1932

Abstract

Active colloids use energy input at the particle level to propel persistent motion and direct dynamic assemblies. We consider three types of colloids animated by chemical reactions, time-varying magnetic fields, and electric currents. For each type, we review the basic propulsion mechanisms at the particle level and discuss their consequences for collective behaviors in particle ensembles. These microscopic systems provide useful experimental models of nonequilibrium many-body physics in which dissipative currents break time-reversal symmetry. Freed from the constraints of thermodynamic equilibrium, active colloids assemble to form materials that move, reconfigure, heal, and adapt. Colloidal machines based on engineered particles and their assemblies provide a basis for mobile robots with increasing levels of autonomy. This review provides a conceptual framework for understanding and applying active colloids to create material systems that mimic the functions of living matter. We highlight opportunities for chemical engineers to contribute to this growing field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101121-084939
2023-06-08
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/14/1/annurev-chembioeng-101121-084939.html?itemId=/content/journals/10.1146/annurev-chembioeng-101121-084939&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dou Y, Dhatt-Gauthier K, Bishop KJM. 2019. Thermodynamic costs of dynamic function in active soft matter. Curr. Opin. Solid State Mater. Sci. 23:28–40
    [Google Scholar]
  2. 2.
    Poon W. 2004. Colloids as big atoms. Science 304:830–31
    [Google Scholar]
  3. 3.
    Wang W, Duan W, Ahmed S, Mallouk TE, Sen A. 2013. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8:531–54
    [Google Scholar]
  4. 4.
    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G. 2016. Active particles in complex and crowded environments. Rev. Mod. Phys. 88:045006
    [Google Scholar]
  5. 5.
    Zhang J, Luijten E, Grzybowski BA, Granick S. 2017. Active colloids with collective mobility status and research opportunities. Chem. Soc. Rev. 46:5551–69
    [Google Scholar]
  6. 6.
    Han K, Shields CW IV, Velev OD 2018. Engineering of self-propelling microbots and microdevices powered by magnetic and electric fields. Adv. Funct. Mater. 28:1705953
    [Google Scholar]
  7. 7.
    Palagi S, Fischer P. 2018. Bioinspired microrobots. Nat. Rev. Mater. 3:113–24
    [Google Scholar]
  8. 8.
    Spatafora-Salazar A, Lobmeyer DM, Cunha LHP, Joshi K, Biswal SL. 2021. Hierarchical assemblies of superparamagnetic colloids in time-varying magnetic fields. Soft Matter 17:1120–55
    [Google Scholar]
  9. 9.
    Sharko A, Livitz D, De Piccoli S, Bishop KJM, Hermans TM. 2022. Insights into chemically fueled supramolecular polymers. Chem. Rev. 122:11759–77
    [Google Scholar]
  10. 10.
    Nguyen NH, Klotsa D, Engel M, Glotzer SC. 2014. Emergent collective phenomena in a mixture of hard shapes through active rotation. Phys. Rev. Lett. 112:075701
    [Google Scholar]
  11. 11.
    Spellings M, Engel M, Klotsa D, Sabrina S, Drews AM et al. 2015. Shape control and compartmentalization in active colloidal cells. PNAS 112:E4642–50
    [Google Scholar]
  12. 12.
    Nel AE, Mädler L, Velegol D, Xia T, Hoek E et al. 2009. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8:543–57
    [Google Scholar]
  13. 13.
    Bishop KJM, Wilmer CE, Soh S, Grzybowski BA. 2009. Nanoscale forces and their uses in self-assembly. Small 5:1600–30
    [Google Scholar]
  14. 14.
    Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM. 2010. Directed self-assembly of nanoparticles. ACS Nano 4:3591–605
    [Google Scholar]
  15. 15.
    He M, Gales JP, Ducrot É, Gong Z, Yi GR et al. 2020. Colloidal diamond. Nature 585:524–29
    [Google Scholar]
  16. 16.
