1932

Abstract

Drying drops of colloidal dispersions have attracted attention from researchers since the nineteenth century. The multiscale nature of the problem involving physics at different scales, namely colloidal and interfacial phenomena as well as heat, mass, and momentum transport processes, combined with the seemingly simple yet nontrivial shape of the drops makes drying drop problems rich and interesting. The scope of such studies widens as the physical and chemical nature of dispersed entities in the drop vary and as evaporation occurs in more complex configurations. This review summarizes past and contemporary developments in the field, emphasizing the physicochemical and hydrodynamical principles that govern the processes occurring within a drying drop and the resulting variety of patterns generated on the substrate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101121-085056
2023-06-08
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/14/1/annurev-chembioeng-101121-085056.html?itemId=/content/journals/10.1146/annurev-chembioeng-101121-085056&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Larson RG. 2012. Re-shaping the coffee ring. Angew. Chem. Int. Ed. 51:2546–48
    [Google Scholar]
  2. 2.
    De Gennes PG, Brochard-Wyart F, Quéré D. 2013. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves New York: Springer
  3. 3.
    Sefiane K. 2014. Patterns from drying drops. Adv. Colloid Interface Sci. 206:372–81
    [Google Scholar]
  4. 4.
    Larson RG. 2014. Transport and deposition patterns in drying sessile droplets. AIChE J 60:1538–71
    [Google Scholar]
  5. 5.
    Kovalchuk N, Trybala A, Starov V. 2014. Evaporation of sessile droplets. Curr. Opin. Colloid Interface Sci. 19:336–42
    [Google Scholar]
  6. 6.
    Larson RG. 2017. Twenty years of drying droplets. Nature 550:466–67
    [Google Scholar]
  7. 7.
    Giorgiutti-Dauphiné F, Pauchard L. 2018. Drying drops. Eur. Phys. J. E 41:32
    [Google Scholar]
  8. 8.
    Mampallil D, Eral HB. 2018. A review on suppression and utilization of the coffee-ring effect. Adv. Colloid Interface Sci. 252:38–54
    [Google Scholar]
  9. 9.
    Zang D, Tarafdar S, Tarasevich YY, Choudhury MD, Dutta T. 2019. Evaporation of a droplet: from physics to applications. Phys. Rep. 804:1–56
    [Google Scholar]
  10. 10.
    Cossali GE, Tonini S. 2021. Drop Heating and Evaporation: Analytical Solutions in Curvilinear Coordinate Systems Berlin: Springer
  11. 11.
    Lohse D. 2022. Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 54:349–82
    [Google Scholar]
  12. 12.
    Gelderblom H, Diddens C, Marin A. 2022. Evaporation-driven liquid flow in sessile droplets. Soft Matter 18:8535–53
    [Google Scholar]
  13. 13.
    Wilson SK, D'Ambrosio HM. 2023. Evaporation of sessile droplets. Annu. Rev. Fluid Mech. 55:481–509
    [Google Scholar]
  14. 14.
    Brown R. 1829. Additional remarks on active molecules. Philos. Mag. 6:161–66
    [Google Scholar]
  15. 15.
    Kulnis WJ Jr., Unertl WN 1994. A thermal stage for nanoscale structure studies with the scanning force microscope. Determining Nanoscale Physical Properties of Materials by Microscopy and Spectroscopy M Sarikaya, HK Wickramasinghe, M Isaacson 105–8. Pittsburgh, PA: Mater. Res. Soc.
    [Google Scholar]
  16. 16.
    El Bediwi A, Kulnis W, Luo Y, Woodland D, Unertl W 1994. Distributions of latex particles deposited from water suspensions. MRS Online Proc. Libr. 372:277–82
    [Google Scholar]
  17. 17.
    Vanderhoff J, Gurnee E. 1956. A motion picture investigation of polymer latex phenomena. Tappi J 39:71–77
    [Google Scholar]
  18. 18.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. 1997. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–29
    [Google Scholar]
  19. 19.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. 2000. Contact line deposits in an evaporating drop. Phys. Rev. E 62:756–65
    [Google Scholar]
  20. 20.
