1932

Abstract

Periodic open cellular structures (POCS) represent a promising new class of structured internals as next-generation catalyst supports in reactors or structured packing elements in separation columns. POCS feature a well-defined morphology and can be fabricated with high reproducibility even for complex geometries by means of additive manufacturing. This results in a uniform and easily controllable flow field, which allows for adjusting the heat and mass transport processes to realize optimal process conditions. We review the fundamentals of POCS, including design and manufacturing as well as transport phenomena for single- and multiphase systems. Moreover, we review recent POCS applications in reaction and separation processes and consider promising future application fields. The exceptional transport characteristics of POCS facilitate the design of highly efficient, flexible, resilient, and safe processes, which is key for achieving process intensification toward a sustainable future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101121-085630
2024-07-24
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-101121-085630.html?itemId=/content/journals/10.1146/annurev-chembioeng-101121-085630&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cybulski A, Moulijn JA, ed. 2005.. Structured Catalysts and Reactors. Boca Raton, FL:: CRC Press
    [Google Scholar]
  2. 2.
    Freund H, Sundmacher K. 2011.. Process intensification, 3. Process unit level. . In Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, Ger.:: Wiley
    [Google Scholar]
  3. 3.
    Kreutzer MT, Kapteijn F, Moulijn JA. 2006.. Shouldn't catalysts shape up?. Catal. Today 111::11118
    [Crossref] [Google Scholar]
  4. 4.
    Kapteijn F, Moulijn JA. 2022.. Structured catalysts and reactors—perspectives for demanding applications. . Catal. Today 383::514
    [Crossref] [Google Scholar]
  5. 5.
    Calis H, Nijenhuis J, Paikert BC, Dautzenberg FM, van den Bleek CM. 2001.. CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. . Chem. Eng. Sci. 56::171320
    [Crossref] [Google Scholar]
  6. 6.
    Romkes S, Dautzenberg F, van den Bleek C, Calis H. 2003.. CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio. . Chem. Eng. J. 96::313
    [Crossref] [Google Scholar]
  7. 7.
    Twigg MV, Richardson JT. 1995.. Preparation and properties of ceramic foam catalyst supports. . In Preparation of Catalysis VI: Scientific Bases for the Preparation of Heterogeneous Catalysts, Proceedings of the Sixth International Symposium, pp. 34559. Amsterdam:: Elsevier
    [Google Scholar]
  8. 8.
    Carty WM, Lednor PW. 1996.. Monolithic ceramics and heterogeneous catalysts: honeycombs and foams. . Curr. Opin. Solid State Mater. Sci. 1::8895
    [Crossref] [Google Scholar]
  9. 9.
    Inayat A, Schwerdtfeger J, Freund H, Körner C, Singer RF, Schwieger W. 2011.. Periodic open-cell foams: pressure drop measurements and modeling of an ideal tetrakaidecahedra packing. . Chem. Eng. Sci. 66::275863
    [Crossref] [Google Scholar]
  10. 10.
    Iwaniszyn M. 2022.. Periodic open cellular structures (POCS) as catalyst supports—a review. . Energies 15::7703
    [Crossref] [Google Scholar]
  11. 11.
    Busse C. 2020.. Untersuchungen zum Potenzial periodisch offenzelliger Strukturen als alternative Katalysatorträger für exotherme Reaktionen. Diss. , Friedrich-Alexander-Univ. Erlangen-Nürnberg, Erlangen, Ger.:
    [Google Scholar]
  12. 12.
    Fratalocchi L, Groppi G, Visconti CG, Lietti L, Tronconi E. 2020.. Adoption of 3D printed highly conductive periodic open cellular structures as an effective solution to enhance the heat transfer performances of compact Fischer-Tropsch fixed-bed reactors. . Chem. Eng. J. 386::123988
    [Crossref] [Google Scholar]
  13. 13.
    von Beyer M. 2019.. Hydrodynamische Charakterisierung der Mehrphasenströmung in additiv gefertigten periodisch offenzelligen Strukturen: Optionen zur Prozessintensivierung in einer Hydrodesulfurierungsanlage. Diss. , Friedrich-Alexander-Univ. Erlangen-Nürnberg, Erlangen, Ger.:
    [Google Scholar]
  14. 14.
    Büscher N, Spille C, Kracht JK, Sayoga GV, Dawood AWH, et al. 2020.. Countercurrently operated reactive extractor with an additively manufactured enzyme carrier structure. . Org. Process Res. Dev. 24::162128
    [Crossref] [Google Scholar]
  15. 15.
