1932

Abstract

Are deep eutectic solvents (DESs) a promising alternative to conventional solvents? Perhaps, but their development is hindered by a plethora of misconceptions. These are carefully analyzed here, beginning with the very meaning of DESs, which has strayed far beyond its original scope of eutectic mixtures of Lewis or Brønsted acids and bases. Instead, a definition that is grounded on thermodynamic principles and distinguishes between eutectic and deep eutectic is encouraged, and the types of precursors that can be used to prepare DESs are reviewed. Landmark works surrounding the sustainability, stability, toxicity, and biodegradability of these solvents are also discussed, revealing piling evidence that numerous DESs reported thus far, particularly those that are choline based, lack sufficient sustainability-related traits to be considered green solvents. Finally, emerging DES applications are reviewed, emphasizing their most remarkable feature: the ability to liquefy a solid compound with a target property, allowing its use as a liquid solvent.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101121-085323
2023-06-08
2024-05-26
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/14/1/annurev-chembioeng-101121-085323.html?itemId=/content/journals/10.1146/annurev-chembioeng-101121-085323&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Smith EL, Abbott AP, Ryder KS. 2014. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114:2111060–82
    [Google Scholar]
  2. 2.
    Abranches DO, Coutinho JAP. 2022. Type V deep eutectic solvents: design and applications. Curr. Opin. Green Sustain. Chem. 35:100612
    [Google Scholar]
  3. 3.
    Prausnitz JM, Lichtenthaler RN, Gomes de Azevedo E. 1998. Molecular Thermodynamics of Fluid-Phase Equilibria London: Pearson Educ.
  4. 4.
    Lohmann J, Joh R, Gmehling J. 1997. Solid−liquid equilibria of viscous binary mixtures with alcohols. J. Chem. Eng. Data 42:61170–75
    [Google Scholar]
  5. 5.
    Florindo C, Romero L, Rintoul I, Branco LC, Marrucho IM. 2018. From phase change materials to green solvents: hydrophobic low viscous fatty acid–based deep eutectic solvents. ACS Sustain. Chem. Eng. 6:33888–95
    [Google Scholar]
  6. 6.
    Costa MC, Sardo M, Rolemberg MP, Coutinho JAP, Meirelles AJA et al. 2009. The solid–liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids. Chem. Phys. Lipids 160:285–97
    [Google Scholar]
  7. 7.
    Costa MC, Sardo M, Rolemberg MP, Ribeiro-Claro P, Meirelles AJA et al. 2009. The solid–liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids: differing by four carbon atoms. Chem. Phys. Lipids 157:140–50
    [Google Scholar]
  8. 8.
    Costa MC, Rolemberg MP, Meirelles AJA, Coutinho JAP, Krähenbühl MA. 2009. The solid–liquid phase diagrams of binary mixtures of even saturated fatty acids differing by six carbon atoms. Thermochim. Acta 496:1–230–37
    [Google Scholar]
  9. 9.
    Martins MAR, Pinho SP, Coutinho JAP. 2019. Insights into the nature of eutectic and deep eutectic mixtures. J. Solut. Chem. 48:7962–82
    [Google Scholar]
  10. 10.
    Agieienko V, Buchner R. 2022. Is ethaline a deep eutectic solvent?. Phys. Chem. Chem. Phys. 24:95265–68
    [Google Scholar]
  11. 11.
    Andruch V, Makoś-Chełstowska P, Płotka-Wasylka J. 2022. Remarks on use of the term “deep eutectic solvent” in analytical chemistry. Microchem. J. 179:107498
    [Google Scholar]
  12. 12.
    Navarro-Suárez AM, Johansson P. 2020. Perspective—semi-solid electrolytes based on deep eutectic solvents: opportunities and future directions. J. Electrochem. Soc. 167:7070511
    [Google Scholar]
  13. 13.
    Pedro SN, Freire CSR, Silvestre AJD, Freire MG. 2021. Deep eutectic solvents and pharmaceuticals. Encyclopedia 1:3942–63
    [Google Scholar]
  14. 14.