    Han W, Lin Z. 2012. Learning from “coffee rings”: ordered structures enabled by controlled evaporative self-assembly. Angew. Chem. Int. Ed. 51:1534–46
    [Google Scholar]
  21. 21.
    Anyfantakis M, Baigl D. 2015. Manipulating the coffee-ring effect: interactions at work.. ChemPhysChem 16:2726–34
    [Google Scholar]
  22. 22.
    Parsa M, Harmand S, Sefiane K. 2018. Mechanisms of pattern formation from dried sessile drops. Adv. Colloid Interface Sci. 254:22–47
    [Google Scholar]
  23. 23.
    Dugyala VR, Daware SV, Basavaraj MG. 2013. Shape anisotropic colloids: synthesis, packing behavior, evaporation driven assembly, and their application in emulsion stabilization. Soft Matter 9:6711–25
    [Google Scholar]
  24. 24.
    Shao X, Duan F, Hou Y, Zhong X. 2019. Role of surfactant in controlling the deposition pattern of a particle-laden droplet: fundamentals and strategies. Adv. Colloid Interface Sci. 275:102049
    [Google Scholar]
  25. 25.
    Bhardwaj R, Fang X, Somasundaran P, Attinger D. 2010. Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram. Langmuir 26:7833–42
    [Google Scholar]
  26. 26.
    Kuncicky DM, Velev OD. 2008. Surface-guided templating of particle assemblies inside drying sessile droplets. Langmuir 24:1371–80
    [Google Scholar]
  27. 27.
    Bansal L, Seth P, Murugappan B, Basu S. 2018. Suppression of coffee ring: (Particle) size matters. Appl. Phys. Lett. 112:211605
    [Google Scholar]
  28. 28.
    Mondal R, Semwal S, Kumar PL, Thampi SP, Basavaraj MG. 2018. Patterns in drying drops dictated by curvature-driven particle transport. Langmuir 34:11473–83
    [Google Scholar]
  29. 29.
    Yang X, Li CY, Sun Y. 2014. From multi-ring to spider web and radial spoke: competition between the receding contact line and particle deposition in a drying colloidal drop. Soft Matter 10:4458–63
    [Google Scholar]
  30. 30.
    Parthasarathy D, Thampi SP, Ravindran P, Basavaraj MG. 2021. Further insights into patterns from drying particle laden sessile drops. Langmuir 37:4395–402
    [Google Scholar]
  31. 31.
    Dugyala VR, Basavaraj MG. 2014. Control over coffee-ring formation in evaporating liquid drops containing ellipsoids. Langmuir 30:8680–86
    [Google Scholar]
  32. 32.
    Mayarani M, Basavaraj MG, Satapathy DK. 2017. Loosely packed monolayer coffee stains in dried drops of soft colloids. Nanoscale 9:18798–803
    [Google Scholar]
  33. 33.
    Marín ÁG, Gelderblom H, Lohse D, Snoeijer JH. 2011. Order-to-disorder transition in ring-shaped colloidal stains. Phys. Rev. Lett. 107:085502
    [Google Scholar]
  34. 34.
    Dugyala VR, Basavaraj MG. 2015. Evaporation of sessile drops containing colloidal rods: coffee-ring and order–disorder transition. J. Phys. Chem. B 119:3860–67
    [Google Scholar]
  35. 35.
    Hu H, Larson RG. 2006. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110:7090–94
    [Google Scholar]
  36. 36.
    Yunker PJ, Still T, Lohr MA, Yodh A. 2011. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476:308–11
    [Google Scholar]
  37. 37.
    Still T, Yunker PJ, Yodh AG. 2012. Surfactant-induced Marangoni eddies alter the coffee rings of evaporating colloidal drops. Langmuir 28:4984–88
    [Google Scholar]
  38. 38.