    Benedetti M, Du Plessis A, Ritchie RO, Dallago M, Razavi S, Berto F. 2021.. Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication. . Mater. Sci. Eng. 144::100606
    [Crossref] [Google Scholar]
  16. 16.
    Neukäufer J, Sarajlic N, Klein H, Rehfeldt S, Hallmann H, et al. 2021.. Flexible distillation test rig on a laboratory scale for characterization of additively manufactured packings. . AIChE J. 67::e17381
    [Crossref] [Google Scholar]
  17. 17.
    Bühlmann U. 1983.. Rombopak, ein neuer geordneter Packungskörper für Stoffaustauschkolonnen. . Chem. Ing. Tech. 55::37981
    [Crossref] [Google Scholar]
  18. 18.
    Klumpp M, Inayat A, Schwerdtfeger J, Körner C, Singer RF, et al. 2014.. Periodic open cellular structures with ideal cubic cell geometry: effect of porosity and cell orientation on pressure drop behavior. . Chem. Eng. J. 242::36478
    [Crossref] [Google Scholar]
  19. 19.
    Horneber T. 2015.. Thermo-fluid dynamic characterization and technical optimization of structured open-cell metal foams by means of numerical simulation. Diss. , Friedrich-Alexander-Univ. Erlangen-Nürnberg, Erlangen, Ger.:
    [Google Scholar]
  20. 20.
    Do G, Geißelbrecht M, Schwieger W, Freund H. 2020.. Additive manufacturing of interpenetrating periodic open cellular structures (interPOCS) with in operando adjustable flow characteristics. . Chem. Eng. Process. Process Intensif. 148::107786
    [Crossref] [Google Scholar]
  21. 21.
    Hu X, Spille C, Schlüter M, Smirnova I. 2020.. Smart structures—additive manufacturing of stimuli-responsive hydrogels for adaptive packings. . Ind. Eng. Chem. Res. 59::1945864
    [Crossref] [Google Scholar]
  22. 22.
    Fink A, Fu Z, Körner C. 2023.. Functional properties and shape memory effect of Nitinol manufactured via electron beam powder bed fusion. . Acta Mater. 30::101823
    [Google Scholar]
  23. 23.
    Gen3D, Altair Eng. Inc. 2022.. The seven categories of additive manufacturing technologies. . Gen3D, March 7. https://gen3d.com/news-and-articles/the-seven-categories-of-am-processes/
    [Google Scholar]
  24. 24.
    Addit. Manuf. Res. Group, Loughborough Univ. 2023.. About additive manufacturing: the 7 categories of additive manufacturing. https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/
    [Google Scholar]
  25. 25.
    Lakhdar Y, Tuck C, Binner J, Terry A, Goodridge R. 2021.. Additive manufacturing of advanced ceramic materials. . Prog. Mater. Sci. 116::100736
    [Crossref] [Google Scholar]
  26. 26.
    Nazir A, Abate KM, Kumar A, Jeng J-Y. 2019.. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. . Int. J. Adv. Manuf. Technol. 104::3489510
    [Crossref] [Google Scholar]
  27. 27.
    Lämmermann M, Schwieger W, Freund H. 2016.. Experimental investigation of gas-liquid distribution in periodic open cellular structures as potential catalyst supports. . Catal. Today 273::16171
    [Crossref] [Google Scholar]
  28. 28.
    Trunk S, Freund H. 2024.. Detailed numerical investigations of the in operando adjustable flow field in a diamond unit cell-based interpenetrating periodic open cellular structure (interPOCS). . Chem. Eng. Process. Process Intensif. 195::109617
    [Crossref] [Google Scholar]
  29. 29.
    Markforged Inc. 2023.. What is additive manufacturing?. Markforged Blog. https://markforged.com/de/resources/blog/additive-manufacturing-101-guide-the-basics
    [Google Scholar]
  30. 30.
    Santoliquido O, Bianchi G, Dimopoulos Eggenschwiler P, Ortona A. 2017.. Additive manufacturing of periodic ceramic substrates for automotive catalyst supports. . Int. J. Appl. Ceram. Technol. 14::116473
    [Crossref] [Google Scholar]
  31. 31.
    Santoliquido O, Camerota F, Pelanconi M, Ferri D, Elsener M, et al. 2021.. Structured alumina substrates for environmental catalysis produced by stereolithography. . Appl. Sci. 11::8239
    [Crossref] [Google Scholar]
  32. 32.