    Cademartiri L, Bishop KJM. 2015. Programmable self-assembly. Nat. Mater. 14:2–9
    [Google Scholar]
  17. 17.
    Zwanzig R. 2001. Nonequilibrium Statistical Mechanics Oxford, UK: Oxford Univ. Press
  18. 18.
    Leyva SG, Stoop RL, Pagonabarraga I, Tierno P. 2022. Hydrodynamic synchronization and clustering in ratcheting colloidal matter. Sci. Adv. 8:eabo4546
    [Google Scholar]
  19. 19.
    Brady JF, Bossis G. 1988. Stokesian dynamics. Annu. Rev. Fluid Mech. 20:111–57
    [Google Scholar]
  20. 20.
    Glotzer SC, Solomon MJ. 2007. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6:557–62
    [Google Scholar]
  21. 21.
    Kim S, Karrila SJ. 2013. Microhydrodynamics: Principles and Selected Applications Mineola, NY: Dover
  22. 22.
    Hunter GL, Weeks ER. 2012. The physics of the colloidal glass transition. Rep. Prog. Phys. 75:066501
    [Google Scholar]
  23. 23.
    Whitaker KA, Varga Z, Hsiao LC, Solomon MJ, Swan JW, Furst EM. 2019. Colloidal gel elasticity arises from the packing of locally glassy clusters. Nat. Commun. 10:2237
    [Google Scholar]
  24. 24.
    De Groot SR, Mazur P. 1984. Non-Equilibrium Thermodynamics Mineola, NY: Dover
  25. 25.
    Reimann P. 2002. Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361:57–265
    [Google Scholar]
  26. 26.
    Mewis J, Wagner NJ. 2012. Colloidal Suspension Rheology Cambridge, UK: Cambridge Univ. Press
  27. 27.
    O'Brien RW, White LR 1978. Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 2 74:1607–26
    [Google Scholar]
  28. 28.
    Velegol D, Garg A, Guha R, Kar A, Kumar M. 2016. Origins of concentration gradients for diffusiophoresis. Soft Matter 12:4686–703
    [Google Scholar]
  29. 29.
    Anderson JL. 1989. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21:61–99
    [Google Scholar]
  30. 30.
    Lauga E, Powers TR. 2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:096601
    [Google Scholar]
  31. 31.
    Howse JR, Jones RA, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R. 2007. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99:048102
    [Google Scholar]
  32. 32.
    O'Byrne J, Kafri Y, Tailleur J, van Wijland F. 2022. Time irreversibility in active matter, from micro to macro. Nat. Rev. Phys. 4:167–83
    [Google Scholar]
  33. 33.
    Kamdar S, Shin S, Leishangthem P, Francis LF, Xu X, Cheng X. 2022. The colloidal nature of complex fluids enhances bacterial motility. Nature 603:819–23
    [Google Scholar]
  34. 34.
    Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK et al. 2004. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126:13424–31
    [Google Scholar]
  35. 35.
    Golestanian R, Liverpool T, Ajdari A. 2007. Designing phoretic micro- and nano-swimmers. New J. Phys. 9:126
    [Google Scholar]
  36. 36.
    Moran JL, Posner JD. 2017. Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49:511–40
    [Google Scholar]
  37. 37.
    Ebbens S, Tu MH, Howse JR, Golestanian R. 2012. Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. Phys. Rev. E 85:020401
    [Google Scholar]
  38. 38.
    Ebbens S, Gregory DA, Dunderdale G, Howse JR, Ibrahim Y et al. 2014. Electrokinetic effects in catalytic platinum-insulator Janus swimmers. Eur. Phys. Lett. 106:58003
    [Google Scholar]
  39. 39.
    Brown A, Poon W. 2014. Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter 10:4016–27
    [Google Scholar]
  40. 40.
    Das S, Garg A, Campbell AI, Howse J, Sen A et al. 2015. Boundaries can steer active Janus spheres. Nat. Commun. 6:8999
    [Google Scholar]
  41. 41.