    Cui L, Zhang J, Zhang X, Huang L, Wang Z et al. 2012. Suppression of the coffee ring effect by hydrosoluble polymer additives. ACS Appl. Mater. Interfaces 4:2775–80
    [Google Scholar]
  39. 39.
    Rey M, Walter J, Harrer J, Perez CM, Chiera S et al. 2022. Versatile strategy for homogeneous drying patterns of dispersed particles. Nat. Commun. 13:2840
    [Google Scholar]
  40. 40.
    Parsa M, Harmand S, Sefiane K, Bigerelle M, Deltombe R. 2015. Effect of substrate temperature on pattern formation of nanoparticles from volatile drops. Langmuir 31:3354–67
    [Google Scholar]
  41. 41.
    Lama H, Satapathy DK, Basavaraj MG. 2020. Modulation of central depletion zone in evaporated sessile drops via substrate heating. Langmuir 36:4737–44
    [Google Scholar]
  42. 42.
    Li Y, Yang Q, Li M, Song Y 2016. Rate-dependent interface capture beyond the coffee-ring effect. Sci. Rep. 6:24628
    [Google Scholar]
  43. 43.
    Morinaga K, Oikawa N, Kurita R. 2018. Emergence of different crystal morphologies using the coffee ring effect. Sci. Rep. 8:12503
    [Google Scholar]
  44. 44.
    Shimobayashi SF, Tsudome M, Kurimura T. 2018. Suppression of the coffee-ring effect by sugar-assisted depinning of contact line. Sci. Rep. 8:17769
    [Google Scholar]
  45. 45.
    Ding Y, Ling J, Qiao Y, Li Z, Sun Z et al. 2016. A high-throughput fluorimetric microarray with enhanced fluorescence and suppressed “coffee-ring” effects for the detection of calcium ions in blood. Sci. Rep. 6:38602
    [Google Scholar]
  46. 46.
    Mayarani M, Basavaraj MG, Satapathy DK. 2018. Viscoelastic particle–laden interface inhibits coffee-ring formation. Langmuir 34:14294–301
    [Google Scholar]
  47. 47.
    Sempels W, De Dier R, Mizuno H, Hofkens J, Vermant J. 2013. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nat. Commun. 4:1757
    [Google Scholar]
  48. 48.
    Anyfantakis M, Geng Z, Morel M, Rudiuk S, Baigl D. 2015. Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle–interface interactions. Langmuir 31:4113–20
    [Google Scholar]
  49. 49.
    Li Y, Lv C, Li Z, Quéré D, Zheng Q. 2015. From coffee rings to coffee eyes. Soft Matter 11:4669–73
    [Google Scholar]
  50. 50.
    Lama H, Basavaraj MG, Satapathy DK. 2017. Tailoring crack morphology in coffee-ring deposits via substrate heating. Soft Matter 13:5445–52
    [Google Scholar]
  51. 51.
    Mampallil D, Reboud J, Wilson R, Wylie D, Klug DR, Cooper JM. 2015. Acoustic suppression of the coffee-ring effect. Soft Matter 11:7207–13
    [Google Scholar]
  52. 52.
    Man X, Doi M. 2016. Ring to mountain transition in deposition pattern of drying droplets. Phys. Rev. Lett. 116:066101
    [Google Scholar]
  53. 53.
    Du X, Deegan R. 2015. Ring formation on an inclined surface. J. Fluid Mech. 775:R3
    [Google Scholar]
  54. 54.
    Gopu M, Rathod S, Namangalam U, Pujala RK, Kumar SS, Mampallil D. 2020. Evaporation of inclined drops: formation of asymmetric ring patterns. Langmuir 36:8137–43
    [Google Scholar]
  55. 55.
    Kumar PL, Thampi SP, Basavaraj MG. 2021. Patterns from drops drying on inclined substrates. Soft Matter 17:7670–81
    [Google Scholar]
  56. 56.