    Shishov A, Makoś-Chełstowska P, Bulatov A, Andruch V. 2022. Deep eutectic solvents or eutectic mixtures? Characterization of tetrabutylammonium bromide and nonanoic acid mixtures. J. Phys. Chem. B 126:213889–96
    [Google Scholar]
  15. 15.
    Peloquin AJ, McCollum JM, McMillen CD, Pennington WT. 2021. Halogen bonding in dithiane/iodofluorobenzene mixtures: a new class of hydrophobic deep eutectic solvents. Angew. Chem. 133:4223165–71
    [Google Scholar]
  16. 16.
    Kollau LJBM, Vis M, van den Bruinhorst A, Tuinier R, de With G. 2020. Entropy models for the description of the solid–liquid regime of deep eutectic solutions. J. Mol. Liq. 302:112155
    [Google Scholar]
  17. 17.
    Kollau LJBM, Vis M, van den Bruinhorst A, Esteves ACC, Tuinier R. 2018. Quantification of the liquid window of deep eutectic solvents. Chem. Commun. 54:9513351–54
    [Google Scholar]
  18. 18.
    Alizadeh V, Malberg F, Pádua AAH, Kirchner B. 2020. Are there magic compositions in deep eutectic solvents? Effects of composition and water content in choline chloride/ethylene glycol from ab initio molecular dynamics. J. Phys. Chem. B 124:347433–43
    [Google Scholar]
  19. 19.
    Martins MAR, Silva LP, Schaeffer N, Abranches DO, Maximo GJ et al. 2019. Greener terpene–terpene eutectic mixtures as hydrophobic solvents. ACS Sustain. Chem. Eng. 7:2017414–23
    [Google Scholar]
  20. 20.
    Abranches DO, Silva LP, Martins MAR, Pinho SP, Coutinho JAP. 2020. Understanding the formation of deep eutectic solvents: betaine as a universal hydrogen bond acceptor. ChemSusChem 13:184916–21
    [Google Scholar]
  21. 21.
    Sánchez PB, González B, Salgado J, Parajó JJ, Domínguez Á. 2019. Physical properties of seven deep eutectic solvents based on l-proline or betaine. J. Chem. Thermodyn. 131:517–23
    [Google Scholar]
  22. 22.
    Mohd Fuad F, Mohd Nadzir M. 2022. The formulation and physicochemical properties of betaine-based natural deep eutectic solvent. J. Mol. Liq. 360:119392
    [Google Scholar]
  23. 23.
    Klamt A. 2005. COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design Amsterdam: Elsevier
  24. 24.
    Abranches DO, Martins MAR, Silva LP, Schaeffer N, Pinho SP, Coutinho JAP. 2019. Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: the quest for type V DES. Chem. Commun. 55:6910253–56
    [Google Scholar]
  25. 25.
    Hansen BB, Spittle S, Chen B, Poe D, Zhang Y et al. 2021. Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev. 121:31232–85
    [Google Scholar]
  26. 26.
    Abranches DO, Schaeffer N, Silva LP, Martins MAR, Pinho SP, Coutinho JAP. 2019. The role of charge transfer in the formation of type I deep eutectic solvent-analogous ionic liquid mixtures. Molecules 24:203687
    [Google Scholar]
  27. 27.
    Abranches DO, Larriba M, Silva LP, Melle-Franco M, Palomar JF et al. 2019. Using COSMO-RS to design choline chloride pharmaceutical eutectic solvents. Fluid Phase Equilib. 497:71–78
    [Google Scholar]
  28. 28.
    Abranches DO, Silva LP, Martins MAR, Fernandez L, Pinho SP, Coutinho JAP. 2019. Can cholinium chloride form eutectic solvents with organic chloride-based salts?. Fluid Phase Equilib. 493:120–26
    [Google Scholar]
  29. 29.
    Pontes PVA, Crespo EA, Martins MAR, Silva LP, Neves CMSS et al. 2017. Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equilib. 448:69–80
    [Google Scholar]
  30. 30.
    Crespo EA, Silva LP, Martins MAR, Fernandez L, Ortega J et al. 2017. Characterization and modeling of the liquid phase of deep eutectic solvents based on fatty acids/alcohols and choline chloride. Ind. Eng. Chem. Res. 56:4212192–202
    [Google Scholar]
  31. 31.
