC, IC, GPC and Karl-Fischer. J. Anal. Appl. Pyrolysis 110:147–54
    [Google Scholar]
  119. 119.
    Scarlata CJ, Hyman DA. 2010. Development and validation of a fast high pressure liquid chromatography method for the analysis of lignocellulosic biomass hydrolysis and fermentation products. J. Chromatogr. A 1217:2082–87
    [Google Scholar]
  120. 120.
    Resch MG, Baker JO, Decker SR. 2015. Low solids enzymatic saccharification of lignocellulosic biomass Rep. NREL/TP-5100-63351 Natl. Renew. Energy Lab. Golden, CO:
  121. 121.
    Lupoi JS, Singh S, Simmons BA, Henry RJ. 2014. Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. BioEnergy Res. 7:1–23
    [Google Scholar]
  122. 122.
    Patil PS, Fernandes CG, Sawant SC, Lali AM, Odaneth AA. 2022. High-throughput system for carbohydrate analysis of lignocellulosic biomass. Biomass Convers. Biorefinery https://doi.org/10.1007/s13399-022-02304-8
    [Crossref] [Google Scholar]
  123. 123.
    Dell'Orco S, Rowland SM, Harman-Ware AE, Carpenter D, Foust T et al. 2022. Advanced spectrometric methods for characterizing bio-oils to enable refineries to reduce fuel carbon intensity during co-processing. Appl. Spectrosc. Rev. 57:77–87
    [Google Scholar]
  124. 124.
    Wu X, Li J, Yao L, Xu Z. 2020. Auto-sorting commonly recovered plastics from waste household appliances and electronics using near-infrared spectroscopy. J. Clean. Prod. 246:118732
    [Google Scholar]
  125. 125.
    Pantoja PA, Sotelo FF, Gatti AC, Ciriaco MF, Katata AC et al. 2009. Improving accuracy of refinery optimization by the on-line characterization of crude oil. Comput. Aided Chem. Eng. 27:339–44
    [Google Scholar]
  126. 126.
    Sagandira CR, Nqeketo S, Mhlana K, Sonti T, Gaqa S, Watts P. 2022. Towards 4th industrial revolution efficient and sustainable continuous flow manufacturing of active pharmaceutical ingredients. React. Chem. Eng. 7:214–44
    [Google Scholar]
  127. 127.
    Río Andrade JC, Colodette JL, Lino AG, Ralph J, Gutiérrez Suárez A, Rencoret J 2012. Structural characteristics of the lignins from sugarcane bagasse and straw. J. Agric. Food Chem. 60:5922–35
    [Google Scholar]
  128. 128.
    Sholl DS, Lively RP. 2016. Seven chemical separations to change the world. Nature 532:435–37
    [Google Scholar]
  129. 129.
    Oak Ridge Natl. Lab 2005. Materials for Separation Technologies: Energy and Emission Reduction Opportunities Oak Ridge, TN: Oak Ridge Natl. Lab.
  130. 130.
    Wang S, Shuai L, Saha B, Vlachos DG, Epps TH III. 2018. From tree to tape: direct synthesis of pressure sensitive adhesives from depolymerized raw lignocellulosic biomass. ACS Cent. Sci. 4:701–8
    [Google Scholar]
  131. 131.
    Fei X, Wang J, Zhu J, Wang X, Liu X 2020. Biobased poly(ethylene 2,5-furancoate): no longer an alternative, but an irreplaceable polyester in the polymer industry. ACS Sustain. Chem. Eng. 8:8471–85
    [Google Scholar]
  132. 132.
    Humbird D, Davis R, Tao L, Kinchin C, Hsu D et al. 2011. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol Rep. NREL/TP-5100-47764 Natl. Renew. Energy Lab. Golden, CO:
  133. 133.