    Shmuylovich L, Shen AQ, Stone HA. 2002. Surface morphology of drying latex films: multiple ring formation. Langmuir 18:3441–45
    [Google Scholar]
  57. 57.
    Mondal R, Basavaraj MG. 2019. Influence of the drying configuration on the patterning of ellipsoids—concentric rings and concentric cracks. Phys. Chem. Chem. Phys. 21:20045–54
    [Google Scholar]
  58. 58.
    Srivastava S, Wahith ZA, Gang O, Colosqui CE, Bhatia SR. 2020. Dual-scale nanostructures via evaporative assembly. Adv. Mater. Interfaces 7:1901954
    [Google Scholar]
  59. 59.
    Maheshwari S, Zhang L, Zhu Y, Chang HC. 2008. Coupling between precipitation and contact-line dynamics: multiring stains and stick-slip motion. Phys. Rev. Lett. 100:044503
    [Google Scholar]
  60. 60.
    Frastia L, Archer AJ, Thiele U. 2011. Dynamical model for the formation of patterned deposits at receding contact lines. Phys. Rev. Lett. 106:077801
    [Google Scholar]
  61. 61.
    Mondal R, Basavaraj MG. 2020. Patterning of colloids into spirals via confined drying. Soft Matter 16:3753–61
    [Google Scholar]
  62. 62.
    Thampi SP, Basavaraj MG. 2020. Beyond coffee rings: drying drops of colloidal dispersions on inclined substrates. ACS Omega 5:11262–70
    [Google Scholar]
  63. 63.
    Langmuir I. 1918. The evaporation of small spheres. Phys. Rev. 12:368–70
    [Google Scholar]
  64. 64.
    Popov YO. 2005. Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71:036313
    [Google Scholar]
  65. 65.
    Hu H, Larson RG. 2002. Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106:1334–44
    [Google Scholar]
  66. 66.
    Sáenz P, Wray A, Che Z, Matar O, Valluri P et al. 2017. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation. Nat. Commun. 8:14783
    [Google Scholar]
  67. 67.
    Ristenpart W, Kim P, Domingues C, Wan J, Stone HA 2007. Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99:234502
    [Google Scholar]
  68. 68.
    Kaplan CN, Mahadevan L. 2015. Evaporation-driven ring and film deposition from colloidal droplets. J. Fluid Mech. 781:R2
    [Google Scholar]
  69. 69.
    Ryu S, Kim JY, Kim SY, Weon BM. 2017. Drying-mediated patterns in colloid-polymer suspensions. Sci. Rep. 7:1079
    [Google Scholar]
  70. 70.
    Hu H, Larson RG. 2005. Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21:3963–71
    [Google Scholar]
  71. 71.
    Hu H, Larson RG. 2005. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21:3972–80
    [Google Scholar]
  72. 72.
    Nguyen VX, Stebe KJ. 2002. Patterning of small particles by a surfactant-enhanced Marangoni-Bénard instability. Phys. Rev. Lett. 88:164501
    [Google Scholar]
  73. 73.
    Marin A, Liepelt R, Rossi M, Kähler CJ. 2016. Surfactant-driven flow transitions in evaporating droplets. Soft Matter 12:1593–600
    [Google Scholar]
  74. 74.
    Edwards A, Atkinson P, Cheung C, Liang H, Fairhurst D, Ouali F. 2018. Density-driven flows in evaporating binary liquid droplets. Phys. Rev. Lett. 121:184501
    [Google Scholar]
  75. 75.
    Li Y, Diddens C, Lv P, Wijshoff H, Versluis M, Lohse D. 2019. Gravitational effect in evaporating binary microdroplets. Phys. Rev. Lett. 122:114501
    [Google Scholar]
  76. 76.
    Davidson ZS, Huang Y, Gross A, Martinez A, Still T et al. 2017. Deposition and drying dynamics of liquid crystal droplets. Nat. Commun. 8:15642
    [Google Scholar]
  77. 77.
    Xu T, Lam ML, Chen TH. 2017. Discrete element model for suppression of coffee-ring effect. Sci. Rep. 7:42817
    [Google Scholar]
  78. 78.