    Jiang CP, Hentihu MFR, Lei TY, Lee SY. 2020.. Three-dimensional slurry printing technology in ceramic and metal application. . Solid State Phenom. 311::2126
    [Crossref] [Google Scholar]
  33. 33.
    Körner C. 2016.. Additive manufacturing of metallic components by selective electron beam melting—a review. . Int. Mater. Rev. 61::36177
    [Crossref] [Google Scholar]
  34. 34.
    Franchi FS, Ambrosetti M, Balzarotti R, Bracconi M, Groppi G, Tronconi E. 2022.. Rich H2 catalytic oxidation as a novel methodology for the evaluation of mass transport properties of 3D printed catalyst supports. . Catal. Today 383::12332
    [Crossref] [Google Scholar]
  35. 35.
    Warmuth F, Osmanlic F, Adler L, Lodes MA, Körner C. 2017.. Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting. . Smart Mater. Struct. 26::25013
    [Crossref] [Google Scholar]
  36. 36.
    Neukäufer J, Seyfang B, Grützner T. 2020.. Investigation of contact angles and surface morphology of 3D-printed materials. . Ind. Eng. Chem. Res. 59::676166
    [Crossref] [Google Scholar]
  37. 37.
    Balzarotti R, Bisaccia A, Tripi MC, Ambrosetti M, Groppi G, Tronconi E. 2020.. Production and characterization of copper periodic open cellular structures made by 3D printing-replica technique. . J. Adv. Manuf. Process. 2::e10068
    [Crossref] [Google Scholar]
  38. 38.
    Balzarotti R, Ambrosetti M, Arnesano M, Anglani A, Groppi G, Tronconi E. 2021.. Periodic open cellular structures (POCS) as enhanced catalyst supports: optimization of the coating procedure and analysis of mass transport. . Appl. Catal. B 283::119651
    [Crossref] [Google Scholar]
  39. 39.
    Do G, Stiegler T, Fiegl M, Adler L, Körner C, et al. 2017.. Electrophoretic deposition of boehmite on additively manufactured, interpenetrating periodic open cellular structures for catalytic applications. . Ind. Eng. Chem. Res. 56::1340210
    [Crossref] [Google Scholar]
  40. 40.
    Montebelli A, Visconti CG, Groppi G, Tronconi E, Cristiani C, et al. 2014.. Methods for the catalytic activation of metallic structured substrates. . Catal. Sci. Technol. 4::284670
    [Crossref] [Google Scholar]
  41. 41.
    Schwieger W, Machoke AG, Weissenberger T, Inayat A, Selvam T, et al. 2016.. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. . Chem. Soc. Rev. 45::335376
    [Crossref] [Google Scholar]
  42. 42.
    Ambrosetti M, Groppi G, Schwieger W, Tronconi E, Freund H. 2020.. Packed periodic open cellular structures—an option for the intensification of non-adiabatic catalytic processes. . Chem. Eng. Process. Process Intensif. 155::108057
    [Crossref] [Google Scholar]
  43. 43.
    Trunk S, Brix A, Freund H. 2021.. Development and evaluation of a new particle tracking solver for hydrodynamic and mass transport characterization of porous media—a case study on periodic open cellular structures. . Chem. Eng. Sci. 244::116768
    [Crossref] [Google Scholar]
  44. 44.
    Wehinger GD, Ambrosetti M, Cheula R, Ding Z-B, Isoz M, et al. 2022.. Quo vadis multiscale modeling in reaction engineering?—A perspective. . Chem. Eng. Res. Des. 184::3958
    [Crossref] [Google Scholar]
  45. 45.
    Meinicke S, Dubil K, Wetzel T, Dietrich B. 2020.. Characterization of heat transfer in consolidated, highly porous media using a hybrid-scale CFD approach. . Int. J. Heat Mass Transfer 149::119201
    [Crossref] [Google Scholar]
  46. 46.
    Bendsøe MP, Sigmund O. 2004.. Topology Optimization: Theory, Methods, and Applications. Berlin:: Springer. , 2nd ed.., corrected print.
    [Google Scholar]
  47. 47.
    Ferroni C. 2023.. A CFD-based investigation of the transport properties in open cellular structures for catalytic applications. Diss. , Politec. Milano, Milan, Italy:
    [Google Scholar]
  48. 48.
    Freund H, Maußner J, Kaiser M, Xie M. 2019.. Process intensification by model-based design of tailor-made reactors. . Curr. Opin. Chem. Eng. 26::4657
    [Crossref] [Google Scholar]
  49. 49.