    López-Porfiri P, Brennecke JF, Gonzalez-Miquel M. 2016. Excess molar enthalpies of deep eutectic solvents (DESs) composed of quaternary ammonium salts and glycerol or ethylene glycol. J. Chem. Eng. Data 61:124245–51
    [Google Scholar]
  32. 32.
    Silva LP, Araújo CF, Abranches DO, Melle-Franco M, Martins MAR et al. 2019. What a difference a methyl group makes—probing choline–urea molecular interactions through urea structure modification. Phys. Chem. Chem. Phys. 21:3318278–89
    [Google Scholar]
  33. 33.
    Ashworth CR, Matthews RP, Welton T, Hunt PA. 2016. Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent. Phys. Chem. Chem. Phys. 18:2718145–60
    [Google Scholar]
  34. 34.
    Hammond OS, Bowron DT, Edler KJ. 2016. Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem. 18:92736–44
    [Google Scholar]
  35. 35.
    Araujo CF, Coutinho JAP, Nolasco MM, Parker SF, Ribeiro-Claro PJA et al. 2017. Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents. Phys. Chem. Chem. Phys. 19:2717998–99
    [Google Scholar]
  36. 36.
    Gilmore M, Moura LM, Turner AH, Swadźba-Kwaśny M, Callear SK et al. 2018. A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K. J. Chem. Phys. 148:19193823
    [Google Scholar]
  37. 37.
    Carriazo D, Serrano MC, Gutiérrez MC, Ferrer ML, del Monte F. 2012. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev. 41:144996–5014
    [Google Scholar]
  38. 38.
    Shayestehpour O, Zahn S. 2020. Molecular features of reline and homologous deep eutectic solvents contributing to nonideal mixing behavior. J. Phys. Chem. B 124:357586–97
    [Google Scholar]
  39. 39.
    Fernandez L, Silva LP, Martins MAR, Ferreira O, Ortega J et al. 2017. Indirect assessment of the fusion properties of choline chloride from solid-liquid equilibria data. Fluid Phase Equilib. 448:9–14
    [Google Scholar]
  40. 40.
    Santana-Mayor Á, Socas-Rodríguez B, Rodríguez-Ramos R, Herrera-Herrera AV, Rodríguez-Delgado MÁ. 2021. Quality assessment of environmental water by a simple and fast non-ionic hydrophobic natural deep eutectic solvent-based extraction procedure combined with liquid chromatography tandem mass spectrometry for the determination of plastic migrants. Anal. Bioanal. Chem. 413:71967–81
    [Google Scholar]
  41. 41.
    Abranches DO, Martins RO, Silva LP, Martins MAR, Pinho SP, Coutinho JAP. 2020. Liquefying compounds by forming deep eutectic solvents: a case study for organic acids and alcohols. J. Phys. Chem. B 124:204174–84
    [Google Scholar]
  42. 42.
    Rodríguez-Llorente D, Cañada-Barcala A, Muñoz C, Pascual-Muñoz G, Navarro P et al. 2020. Separation of phenols from aqueous streams using terpenoids and hydrophobic eutectic solvents. Sep. Purif. Technol. 251:117379
    [Google Scholar]
  43. 43.
    Cao J, Su E. 2021. Hydrophobic deep eutectic solvents: the new generation of green solvents for diversified and colorful applications in green chemistry. J. Clean. Prod. 314:127965
    [Google Scholar]
  44. 44.
    Rodríguez-Llorente D, Cañada-Barcala A, Álvarez-Torrellas S, Águeda VI, García J, Larriba M. 2020. A review of the use of eutectic solvents, terpenes and terpenoids in liquid–liquid extraction processes. Processes 8:101220
    [Google Scholar]
  45. 45.
    Lalikoglu M. 2022. Separation of butyric acid from aqueous media using menthol-based hydrophobic deep eutectic solvent and modeling by response surface methodology. Biomass Convers. Biorefin. 12:41331–41
    [Google Scholar]
  46. 46.