    Crivoi A, Duan F. 2014. Three-dimensional Monte Carlo model of the coffee-ring effect in evaporating colloidal droplets. Sci. Rep. 4:4310
    [Google Scholar]
  79. 79.
    Yu YS, Wang MC, Huang X. 2017. Evaporative deposition of polystyrene microparticles on PDMS surface. Sci. Rep. 7:14118
    [Google Scholar]
  80. 80.
    Semenov S, Trybala A, Agogo H, Kovalchuk N, Ortega F et al. 2013. Evaporation of droplets of surfactant solutions. Langmuir 29:10028–36
    [Google Scholar]
  81. 81.
    Wu M, Di Y, Man X, Doi M 2019. Drying droplets with soluble surfactants. Langmuir 35:14734–41
    [Google Scholar]
  82. 82.
    Seo C, Jang D, Chae J, Shin S 2017. Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution. Sci. Rep. 7:500
    [Google Scholar]
  83. 83.
    Mayarani M, Basavaraj MG, Satapathy DK. 2021. Colloidal monolayers with cell-like tessellations via interface assisted evaporative assembly. J. Colloid Interface Sci. 583:683–91
    [Google Scholar]
  84. 84.
    Basu N, Mukherjee R. 2020. Evaporative drying of sodium chloride solution droplet on a thermally controlled substrate. J. Phys. Chem. B 124:1266–74
    [Google Scholar]
  85. 85.
    Dewangan JK, Basu N, Chowdhury M. 2022. Cationic surfactant-directed structural control of NaCl crystals from evaporating sessile droplets. Soft Matter 18:62–79
    [Google Scholar]
  86. 86.
    Shahidzadeh N, Schut MF, Desarnaud J, Prat M, Bonn D. 2015. Salt stains from evaporating droplets. Sci. Rep. 5:10335
    [Google Scholar]
  87. 87.
    McBride SA, Dash S, Khan S, Varanasi KK. 2019. Evaporative crystallization of spirals. Langmuir 35:10484–90
    [Google Scholar]
  88. 88.
    Hu G, Yang L, Yang Z, Wang Y, Jin X et al. 2020. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci. Adv. 6:eaba5029
    [Google Scholar]
  89. 89.
    Pahlavan AA, Yang L, Bain CD, Stone HA. 2021. Evaporation of binary-mixture liquid droplets: the formation of picoliter pancakelike shapes. Phys. Rev. Lett. 127:024501
    [Google Scholar]
  90. 90.
    Bittermann M, Deblais A, Lépinay S, Bonn D, Shahidzadeh N. 2020. Deposits from evaporating emulsion drops. Sci. Rep. 10:14863
    [Google Scholar]
  91. 91.
    Gopu M, Mampallil D. 2022. Distributed evaporation of water-in-oil emulsion drops on solid surfaces. Phys. Fluids 34:102110
    [Google Scholar]
  92. 92.
    Guo W, Kinghorn AB, Zhang Y, Li Q, Poonam AD et al. 2021. Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Nat. Commun. 12:3194
    [Google Scholar]
  93. 93.
    Weber CA, Zwicker D, Jülicher F, Lee CF. 2019. Physics of active emulsions. Rep. Prog. Phys. 82:064601
    [Google Scholar]
  94. 94.
    Xu L, Berges A, Lu PJ, Studart AR, Schofield AB et al. 2010. Drying of complex suspensions. Phys. Rev. Lett. 104:128303
    [Google Scholar]
  95. 95.
    Smalyukh II, Zribi OV, Butler JC, Lavrentovich OD, Wong GC. 2006. Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA. Phys. Rev. Lett. 96:177801
    [Google Scholar]
  96. 96.
    Nerger BA, Brun PT, Nelson CM. 2020. Marangoni flows drive the alignment of fibrillar cell–laden hydrogels. Sci. Adv. 6:eaaz7748
    [Google Scholar]
  97. 97.