    Simmchen J, Katuri J, Uspal WE, Popescu MN, Tasinkevych M, Sánchez S. 2016. Topographical pathways guide chemical microswimmers. Nat. Commun. 7:10598
    [Google Scholar]
  42. 42.
    Wu H, Greydanus B, Schwartz DK. 2021. Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix. PNAS 118:e2101807118
    [Google Scholar]
  43. 43.
    Campbell AI, Ebbens SJ, Illien P, Golestanian R. 2019. Experimental observation of flow fields around active Janus spheres. Nat. Commun. 10:3952
    [Google Scholar]
  44. 44.
    Golestanian R, Liverpool TB, Ajdari A. 2005. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94:220801
    [Google Scholar]
  45. 45.
    Córdova-Figueroa UM, Brady JF. 2008. Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100:158303
    [Google Scholar]
  46. 46.
    Uspal W, Popescu MN, Dietrich S, Tasinkevych M. 2015. Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matter 11:434–38
    [Google Scholar]
  47. 47.
    Mozaffari A, Sharifi-Mood N, Koplik J, Maldarelli C. 2016. Self-diffusiophoretic colloidal propulsion near a solid boundary. Phys. Fluids 28:053107
    [Google Scholar]
  48. 48.
    Prieve DC, Anderson JL, Ebel JP, Lowell ME. 1984. Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148:247–69
    [Google Scholar]
  49. 49.
    Zhou X, Wang S, Xian L, Shah ZH, Li Y et al. 2021. Ionic effects in ionic diffusiophoresis in chemically driven active colloids. Phys. Rev. Lett. 127:168001
    [Google Scholar]
  50. 50.
    Brown AT, Poon WCK, Holm C, De Graaf J. 2017. Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents. Soft Matter 13:1200–22
    [Google Scholar]
  51. 51.
    Brooks AM, Tasinkevych M, Sabrina S, Velegol D, Sen A, Bishop KJM. 2019. Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis. Nat. Commun. 10:495
    [Google Scholar]
  52. 52.
    Wang Y, Hernandez RM, Bartlett DJ, Bingham JM, Kline TR et al. 2006. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22:10451–56
    [Google Scholar]
  53. 53.
    Wang W, Chiang TY, Velegol D, Mallouk TE. 2013. Understanding the efficiency of autonomous nano- and microscale motors. J. Am. Chem. Soc. 135:10557–65
    [Google Scholar]
  54. 54.
    Brooks AM, Sabrina S, Bishop KJM 2018. Shape-directed dynamics of active colloids powered by induced-charge electrophoresis. PNAS 115:E1090–99
    [Google Scholar]
  55. 55.
    Kirvin A, Gregory D, Parnell A, Campbell AI, Ebbens S. 2021. Rotating ellipsoidal catalytic micro-swimmers via glancing angle evaporation. Mater. Adv. 2:7045–53
    [Google Scholar]
  56. 56.
    Wykes MSD, Zhong X, Tong J, Adachi T, Liu Y et al. 2017. Guiding microscale swimmers using teardrop-shaped posts. Soft Matter 13:4681–88
    [Google Scholar]
  57. 57.
    Katuri J, Caballero D, Voituriez R, Samitier J, Sanchez S. 2018. Directed flow of micromotors through alignment interactions with micropatterned ratchets. ACS Nano 12:7282–91
    [Google Scholar]
  58. 58.
    Michelin S, Lauga E. 2014. Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747:572–604
    [Google Scholar]
  59. 59.
    Maass CC, Krüger C, Herminghaus S, Bahr C. 2016. Swimming droplets. Annu. Rev. Condens. Matter Phys. 7:171–93
    [Google Scholar]
  60. 60.
    Michelin S. 2023. Self-propulsion of chemically active droplets. Annu. Rev. Fluid Mech. 55:77–101
    [Google Scholar]
  61. 61.
    Soto R, Golestanian R. 2014. Self-assembly of catalytically active colloidal molecules: tailoring activity through surface chemistry. Phys. Rev. Lett. 112:068301
    [Google Scholar]
  62. 62.