    Elkasabi Y, Mullen CA, Boateng AA. 2014. Distillation and isolation of commodity chemicals from bio-oil made by tail-gas reactive pyrolysis. ACS Sustain. Chem. Eng. 2:2042–52
    [Google Scholar]
  134. 134.
    Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn SF et al. 2015. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 8:1748–63
    [Google Scholar]
  135. 135.
    Abbasi R, Setzler BP, Lin S, Wang J, Zhao Y et al. 2019. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 31:1805876
    [Google Scholar]
  136. 136.
    Wu Z, Jiang Y, Wang X, Xu J, Hu L. 2022. A review on the separation of lignin depolymerized products. Biomass Convers. Biorefinery https://doi.org/10.1007/s13399-021-02266-3
    [Crossref] [Google Scholar]
  137. 137.
    Peleteiro S, Rivas S, Alonso JL, Santos V, Parajó JC. 2015. Utilization of ionic liquids in lignocellulose biorefineries as agents for separation, derivatization, fractionation, or pretreatment. J. Agric. Food Chem. 63:8093–102
    [Google Scholar]
  138. 138.
    Montesantos N, Nielsen RP, Maschietti M. 2020. Upgrading of nondewatered nondemetallized lignocellulosic biocrude from hydrothermal liquefaction using supercritical carbon dioxide. Ind. Eng. Chem. Res. 59:6141–53
    [Google Scholar]
  139. 139.
    Saboe PO, Tomashek EG, Monroe HR, Haugen SJ, Prestangen RL et al. 2022. Recovery of low molecular weight compounds from alkaline pretreatment liquor via membrane separations. Green Chem. 24:3152–66
    [Google Scholar]
  140. 140.
    Karp EM, Choi H, Tan E, Liu J, Thorson M. 2021. Counter current chromatography Presented at Separations Consortium, March 11 Natl. Renew. Energy Lab. Golden, CO:
  141. 141.
    Alherech M, Omolabake S, Holland CM, Klinger GE, Hegg EL, Stahl SS. 2021. From lignin to valuable aromatic chemicals: lignin depolymerization and monomer separation via centrifugal partition chromatography. ACS Cent. Sci. 7:1831–37
    [Google Scholar]
  142. 142.
    Fekete S, Beck A, Veuthey J-L, Guillarme D. 2015. Ion-exchange chromatography for the characterization of biopharmaceuticals. J. Pharm. Biomed. Anal. 113:43–55
    [Google Scholar]
  143. 143.
    Choi H, Soland NE, Moss MR, Liu J, Prestangen RR et al. 2022. The cell utilized partitioning model as a predictive tool for optimizing counter-current chromatography processes. Sep. Purif. Technol. 285:120330
    [Google Scholar]
  144. 144.
    Yan J, Tan ECD, Katahira R, Pray TR, Sun N. 2022. Fractionation of lignin streams using tangential flow filtration. Ind. Eng. Chem. Res. 61:4407–17
    [Google Scholar]
  145. 145.
    Bhattacharjee S, Datta S, Bhattacharjee C. 2006. Performance study during ultrafiltration of Kraft black liquor using rotating disk membrane module. J. Clean. Prod. 14:497–504
    [Google Scholar]
  146. 146.
    Hsiao YW, Anastasopoulou A, Ierapetritou M, Vlachos DG. 2021. Cost and energy efficient cyclic separation of 5-hydroxymethyl furfural from an aqueous solution. Green Chem. 23:4008–23
    [Google Scholar]
  147. 147.
    Ramalakshmi K, Raghavan B. 1999. Caffeine in coffee: its removal. Why and how?. Crit. Rev. Food Sci. Nutr. 39:441–56
    [Google Scholar]
  148. 148.
    Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. 2023. Polymers without petrochemicals: sustainable routes to conventional monomers. Chem. Rev. 123:2609–734
    [Google Scholar]
  149. 149.
    Fitzgerald N, Bailey A. 2018. Moving beyond drop-in replacements: performance-advantaged biobased chemicals Worksh. Summ. Rep. US Dep. Energy Washington, DC:
  150. 150.