    Gilmore M, McCourt ÉN, Connolly F, Nockemann P, Swadźba-Kwaśny M, Holbrey JD. 2018. Hydrophobic deep eutectic solvents incorporating trioctylphosphine oxide: advanced liquid extractants. ACS Sustain. Chem. Eng. 6:1217323–32
    [Google Scholar]
  47. 47.
    Vargas SJR, Pérez-Sánchez G, Schaeffer N, Coutinho JAP. 2021. Solvent extraction in extended hydrogen bonded fluids—separation of Pt(iv) from Pd(ii) using TOPO-based type V DES. Green Chem. 23:124540–50
    [Google Scholar]
  48. 48.
    Teixeira G, Abranches DO, Silva LP, Vilas-Boas SM, Pinho SP et al. 2022. Liquefying flavonoids with terpenoids through deep eutectic solvent formation. Molecules 27:92649
    [Google Scholar]
  49. 49.
    Liu Q, Mou H, Chen W, Zhao X, Yu H et al. 2019. Highly efficient dissolution of lignin by eutectic molecular liquids. Ind. Eng. Chem. Res. 58:5123438–44
    [Google Scholar]
  50. 50.
    Wu H, Xiong W, Wen S, Zhang X, Zhang S. 2022. Homologue-paired liquids as special non-ionic deep eutectic solvents for efficient absorption of SO2. Chem. Commun. 58:567801–4
    [Google Scholar]
  51. 51.
    Klamt A. 2018. The COSMO and COSMO-RS solvation models. WIREs Comput. Mol. Sci. 8:1e1338
    [Google Scholar]
  52. 52.
    Wang S, Sandler SI, Chen C-C. 2007. Refinement of COSMO−SAC and the applications. Ind. Eng. Chem. Res. 46:227275–88
    [Google Scholar]
  53. 53.
    Song Z, Wang J, Sundmacher K. 2021. Evaluation of COSMO-RS for solid–liquid equilibria prediction of binary eutectic solvent systems. Green Energy Environ. 6:3371–79
    [Google Scholar]
  54. 54.
    Alhadid A, Jandl C, Mokrushina L, Minceva M. 2022. Cocrystal formation in l-menthol/phenol eutectic system: experimental study and thermodynamic modeling. Cryst. Growth Des. 22:63973–80
    [Google Scholar]
  55. 55.
    Mulyono S, Hizaddin HF, Alnashef IM, Hashim MA, Fakeeha AH, Hadj-Kali MK. 2014. Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent—experiments and COSMO-RS prediction. RSC Adv. 4:3417597–606
    [Google Scholar]
  56. 56.
    Jeliński T, Cysewski P. 2018. Application of a computational model of natural deep eutectic solvents utilizing the COSMO-RS approach for screening of solvents with high solubility of rutin. J. Mol. Model. 24:7180
    [Google Scholar]
  57. 57.
    Kamgar A, Mohsenpour S, Esmaeilzadeh F. 2017. Solubility prediction of CO2, CH4, H2, CO and N2 in choline chloride/urea as a eutectic solvent using NRTL and COSMO-RS models. J. Mol. Liq. 247:70–74
    [Google Scholar]
  58. 58.
    Diedenhofen M, Klamt A. 2010. COSMO-RS as a tool for property prediction of IL mixtures—a review. Fluid Phase Equilib. 294:1–231–38
    [Google Scholar]
  59. 59.
    Mohan M, Naik PK, Banerjee T, Goud VV, Paul S. 2017. Solubility of glucose in tetrabutylammonium bromide based deep eutectic solvents: experimental and molecular dynamic simulations. Fluid Phase Equilib. 448:168–77
    [Google Scholar]
  60. 60.
    Kollau LJBM, Vis M, van den Bruinhorst A, de With G, Tuinier R. 2019. Activity modelling of the solid–liquid equilibrium of deep eutectic solvents. Pure Appl. Chem. 91:81341–49
    [Google Scholar]
  61. 61.
    Alhadid A, Mokrushina L, Minceva M. 2019. Modeling of solid–liquid equilibria in deep eutectic solvents: a parameter study. Molecules 24:122334
    [Google Scholar]
  62. 62.