    Soto R, Golestanian R. 2015. Self-assembly of active colloidal molecules with dynamic function. Phys. Rev. E 91:052304
    [Google Scholar]
  63. 63.
    Nasouri B, Golestanian R. 2020. Exact phoretic interaction of two chemically active particles. Phys. Rev. Lett. 124:168003
    [Google Scholar]
  64. 64.
    Varma A, Michelin S. 2019. Modeling chemo-hydrodynamic interactions of phoretic particles: a unified framework. Phys. Rev. Fluids 4:124204
    [Google Scholar]
  65. 65.
    Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. 2013. Living crystals of light-activated colloidal surfers. Science 339:936–40
    [Google Scholar]
  66. 66.
    Niu R, Palberg T, Speck T. 2017. Self-assembly of colloidal molecules due to self-generated flow. Phys. Rev. Lett. 119:028001
    [Google Scholar]
  67. 67.
    Niu R, Fischer A, Palberg T, Speck T. 2018. Dynamics of binary active clusters driven by ion-exchange particles. ACS Nano 12:10932–38
    [Google Scholar]
  68. 68.
    Schmidt F, Liebchen B, Löwen H, Volpe G. 2019. Light-controlled assembly of active colloidal molecules. J. Chem. Phys. 150:094905
    [Google Scholar]
  69. 69.
    Meredith CH, Moerman PG, Groenewold J, Chiu YJ, Kegel WK et al. 2020. Predator–prey interactions between droplets driven by non-reciprocal oil exchange. Nat. Chem. 12:1136–42
    [Google Scholar]
  70. 70.
    Aubret A, Martinet Q, Palacci J. 2021. Metamachines of pluripotent colloids. Nat. Commun. 12:6398
    [Google Scholar]
  71. 71.
    Wysocki A, Winkler RG, Gompper G. 2014. Cooperative motion of active Brownian spheres in three-dimensional dense suspensions. Eur. Phys. Lett. 105:048004
    [Google Scholar]
  72. 72.
    Agudo-Canalejo J, Golestanian R 2019. Active phase separation in mixtures of chemically interacting particles. Phys. Rev. Lett. 123:018101
    [Google Scholar]
  73. 73.
    Cates ME, Tailleur J. 2015. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6:219–44
    [Google Scholar]
  74. 74.
    Redner GS, Hagan MF, Baskaran A. 2013. Structure and dynamics of a phase-separating active colloidal fluid. Phys. Rev. Lett. 110:055701
    [Google Scholar]
  75. 75.
    Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C, Speck T. 2013. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110:238301
    [Google Scholar]
  76. 76.
    Takatori SC, Yan W, Brady JF 2014. Swim pressure: stress generation in active matter. Phys. Rev. Lett. 113:028103
    [Google Scholar]
  77. 77.
    Solon AP, Fily Y, Baskaran A, Cates ME, Kafri Y et al. 2015. Pressure is not a state function for generic active fluids. Nat. Phys. 11:673–78
    [Google Scholar]
  78. 78.
    Solon AP, Stenhammar J, Wittkowski R, Kardar M, Kafri Y et al. 2015. Pressure and phase equilibria in interacting active Brownian spheres. Phys. Rev. Lett. 114:198301
    [Google Scholar]
  79. 79.
    Takatori SC, Brady JF. 2015. Towards a thermodynamics of active matter. Phys. Rev. E 91:032117
    [Google Scholar]
  80. 80.
    Fialkowski M, Bishop KJ, Klajn R, Smoukov SK, Campbell CJ, Grzybowski BA. 2006. Principles and implementations of dissipative (dynamic) self-assembly. J. Phys. Chem. B 110:2482–96
    [Google Scholar]
  81. 81.
    Du D, Toffoletto F, Biswal SL. 2014. Numerical calculation of interaction forces between paramagnetic colloids in two-dimensional systems. Phys. Rev. E 89:043306
    [Google Scholar]
  82. 82.