    Cywar RM, Rorrer NA, Hoyt CB, Beckham GT, Chen EYX. 2022. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 7:83–103
    [Google Scholar]
  151. 151.
    Posen ID, Griffin WM, Matthews HS, Azevedo IL. 2015. Changing the renewable fuel standard to a renewable material standard: bioethylene case study. Environ. Sci. Technol. 49:93–102
    [Google Scholar]
  152. 152.
    Mendieta CM, Vallejos ME, Felissia FE, Chinga-Carrasco G, Area MC. 2020. Review: bio-polyethylene from wood wastes. J. Polym. Environ. 28:1–16
    [Google Scholar]
  153. 153.
    Acquasanta F, Visser R, Langius B 2020. PEF as a multilayer barrier technology: A sustainable way to enable long shelf life in PET bottles. Avantium Aug. 3. https://www.avantium.com/publication/pef-as-a-multilayer-barrier-technology-a-sustainable-way-to-enable-long-shelf-life-in-pet-bottles/
    [Google Scholar]
  154. 154.
    Avantium 2021. Avantium investor presentation. Rep. H2 2021 Avantium Amsterdam:
  155. 155.
    Fernández L 2021. Global price of polyethylene terephthalate 2017–2022 Stat ., Statista Hamburg, Ger.: https://www.statista.com/statistics/1171088/price-polyethylene-terephthalate-forecast-globally/
  156. 156.
    Kalali EN, Hu Y, Wang X, Song L, Xing W. 2019. Highly-aligned cellulose fibers reinforced epoxy composites derived from bulk natural bamboo. Ind. Crops Prod. 129:434–39
    [Google Scholar]
  157. 157.
    Lee Y, Kwon EE, Lee J. 2019. Polymers derived from hemicellulosic parts of lignocellulosic biomass. Rev. Environ. Sci. Biotechnol. 18:317–34
    [Google Scholar]
  158. 158.
    Holmberg AL, Nguyen NA, Karavolias MG, Reno KH, Wool RP, Epps TH III. 2016. Softwood lignin-based methacrylate polymers with tunable thermal and viscoelastic properties. Macromolecules 49:1286–95
    [Google Scholar]
  159. 159.
    Holmberg AL, Reno KH, Nguyen NA, Wool RP, Epps TH III. 2016. Syringyl methacrylate, a hardwood lignin-based monomer for high-Tg polymeric materials. ACS Macro Lett. 5:574–78
    [Google Scholar]
  160. 160.
    Koelewijn SF, Cooreman C, Renders T, Andecochea Saiz C, Van den Bosch S et al. 2018. Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chem. 20:1050–58
    [Google Scholar]
  161. 161.
    Mahajan JS, O'Dea RM, Norris JB, Korley LTJ, Epps TH III. 2020. Aromatics from lignocellulosic biomass: a platform for high-performance thermosets. ACS Sustain. Chem. Eng. 8:15072–96
    [Google Scholar]
  162. 162.
    Amitrano A, Mahajan JS, Korley LTJ, Epps TH III. 2021. Estrogenic activity of lignin-derivable alternatives to bisphenol A assessed via molecular docking simulations. RSC Adv. 11:22149–58
    [Google Scholar]
  163. 163.
    Wu X, De bruyn M, Barta K 2022. One pot catalytic conversion of lignin-derivable guaiacols and syringols to cyclohexylamines. ChemSusChem 15:e202200914
    [Google Scholar]
  164. 164.
    Perez JM, Sener C, Misra S, Umana GE, Coplien J et al. 2022. Integrating lignin depolymerization with microbial funneling processes using agronomically relevant feedstocks. Green Chem. 24:2795–811
    [Google Scholar]
  165. 165.