    Alhadid A, Jandl C, Mokrushina L, Minceva M. 2022. Cocrystal formation in choline chloride deep eutectic solvents. Cryst. Growth Des. 22:31933–42
    [Google Scholar]
  63. 63.
    Elliott JR, Lira CT. 2012. Introductory Chemical Engineering Thermodynamics Saddle River, NJ: Prentice Hall
  64. 64.
    Lobo Ferreira AIMC, Vilas-Boas SM, Silva RMA, Martins MAR, Abranches DO et al. 2022. Extensive characterization of choline chloride and its solid–liquid equilibrium with water. Phys. Chem. Chem. Phys. 24:2414886–97
    [Google Scholar]
  65. 65.
    Zubeir LF, Held C, Sadowski G, Kroon MC. 2016. PC-SAFT modeling of CO2 solubilities in deep eutectic solvents. J. Phys. Chem. B 120:92300–10
    [Google Scholar]
  66. 66.
    Dietz CHJT, van Osch DJGP, Kroon MC, Sadowski G, van Sint Annaland M et al. 2017. PC-SAFT modeling of CO2 solubilities in hydrophobic deep eutectic solvents. Fluid Phase Equilib. 448:94–98
    [Google Scholar]
  67. 67.
    Kumari P, Shobhna Kaur S, Kashyap HK 2018. Influence of hydration on the structure of reline deep eutectic solvent: a molecular dynamics study. ACS Omega 3:1115246–55
    [Google Scholar]
  68. 68.
    García G, Atilhan M, Aparicio S. 2015. An approach for the rationalization of melting temperature for deep eutectic solvents from DFT. Chem. Phys. Lett. 634:151–55
    [Google Scholar]
  69. 69.
    Salehi HS, Hens R, Moultos OA, Vlugt TJH. 2020. Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. J. Mol. Liq. 316:113729
    [Google Scholar]
  70. 70.
    Hou X-J, Yu L-Y, Wang Y-X, Wu K-J, He C-H 2021. Comprehensive prediction of densities for deep eutectic solvents: a new bonding-group interaction contribution scheme. Ind. Eng. Chem. Res. 60:3513127–39
    [Google Scholar]
  71. 71.
    Yu L, Hou X, Ren G, Wu K, He C. 2022. Viscosity model of deep eutectic solvents from group contribution method. AIChE J. 68:9e17744
    [Google Scholar]
  72. 72.
    Hou X, Yu L, He C, Wu K. 2022. Group and group-interaction contribution method for estimating the melting temperatures of deep eutectic solvents. AIChE J. 68:2e17408
    [Google Scholar]
  73. 73.
    Zamora L, Benito C, Gutiérrez A, Alcalde R, Alomari N et al. 2022. Nanostructuring and macroscopic behavior of type V deep eutectic solvents based on monoterpenoids. Phys. Chem. Chem. Phys. 24:1512–31
    [Google Scholar]
  74. 74.
    van Osch DJGP, Dietz CHJT, Warrag SEE, Kroon MC. 2020. The curious case of hydrophobic deep eutectic solvents: a story on the discovery, design, and applications. ACS Sustain. Chem. Eng. 8:2910591–612
    [Google Scholar]
  75. 75.
    Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F et al. 2011. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?. Plant Physiol. 156:41701–5
    [Google Scholar]
  76. 76.
    Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH. 2013. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766:61–68
    [Google Scholar]
  77. 77.
    Lomba L, Ribate MP, Sangüesa E, Concha J, Garralaga MP et al. 2021. Deep eutectic solvents: Are they safe?. Appl. Sci. 11:2110061
    [Google Scholar]
  78. 78.
    Ghavam S, Vahdati M, Wilson IAG, Styring P. 2021. Sustainable ammonia production processes. Front. Energy Res. 9:580808
    [Google Scholar]
  79. 79.
    Wang M, Khan MA, Mohsin I, Wicks J, Ip AH et al. 2021. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes?. Energy Environ. Sci. 14:52535–48
    [Google Scholar]
  80. 80.
    Minteer SD. 2021. (Keynote) Engineering cyanobacteria for nitrogen reduction. ECS Meet. Abstr. MA2021–02:1547
    [Google Scholar]
  81. 81.