    Du D, Biswal SL. 2014. Micro-mutual-dipolar model for rapid calculation of forces between paramagnetic colloids. Phys. Rev. E 90:033310
    [Google Scholar]
  83. 83.
    Martin JE, Snezhko A. 2013. Driving self-assembly and emergent dynamics in colloidal suspensions by time-dependent magnetic fields. Rep. Prog. Phys. 76:126601
    [Google Scholar]
  84. 84.
    Tierno P, Snezhko A 2021. Transport and assembly of magnetic surface rotors. ChemNanoMat 7:881–93
    [Google Scholar]
  85. 85.
    Swan JW, Bauer JL, Liu Y, Furst EM. 2014. Directed colloidal self-assembly in toggled magnetic fields. Soft Matter 10:1102–9
    [Google Scholar]
  86. 86.
    Du D, Li D, Thakur M, Biswal SL. 2013. Generating an in situ tunable interaction potential for probing 2-D colloidal phase behavior. Soft Matter 9:6867–75
    [Google Scholar]
  87. 87.
    Hilou E, Du D, Kuei S, Biswal SL. 2018. Interfacial energetics of two-dimensional colloidal clusters generated with a tunable anharmonic interaction potential. Phys. Rev. Mater. 2:025602
    [Google Scholar]
  88. 88.
    Hilou E, Joshi K, Biswal SL. 2020. Characterizing the spatiotemporal evolution of paramagnetic colloids in time-varying magnetic fields with Minkowski functionals. Soft Matter 16:8799–805
    [Google Scholar]
  89. 89.
    Massana-Cid H, Meng F, Matsunaga D, Golestanian R, Tierno P. 2019. Tunable self-healing of magnetically propelling colloidal carpets. Nat. Commun. 10:2444
    [Google Scholar]
  90. 90.
    Janssen X, Schellekens A, Van Ommering K, van IJzendoorn L, Prins M. 2009. Controlled torque on superparamagnetic beads for functional biosensors. Biosens. Bioelectron. 24:1937–41
    [Google Scholar]
  91. 91.
    Klapp SH. 2016. Collective dynamics of dipolar and multipolar colloids: from passive to active systems. Curr. Opin. Colloid Interface Sci. 21:76–85
    [Google Scholar]
  92. 92.
    Soni V, Bililign ES, Magkiriadou S, Sacanna S, Bartolo D et al. 2019. The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15:1188–94
    [Google Scholar]
  93. 93.
    Driscoll M, Delmotte B, Youssef M, Sacanna S, Donev A, Chaikin P. 2017. Unstable fronts and motile structures formed by microrollers. Nat. Phys. 13:375–80
    [Google Scholar]
  94. 94.
    Kaiser A, Snezhko A, Aranson IS 2017. Flocking ferromagnetic colloids. Sci. Adv. 3:1601469
    [Google Scholar]
  95. 95.
    Han K, Kokot G, Tovkach O, Glatz A, Aranson IS, Snezhko A. 2020. Emergence of self-organized multivortex states in flocks of active rollers. PNAS 117:9706–11
    [Google Scholar]
  96. 96.
    Du D, Doxastakis M, Hilou E, Biswal SL. 2017. Two-dimensional melting of colloids with long-range attractive interactions. Soft Matter 13:1548–53
    [Google Scholar]
  97. 97.
    Kryuchkov NP, Smallenburg F, Ivlev AV, Yurchenko SO, Löwen H. 2019. Phase diagram of two-dimensional colloids with Yukawa repulsion and dipolar attraction. J. Chem. Phys. 150:104903
    [Google Scholar]
  98. 98.
    Yethiraj A. 2007. Tunable colloids: control of colloidal phase transitions with tunable interactions. Soft Matter 3:1099–115
    [Google Scholar]
  99. 99.
    Wang M, He L, Yin Y. 2013. Magnetic field guided colloidal assembly. Mater. Today 16:110–16
    [Google Scholar]
  100. 100.