    Yunker PJ, Gratale M, Lohr MA, Still T, Lubensky TC, Yodh AG. 2012. Influence of particle shape on bending rigidity of colloidal monolayer membranes and particle deposition during droplet evaporation in confined geometries. Phys. Rev. Lett. 108:228303
    [Google Scholar]
  98. 98.
    Kim DO, Pack M, Hu H, Kim H, Sun Y. 2016. Deposition of colloidal drops containing ellipsoidal particles: competition between capillary and hydrodynamic forces. Langmuir 32:11899–906
    [Google Scholar]
  99. 99.
    Sefiane K. 2010. On the formation of regular patterns from drying droplets and their potential use for bio-medical applications. J. Bionic Eng. 7:S82–93
    [Google Scholar]
  100. 100.
    Yakhno T, Yakhno V. 2009. Structural evolution of drying drops of biological fluids. Tech. Phys. 54:1219–27
    [Google Scholar]
  101. 101.
    Sobac B, Brutin D. 2011. Structural and evaporative evolutions in desiccating sessile drops of blood. Phys. Rev. E 84:011603
    [Google Scholar]
  102. 102.
    Brutin D, Sobac B, Loquet B, Sampol J. 2011. Pattern formation in drying drops of blood. J. Fluid Mech. 667:85–95
    [Google Scholar]
  103. 103.
    Esmonde-White KA, Mandair GS, Raaii F, Jacobson JA, Miller BS et al. 2009. Raman spectroscopy of synovial fluid as a tool for diagnosing osteoarthritis. J. Biomed. Opt. 14:034013
    [Google Scholar]
  104. 104.
    Esmonde-White KA, Mandair GS, Esmonde-White FW, Raaii F, Roessler BJ, Morris MD. 2009. Osteoarthritis screening using Raman spectroscopy of dried human synovial fluid drops. Proc. SPIE 7166:152–59
    [Google Scholar]
  105. 105.
    McLane J, Wu C, Khine M. 2015. Enhanced detection of protein in urine by droplet evaporation on a superhydrophobic plastic. Adv. Mater. Interfaces 2:1400034
    [Google Scholar]
  106. 106.
    Esmonde-White KA, Esmonde-White FW, Morris MD, Roessler BJ. 2014. Characterization of biofluids prepared by sessile drop formation. Analyst 139:2734–41
    [Google Scholar]
  107. 107.
    Andac T, Weigmann P, Velu SK, Pinçe E, Volpe G et al. 2019. Active matter alters the growth dynamics of coffee rings. Soft Matter 15:1488–96
    [Google Scholar]
  108. 108.
    Kasyap T, Koch DL, Wu M. 2014. Bacterial collective motion near the contact line of an evaporating sessile drop. Phys. Fluids 26:111703
    [Google Scholar]
  109. 109.
    Ma X, Liu Z, Zeng W, Lin T, Tian X, Cheng X. 2022. Crack patterns of drying dense bacterial suspensions. Soft Matter 18:5239–48
    [Google Scholar]
  110. 110.
    Parneix C, Vandoolaeghe P, Nikolayev V, Quéré D, Li J, Cabane B. 2010. Dips and rims in dried colloidal films. Phys. Rev. Lett. 105:266103
    [Google Scholar]
  111. 111.
    Harris DJ, Hu H, Conrad JC, Lewis JA. 2007. Patterning colloidal films via evaporative lithography. Phys. Rev. Lett. 98:148301
    [Google Scholar]
  112. 112.
    Xu J, Xia J, Hong SW, Lin Z, Qiu F, Yang Y. 2006. Self-assembly of gradient concentric rings via solvent evaporation from a capillary bridge. Phys. Rev. Lett. 96:066104
    [Google Scholar]
  113. 113.
    Chattopadhyay A, Hegde O, Basu S et al. 2022. Malleable patterns from the evaporation of colloidal liquid bridge: coffee ring to the scallop shell. arXiv:2201.02382 [cond-mat.soft]
  114. 114.