    Ajao O, Jeaidi J, Benali M, Abdelaziz OY, Hulteberg CP. 2019. Green solvents-based fractionation process for kraft lignin with controlled dispersity and molecular weight. Bioresource Technol. 291:121799
    [Google Scholar]
  166. 166.
    Mija A, van der Waal JC, Pin J-M, Guigo N, de Jong E. 2017. Humins as promising material for producing sustainable carbohydrate-derived building materials. Constr. Build. Mater. 139:594–601
    [Google Scholar]
  167. 167.
    Yang J, Niu X, Wu H, Zhang H, Ao Z, Zhang S. 2020. Valorization of humin as a glucose derivative to fabricate a porous carbon catalyst for esterification and hydroxyalkylation/alkylation. Waste Manag. 103:407–15
    [Google Scholar]
  168. 168.
    Baird DG, Collias DI. 2014. Polymer Processing: Principles and Design Hoboken, NJ: John Wiley & Sons
  169. 169.
    Parker L. 2019. The world's plastic pollution crisis explained. National Geographic June 7. https://www.nationalgeographic.com/environment/article/plastic-pollution
    [Google Scholar]
  170. 170.
    Rahimi A, García JM. 2017. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1:0046
    [Google Scholar]
  171. 171.
    Martín AJ, Mondelli C, Jaydev SD, Pérez-Ramírez J. 2021. Catalytic processing of plastic waste on the rise. Chemistry 7:1487–533
    [Google Scholar]
  172. 172.
    Carboué Q, Fadlallah S, Lopez M, Allais F. 2022. Progress in degradation behavior of most common types of functionalized polymers: a review. Macromol. Rapid Commun. 43:2200254
    [Google Scholar]
  173. 173.
    Law KL, Narayan R. 2022. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7:104–16
    [Google Scholar]
  174. 174.
    Epps TH III, Korley LTJ, Yan T, Beers KL, Burt TM 2022. Sustainability of synthetic plastics: considerations in materials life-cycle management. JACS Au 2:3–11
    [Google Scholar]
  175. 175.
    Hinton ZR, Talley MR, Kots PA, Le AV, Zhang T et al. 2022. Innovations toward the valorization of plastics waste. Annu. Rev. Mater. Res. 52:249–80
    [Google Scholar]
  176. 176.
    Jehanno C, Alty JW, Roosen M, De Meester S, Dove AP et al. 2022. Critical advances and future opportunities in upcycling commodity polymers. Nature 603:803–14
    [Google Scholar]
  177. 177.
    Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P. 2017. Green conversion of municipal solid wastes into fuels and chemicals. Electron. J. Biotechnol. 26:69–83
    [Google Scholar]
  178. 178.
    Emerson JA, Garabedian NT, Burris DL, Furst EM, Epps TH III. 2018. Exploiting feedstock diversity to tune the chemical and tribological properties of lignin-inspired polymer coatings. ACS Sustain. Chem. Eng. 6:6856–66
    [Google Scholar]
  179. 179.
    Fox TG Jr., Flory PJ. 1950. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21:581–91
    [Google Scholar]
  180. 180.
    Dellon LD, Yanez AJ, Li W, Mabon R, Broadbelt LJ. 2017. Computational generation of lignin libraries from diverse biomass sources. Energy Fuels 31:8263–74
    [Google Scholar]
  181. 181.
    Wang Y, Kalscheur J, Ebikade E, Li Q, Vlachos DG. 2022. LigninGraphs: lignin structure determination with multiscale graph modeling. J. Cheminformat. 14:43
    [Google Scholar]
  182. 182.
    Jang JH, Brandner DG, Dreiling RJ, Ringsby AJ, Bussard JR et al. 2022. Multi-pass flow-through reductive catalytic fractionation. Joule 6:1859–75
    [Google Scholar]
  183. 183.
    Mahmud R, Moni SM, High K, Carbajales-Dale M. 2021. Integration of techno-economic analysis and life cycle assessment for sustainable process design—a review. J. Clean. Prod. 317:128247
    [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error