    Imperio A, Reatto L, Zapperi S. 2008. Rheology of colloidal microphases in a model with competing interactions. Phys. Rev. E 78:021402
    [Google Scholar]
  101. 101.
    Tüzel E, Pan G, Kroll DM. 2010. Dynamics of thermally driven capillary waves for two-dimensional droplets. J. Chem. Phys. 132:174701
    [Google Scholar]
  102. 102.
    Goldstein RE, Jackson DP. 1994. Domain shape relaxation and the spectrum of thermal fluctuations in Langmuir monolayers. J. Phys. Chem. 98:9626–36
    [Google Scholar]
  103. 103.
    Joshi K, Biswal SL. 2022. Extension of Kelvin's equation to dipolar colloids. PNAS 119:e2117971119
    [Google Scholar]
  104. 104.
    Lobmeyer DM, Biswal SL. 2022. Grain boundary dynamics driven by magnetically induced circulation at the void interface of 2D colloidal crystals. Sci. Adv. 8:eabn5715
    [Google Scholar]
  105. 105.
    Diwakar NM, Kunti G, Miloh T, Yossifon G, Velev OD. 2022. AC electrohydrodynamic propulsion and rotation of active particles of engineered shape and asymmetry. Curr. Opin. Colloid Interface Sci. 59:101586
    [Google Scholar]
  106. 106.
    Harraq AA, Choudhury BD, Bharti B. 2022. Field-induced assembly and propulsion of colloids. Langmuir 38:3001–16
    [Google Scholar]
  107. 107.
    Hunter RJ. 2001. Foundations of Colloid Science Oxford, UK: Oxford Univ. Press
  108. 108.
    Khair AS. 2022. Nonlinear electrophoresis of colloidal particles. Curr. Opin. Colloid. Interface Sci. 59:101587
    [Google Scholar]
  109. 109.
    Sherman ZM, Swan JW. 2020. Spontaneous electrokinetic Magnus effect. Phsy. Rev. Lett. 124:208002
    [Google Scholar]
  110. 110.
    Saville DA. 1997. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29:27–64
    [Google Scholar]
  111. 111.
    Jones TB. 1984. Quincke rotation of spheres. IEEE Trans. Ind. Appl. 20:845–49
    [Google Scholar]
  112. 112.
    Das D, Saintillan D. 2013. Electrohydrodynamic interaction of spherical particles under Quincke rotation. Phys. Rev. E 87:043014
    [Google Scholar]
  113. 113.
    Bricard A, Caussin JB, Desreumaux N, Dauchot O, Bartolo D. 2013. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503:95–98
    [Google Scholar]
  114. 114.
    Liu ZT, Shi Y, Zhao Y, Chaté H, Shi XQ, Zhang TH. 2021. Activity waves and freestanding vortices in populations of subcritical Quincke rollers. PNAS 118:e2104724118
    [Google Scholar]
  115. 115.
    Kokot G, Faizi HA, Pradillo GE, Snezhko A, Vlahovska PM. 2022. Spontaneous self-propulsion and nonequilibrium shape fluctuations of a droplet enclosing active particles. Commun. Phys. 5:91
    [Google Scholar]
  116. 116.
    Zhang B, Yuan H, Sokolov A, de la Cruz MO, Snezhko A 2022. Polar state reversal in active fluids. Nat. Phys. 18:154–59
    [Google Scholar]
  117. 117.
    Zhang Z, Yuan H, Dou Y, De La Cruz MO, Bishop KJM 2021. Quincke oscillations of colloids at planar electrodes. Phys. Rev. Lett. 126:258001
    [Google Scholar]
  118. 118.
    Jones TB. 1995. Electromechanics of Particles Cambridge, UK: Cambridge Univ. Press
  119. 119.
    Bharti B, Findenegg GH, Velev OD. 2014. Analysis of the field-assisted permanent assembly of oppositely charged particles. Langmuir 30:6577–87
    [Google Scholar]
  120. 120.