    Lin Z, Granick S. 2005. Patterns formed by droplet evaporation from a restricted geometry. J. Am. Chem. Soc. 127:2816–17
    [Google Scholar]
  115. 115.
    Wells GG, Ruiz-Gutiérrez É, Le Lirzin Y, Nourry A, Orme BV et al. 2018. Snap evaporation of droplets on smooth topographies. Nat. Commun. 9:1380
    [Google Scholar]
  116. 116.
    Kim S, Kim WY, Nam SH, Shin S, Choi SH et al. 2021. Microstructured surfaces for reducing chances of fomite transmission via virus-containing respiratory droplets. ACS Nano 15:14049–60
    [Google Scholar]
  117. 117.
    Vakarelski IU, Chan DY, Nonoguchi T, Shinto H, Higashitani K. 2009. Assembly of gold nanoparticles into microwire networks induced by drying liquid bridges. Phys. Rev. Lett. 102:058303
    [Google Scholar]
  118. 118.
    Yen TM, Fu X, Wei T, Nayak RU, Shi Y, Lo YH. 2018. Reversing coffee-ring effect by laser-induced differential evaporation. Sci. Rep. 8:3157
    [Google Scholar]
  119. 119.
    Bahns J, Sankaranarayanan S, Gray S, Chen L 2011. Optically directed assembly of continuous mesoscale filaments. Phys. Rev. Lett. 106:095501
    [Google Scholar]
  120. 120.
    Farzeena C, Varanakkottu SN. 2022. Patterning of metallic nanoparticles over solid surfaces from sessile droplets by thermoplasmonically controlled liquid flow. Langmuir 38:2003–13
    [Google Scholar]
  121. 121.
    Kim JY, Hwang IG, Weon BM. 2017. Evaporation of inclined water droplets. Sci. Rep. 7:42848
    [Google Scholar]
  122. 122.
    Extrand CW, Kumagai Y. 1995. Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force. J. Colloid Interface Sci. 170:515–21
    [Google Scholar]
  123. 123.
    Quéré D, Azzopardi MJ, Delattre L. 1998. Drops at rest on a tilted plane. Langmuir 14:2213–16
    [Google Scholar]
  124. 124.
    Bansal L, Seth P, Sahoo S, Mukherjee R, Basu S. 2018. Beyond coffee ring: anomalous self-assembly in evaporating nanofluid droplet on a sticky biomimetic substrate. Appl. Phys. Lett. 113:213701
    [Google Scholar]
  125. 125.
    Timm M, Dehdashti E, Jarrahi Darban A, Masoud H 2019. Evaporation of a sessile droplet on a slope. Sci. Rep. 9:19803
    [Google Scholar]
  126. 126.
    Charitatos V, Pham T, Kumar S. 2021. Droplet evaporation on inclined substrates. Phys. Rev. Fluids 6:084001
    [Google Scholar]
  127. 127.
    Dhar P, Dwivedi RK, Harikrishnan A. 2020. Surface declination governed asymmetric sessile droplet evaporation. Phys. Fluids 32:112010
    [Google Scholar]
  128. 128.
    Cira NJ, Benusiglio A, Prakash M. 2015. Vapour-mediated sensing and motility in two-component droplets. Nature 519:446–50
    [Google Scholar]
  129. 129.
    Pandey K, Hatte S, Pandey K, Chakraborty S, Basu S. 2020. Cooperative evaporation in two-dimensional droplet arrays. Phys. Rev. E 101:043101
    [Google Scholar]
  130. 130.
    Wray AW, Duffy BR, Wilson SK. 2020. Competitive evaporation of multiple sessile droplets. J. Fluid Mech. 884:A45
    [Google Scholar]
  131. 131.
    Masoud H, Howell PD, Stone HA. 2021. Evaporation of multiple droplets. J. Fluid Mech. 927:R4
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101121-085056
Loading
/content/journals/10.1146/annurev-chembioeng-101121-085056
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error