    Baltrusaitis J. 2017. Sustainable ammonia production. ACS Sustain. Chem. Eng. 5:119527
    [Google Scholar]
  82. 82.
    Florindo C, Oliveira FS, Rebelo LPN, Fernandes AM, Marrucho IM. 2014. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustain. Chem. Eng. 2:102416–25
    [Google Scholar]
  83. 83.
    Gull M, Zhou M, Fernández FM, Pasek MA. 2014. Prebiotic phosphate ester syntheses in a deep eutectic solvent. J. Mol. Evol. 78:2109–17
    [Google Scholar]
  84. 84.
    van den Bruinhorst A, Spyriouni T, Hill J-R, Kroon MC. 2018. Experimental and molecular modeling evaluation of the physicochemical properties of proline-based deep eutectic solvents. J. Phys. Chem. B 122:1369–79
    [Google Scholar]
  85. 85.
    Gontrani L, Plechkova NV, Bonomo M. 2019. In-depth physico-chemical and structural investigation of a dicarboxylic acid/choline chloride natural deep eutectic solvent (NADES): a spotlight on the importance of a rigorous preparation procedure. ACS Sustain. Chem. Eng. 7:1412536–43
    [Google Scholar]
  86. 86.
    Rodriguez Rodriguez N, van den Bruinhorst A, Kollau LJBM, Kroon MC, Binnemans K 2019. Degradation of deep-eutectic solvents based on choline chloride and carboxylic acids. ACS Sustain. Chem. Eng. 7:1311521–28
    [Google Scholar]
  87. 87.
    Zhang M, Tian R, Han H, Wu K, Wang B et al. 2022. Preparation strategy and stability of deep eutectic solvents: a case study based on choline chloride-carboxylic acid. J. Clean. Prod. 345:131028
    [Google Scholar]
  88. 88.
    Crawford DE, Wright LA, James SL, Abbott AP. 2016. Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion. Chem. Commun. 52:224215–18
    [Google Scholar]
  89. 89.
    Silva LP, Fernandez L, Conceição JHF, Martins MAR, Sosa A et al. 2018. Design and characterization of sugar-based deep eutectic solvents using conductor-like screening model for real solvents. ACS Sustain. Chem. Eng. 6:810724–34
    [Google Scholar]
  90. 90.
    Shahbaz K, Mjalli FS, Vakili-Nezhaad G, AlNashef IM, Asadov A, Farid MM. 2016. Thermogravimetric measurement of deep eutectic solvents vapor pressure. J. Mol. Liq. 222:61–66
    [Google Scholar]
  91. 91.
    Ravula S, Larm NE, Mottaleb MA, Heitz MP, Baker GA. 2019. Vapor pressure mapping of ionic liquids and low-volatility fluids using graded isothermal thermogravimetric analysis. ChemEngineering 3:242
    [Google Scholar]
  92. 92.
    Haz A, Strizincova P, Majova V, Skulcova A, M J 2016. Thermal stability of selected deep eutectic solvents. Int. J. Recent Sci. Res. 7:1114441–44
    [Google Scholar]
  93. 93.
    Jablonsky M, Skulcova A, Haz A, Sima J, Majova V 2018. Long-term isothermal stability of deep eutectic solvents. BioResources 13:47545–59
    [Google Scholar]
  94. 94.
    Delgado-Mellado N, Larriba M, Navarro P, Rigual V, Ayuso M et al. 2018. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. J. Mol. Liq. 260:37–43
    [Google Scholar]
  95. 95.
    Chen Y, Yu D, Lu Y, Li G, Fu L, Mu T. 2019. Volatility of deep eutectic solvent choline chloride: N-methylacetamide at ambient temperature and pressure. Ind. Eng. Chem. Res. 58:177308–17
    [Google Scholar]
  96. 96.
    Chen Y, Wang Q, Liu Z, Li Z, Chen W et al. 2020. Vaporization enthalpy, long-term evaporation and evaporation mechanism of polyethylene glycol-based deep eutectic solvents. New J. Chem. 44:229493–501
    [Google Scholar]
  97. 97.