    Bharti B, Velev OD. 2015. Multidirectional, multicomponent electric field driven assembly of complex colloidal chains. Z. Phys. Chem. 229:1075–88
    [Google Scholar]
  121. 121.
    Bharti B, Velev OD. 2015. Assembly of reconfigurable colloidal structures by multidirectional field-induced interactions. Langmuir 31:7897–908
    [Google Scholar]
  122. 122.
    Peng C, Lazo I, Shiyanovskii SV, Lavrentovich OD. 2014. Induced-charge electro-osmosis around metal and Janus spheres in water: patterns of flow and breaking symmetries. Phys. Rev. E 90:051002
    [Google Scholar]
  123. 123.
    Bazant MZ, Squires TM. 2004. Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92:066101
    [Google Scholar]
  124. 124.
    Gangwal S, Cayre OJ, Bazant MZ, Velev OD. 2008. Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 100:058302
    [Google Scholar]
  125. 125.
    Bazant MZ. 2011. Induced-charge electrokinetic phenomena. Electrokinetics and Electrohydrodynamics in Microsystems A Ramos 221–97. Berlin: Springer
    [Google Scholar]
  126. 126.
    Al Harraq A, Bello M, Bharti B 2022. A guide to design the trajectory of active particles: from fundamentals to applications. Curr. Opin. Colloid Interface Sci. 61:101612
    [Google Scholar]
  127. 127.
    Yariv E. 2005. Induced-charge electrophoresis of nonspherical particles. Phys. Fluids 17:051702
    [Google Scholar]
  128. 128.
    Lee JG, Brooks AM, Shelton WA, Bishop KJM, Bharti B. 2019. Directed propulsion of spherical particles along three dimensional helical trajectories. Nat. Commun. 10:2575
    [Google Scholar]
  129. 129.
    Lee JG, Al Harraq A, Bishop KJM, Bharti B 2021. Fabrication and electric field-driven active propulsion of patchy microellipsoids. J. Phys. Chem. B 125:4232–40
    [Google Scholar]
  130. 130.
    Ma F, Wang S, Wu DT, Wu N. 2015. Electric-field–induced assembly and propulsion of chiral colloidal clusters. PNAS 112:6307–12
    [Google Scholar]
  131. 131.
    Yan J, Han M, Zhang J, Xu C, Luijten E, Granick S. 2016. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15:1095–99
    [Google Scholar]
  132. 132.
    Wu Y, Fu A, Yossifon G. 2021. Micromotor-based localized electroporation and gene transfection of mammalian cells. PNAS 118:e2106353118
    [Google Scholar]
  133. 133.
    Wu Y, Fu A, Yossifon G. 2020. Active particles as mobile microelectrodes for selective bacteria electroporation and transport. Sci. Adv. 6:eaay4412
    [Google Scholar]
  134. 134.
    Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85:1143–89
    [Google Scholar]
  135. 135.
    Banerjee D, Souslov A, Abanov AG, Vitelli V. 2017. Odd viscosity in chiral active fluids. Nat. Commun. 8:1573
    [Google Scholar]
  136. 136.
    Yeo K, Lushi E, Vlahovska PM. 2015. Collective dynamics in a binary mixture of hydrodynamically coupled microrotors. Phys. Rev. Lett. 114:188301
    [Google Scholar]
  137. 137.
    Scheibner C, Souslov A, Banerjee D, Surówka P, Irvine W, Vitelli V. 2020. Odd elasticity. Nat. Phys. 16:475–80
    [Google Scholar]
  138. 138.
    Tan TH, Mietke A, Li J, Chen Y, Higinbotham H et al. 2022. Odd dynamics of living chiral crystals. Nature 607:287–93
    [Google Scholar]
  139. 139.
    Tang X, Grover MA. 2022. Control of microparticle assembly. Annu. Rev. Control Robot. Auton. Syst. 5:491–514
    [Google Scholar]
  140. 140.