    Schaeffer N, Abranches DO, Silva LP, Martins MAR, Carvalho PJ et al. 2021. Non-ideality in thymol + menthol type V deep eutectic solvents. ACS Sustain. Chem. Eng. 9:52203–11
    [Google Scholar]
  98. 98.
    Dietz CHJT, Creemers JT, Meuleman MA, Held C, Sadowski G et al. 2019. Determination of the total vapor pressure of hydrophobic deep eutectic solvents: experiments and perturbed-chain statistical associating fluid theory modeling. ACS Sustain. Chem. Eng. 7:44047–57
    [Google Scholar]
  99. 99.
    Xin K, Roghair I, Gallucci F, van Sint Annaland M. 2021. Total vapor pressure of hydrophobic deep eutectic solvents: experiments and modelling. J. Mol. Liq. 325:115227
    [Google Scholar]
  100. 100.
    Potticary J, Hall C, Hamilton V, McCabe JF, Hall SR. 2020. Crystallization from volatile deep eutectic solvents. Cryst. Growth Des. 20:52877–84
    [Google Scholar]
  101. 101.
    Juneidi I, Hayyan M, Hashim MA. 2015. Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents. RSC Adv. 5:10283636–47
    [Google Scholar]
  102. 102.
    Wen Q, Chen J-X, Tang Y-L, Wang J, Yang Z 2015. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 132:63–69
    [Google Scholar]
  103. 103.
    Radošević K, Cvjetko Bubalo M, Gaurina Srček V, Grgas D, Landeka Dragičević T, Radojčić Redovniković I. 2015. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol. Environ. Saf. 112:46–53
    [Google Scholar]
  104. 104.
    Lapeña D, Errazquin D, Lomba L, Lafuente C, Giner B. 2021. Ecotoxicity and biodegradability of pure and aqueous mixtures of deep eutectic solvents: glyceline, ethaline, and reline. Environ. Sci. Pollut. Res. 28:78812–21
    [Google Scholar]
  105. 105.
    Cao L, Huang J, Zhang X, Zhang S, Gao J, Zeng S. 2015. Imidazole tailored deep eutectic solvents for CO2 capture enhanced by hydrogen bonds. Phys. Chem. Chem. Phys. 17:4127306–16
    [Google Scholar]
  106. 106.
    Yusof R, Abdulmalek E, Sirat K, Rahman M. 2014. Tetrabutylammonium bromide (TBABr)-based deep eutectic solvents (DESs) and their physical properties. Molecules 19:68011–26
    [Google Scholar]
  107. 107.
    Ghaedi H, Ayoub M, Sufian S, Shariff AM, Hailegiorgis SM, Khan SN. 2017. CO2 capture with the help of phosphonium-based deep eutectic solvents. J. Mol. Liq. 243:564–71
    [Google Scholar]
  108. 108.
    de Morais P, Gonçalves F, Coutinho JAP, Ventura SPM. 2015. Ecotoxicity of cholinium-based deep eutectic solvents. ACS Sustain. Chem. Eng. 3:123398–404
    [Google Scholar]
  109. 109.
    Macário IPE, Jesus F, Pereira JL, Ventura SPM, Gonçalves AMM et al. 2018. Unraveling the ecotoxicity of deep eutectic solvents using the mixture toxicity theory. Chemosphere 212:890–97
    [Google Scholar]
  110. 110.
    Macário IPE, Ventura SPM, Pereira JL, Gonçalves AMM, Coutinho JAP, Gonçalves FJM. 2018. The antagonist and synergist potential of cholinium-based deep eutectic solvents. Ecotoxicol. Environ. Saf. 165:597–602
    [Google Scholar]
  111. 111.
    Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM et al. 2013. Are deep eutectic solvents benign or toxic?. Chemosphere 90:72193–95
    [Google Scholar]
  112. 112.
    Marchel M, Cieśliński H, Boczkaj G. 2022. Deep eutectic solvents microbial toxicity: current state of art and critical evaluation of testing methods. J. Hazard. Mater. 425:127963
    [Google Scholar]
  113. 113.
    Tomé LIN, Baião V, da Silva W, Brett CMA. 2018. Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today 10:30–50
    [Google Scholar]
  114. 114.
    Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F. 2012. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41:217108–46
    [Google Scholar]
  115. 115.
    Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V. 2017. Application of deep eutectic solvents in analytical chemistry. A review. Microchem. J. 135:33–38
    [Google Scholar]
  116. 116.
    Cunha SC, Fernandes JO. 2018. Extraction techniques with deep eutectic solvents. TrAC Trends Anal. Chem. 105:225–39
    [Google Scholar]
  117. 117.
    Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S et al. 2016. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem. 18:195133–41
    [Google Scholar]
  118. 118.
    Ruesgas-Ramón M, Figueroa-Espinoza MC, Durand E 2017. Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J. Agric. Food Chem. 65:183591–601
    [Google Scholar]
  119. 119.
    García G, Aparicio S, Ullah R, Atilhan M. 2015. Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29:42616–44
    [Google Scholar]
  120. 120.
    Abbott AP, Capper G, Davies DL, McKenzie KJ, Obi SU. 2006. Solubility of metal oxides in deep eutectic solvents based on choline chloride. J. Chem. Eng. Data 51:41280–82
    [Google Scholar]
  121. 121.
    Abbott AP, Ballantyne A, Harris RC, Juma JA, Ryder KS, Forrest G. 2015. A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions. Electrochim. Acta 176:718–26
    [Google Scholar]
  122. 122.
    Chakrabarti MH, Mjalli FS, AlNashef IM, Hashim MA, Hussain MA et al. 2014. Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries. Renew. Sustain. Energy Rev. 30:254–70
    [Google Scholar]
  123. 123.
    Ünlü AE, Arıkaya A, Takaç S. 2019. Use of deep eutectic solvents as catalyst: a mini-review. Green Process. Synth. 81355–72
  124. 124.
    Cao Y, Zhang J, Ma Y, Wu W, Huang K, Jiang L. 2021. Designing low-viscosity deep eutectic solvents with multiple weak-acidic groups for ammonia separation. ACS Sustain. Chem. Eng. 9:217352–60
    [Google Scholar]
  125. 125.
    Shi Y, Li X, Shang Y, Li T, Zhang K, Fan J 2020. Effective extraction of fluorescent brightener 52 from foods by in situ formation of hydrophobic deep eutectic solvent. Food Chem. 311:125870
    [Google Scholar]
  126. 126.
    Pang K, Hou Y, Wu W, Guo W, Peng W, Marsh KN. 2012. Efficient separation of phenols from oils via forming deep eutectic solvents. Green Chem. 14:92398–401
    [Google Scholar]
  127. 127.
    Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF, Looi CY. 2019. Emerging frontiers of deep eutectic solvents in drug discovery and drug delivery systems. J. Control. Release 316:168–95
    [Google Scholar]
  128. 128.
    Pedro SN, Freire MG, Freire CSR, Silvestre AJD. 2019. Deep eutectic solvents comprising active pharmaceutical ingredients in the development of drug delivery systems. Expert Opin. Drug Deliv. 16:5497–506
    [Google Scholar]
  129. 129.
    Wolbert F, Brandenbusch C, Sadowski G. 2019. Selecting excipients forming therapeutic deep eutectic systems—a mechanistic approach. Mol. Pharm. 16:73091–99
    [Google Scholar]
  130. 130.
    Berton P, Di Bona KR, Yancey D, Rizvi SAA, Gray M et al. 2017. Transdermal bioavailability in rats of lidocaine in the forms of ionic liquids, salts, and deep eutectic. ACS Med. Chem. Lett. 8:5498–503
    [Google Scholar]
  131. 131.
    Al-Akayleh F, Adwan S, Khanfar M, Idkaidek N, Al-Remawi M. 2021. A novel eutectic-based transdermal delivery system for risperidone. AAPS PharmSciTech 22:14
    [Google Scholar]
  132. 132.
    Moya C, Gonzalez-Miquel M, Rodriguez F, Soto A, Rodriguez H, Palomar J. 2017. Non-ideal behavior of ionic liquid mixtures to enhance CO2 capture. Fluid Phase Equilib. 450:175–83
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101121-085323
Loading
/content/journals/10.1146/annurev-chembioeng-101121-085323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error