    Zhang J, Yang J, Zhang Y, Bevan MA. 2020. Controlling colloidal crystals via morphing energy landscapes and reinforcement learning. Sci. Adv. 6:eabd6716
    [Google Scholar]
  141. 141.
    Li J, Rozen I, Wang J. 2016. Rocket science at the nanoscale. ACS Nano 10:5619–34
    [Google Scholar]
  142. 142.
    Tasci TO, Herson PS, Neeves KB, Marr DWM. 2016. Surface-enabled propulsion and control of colloidal microwheels. Nat. Commun. 7:10225
    [Google Scholar]
  143. 143.
    Tasci TO, Disharoon D, Schoeman RM, Rana K, Herson PS et al. 2017. Enhanced fibrinolysis with magnetically powered colloidal microwheels. Small 13:1700954
    [Google Scholar]
  144. 144.
    Han K, Shields CW IV, Diwakar NM, Bharti B, López GP, Velev OD 2017. Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes. Sci. Adv. 3:1701108
    [Google Scholar]
  145. 145.
    Yao T, Kos V, Zhang QX, Luo Y, Serra F et al. 2022. Nematic colloidal micro-robots as physically intelligent systems. Adv. Funct. Mater. 32:2205546
    [Google Scholar]
  146. 146.
    Miskin MZ, Cortese AJ, Dorsey K, Esposito EP, Reynolds MF et al. 2020. Electronically integrated, mass-manufactured, microscopic robots. Nature 584:557–61
    [Google Scholar]
  147. 147.
    Brooks AM, Strano MS. 2020. A conceptual advance that gives microrobots legs. Nature 584:530–31
    [Google Scholar]
  148. 148.
    Hong Y, Blackman NM, Kopp ND, Sen A, Velegol D. 2007. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99:178103
    [Google Scholar]
  149. 149.
    Popescu MN, Uspal WE, Bechinger C, Fischer P. 2018. Chemotaxis of active Janus nanoparticles. Nano Lett. 18:5345–49
    [Google Scholar]
  150. 150.
    Lozano C, Ten Hagen B, Löwen H, Bechinger C 2016. Phototaxis of synthetic microswimmers in optical landscapes. Nat. Commun. 7:12828
    [Google Scholar]
  151. 151.
    Palacci J, Sacanna S, Abramian A, Barral J, Hanson K et al. 2015. Artificial rheotaxis. Sci. Adv. 1:e1400214
    [Google Scholar]
  152. 152.
    Sharan P, Xiao Z, Mancuso V, Uspal WE, Simmchen J. 2022. Upstream rheotaxis of catalytic Janus spheres. ACS Nano 16:4599–608
    [Google Scholar]
  153. 153.
    Dou Y, Bishop KJM. 2019. Autonomous navigation of shape-shifting microswimmers. Phys. Rev. Res. 1:032030
    [Google Scholar]
  154. 154.
    Alvarez L, Fernandez-Rodriguez MA, Alegria A, Arrese-Igor S, Zhao K et al. 2021. Reconfigurable artificial microswimmers with internal feedback. Nat. Commun. 12:4762
    [Google Scholar]
  155. 155.
    van Kesteren S, Alvarez L, Arrese-Igor S, Alegria A, Isa L 2022. Self-propelling colloidal finite state machines. arXiv:2208.03003 [cond-mat.soft]
  156. 156.
    Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T. 2019. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25:1057–63
    [Google Scholar]
  157. 157.
    Savoie W, Berrueta TA, Jackson Z, Pervan A, Warkentin R et al. 2019. A robot made of robots: emergent transport and control of a smarticle ensemble. Sci. Robot. 4:eaax4316
    [Google Scholar]
  158. 158.
    Venkatasubramanian V, Sivaram A, Das L. 2022. A unified theory of emergent equilibrium phenomena in active and passive matter. Comput. Chem. Eng. 164:107887
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101121-084939
Loading
/content/journals/10.1146/annurev-chembioeng-101121-084939
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error