    Rudolf D, Littwin G, Freund H. 2022.. Structured catalyst supports tailored towards optimal reactor performance using additive manufacturing. Paper presented at the 2nd International Conference on Unconventional Catalysis, Reactors and Applications, Leamington Spa, UK:, Sept. 21–23
    [Google Scholar]
  50. 50.
    Pietschak A. 2022.. Advancing the model-based design of catalytic fixed-bed reactors. Diss. , Friedrich-Alexander-Univ. Erlangen-Nürnberg, Erlangen, Ger.:
    [Google Scholar]
  51. 51.
    Bastos Rebelo NF, Andreassen KA, Suarez Ríos LI, Piquero Camblor JC, Zander H-J, Grande CA. 2018.. Pressure drop and heat transfer properties of cubic iso-reticular foams. . Chem. Eng. Process. Process Intensif. 127::3642
    [Crossref] [Google Scholar]
  52. 52.
    Dubil K, Wetzel T, Dietrich B. 2023.. Modelling steady-state convective heat transfer in different periodic open cellular structures (POCS)—a superposition approach. . Int. J. Heat Mass Transfer 200::123546
    [Crossref] [Google Scholar]
  53. 53.
    Ferroni C, Bracconi M, Ambrosetti M, Groppi G, Maestri M, et al. 2024.. Process intensification in mass-transfer limited catalytic reactors through anisotropic periodic open cellular structures. . Chem. Eng. Process. Process Intensif. 195::109613
    [Crossref] [Google Scholar]
  54. 54.
    Do G. 2019.. Reaktionstechnische Charakterisierung und katalytische Funktionalisierung von additiv gefertigten Reaktorstrukturen. Diss. , Friedrich-Alexander-Univ. Erlangen-Nürnberg, Erlangen, Ger:.
    [Google Scholar]
  55. 55.
    Körner C, Liebold-Ribeiro Y. 2015.. A systematic approach to identify cellular auxetic materials. . Smart Mater. Struct. 24::25013
    [Crossref] [Google Scholar]
  56. 56.
    Fink A, Rudolf D, Fu Z, Freund H, Körner C. 2022.. Electron beam based additive manufacturing of auxetic structures composed of shape memory Nitinol as catalyst carrier. Paper presented at the 11th European Solid Mechanics Conference, Galway, Irel:., July 4–8
    [Google Scholar]
  57. 57.
    Jorge P, Mendes MA, Werzner E, Pereira JM. 2019.. Characterization of laminar flow in periodic open-cell porous structures. . Chem. Eng. Sci. 201::397412
    [Crossref] [Google Scholar]
  58. 58.
    Woudberg S, Du Plessis JP. 2016.. An analytical Ergun-type equation for porous foams. . Chem. Eng. Sci. 148::4454
    [Crossref] [Google Scholar]
  59. 59.
    Fourie JG, Du Plessis JP. 2002.. Pressure drop modelling in cellular metallic foams. . Chem. Eng. Sci. 57::278189
    [Crossref] [Google Scholar]
  60. 60.
    Ferroni C, Bracconi M, Ambrosetti M, Maestri M, Groppi G, Tronconi E. 2021.. A fundamental investigation of gas/solid heat and mass transfer in structured catalysts based on periodic open cellular structures (POCS). . Ind. Eng. Chem. Res. 60::1052238
    [Crossref] [Google Scholar]
  61. 61.
    Das S, Deen NG, Kuipers JAM. 2017.. Immersed boundary method (IBM) based direct numerical simulation of open-cell solid foams: hydrodynamics. . AIChE J. 63::115273
    [Crossref] [Google Scholar]
  62. 62.
    Lämmermann M, Horak G, Schwieger W, Freund H. 2018.. Periodic open cellular structures (POCS) for intensification of multiphase reactors: liquid holdup and two-phase pressure drop. . Chem. Eng. Process. Process Intensif. 126::17889
    [Crossref] [Google Scholar]
  63. 63.
    Busse C, Freund H, Schwieger W. 2018.. Intensification of heat transfer in catalytic reactors by additively manufactured periodic open cellular structures (POCS). . Chem. Eng. Process. Process Intensif. 124::199214
    [Crossref] [Google Scholar]
  64. 64.
    Littwin G, Röder S, Freund H. 2021.. Systematic experimental investigations and modeling of the heat transfer in additively manufactured periodic open cellular structures with diamond unit cell. . Ind. Eng. Chem. Res. 60::675366
    [Crossref] [Google Scholar]
  65. 65.
    Ferroni C, Franchi FS, Ambrosetti M, Bracconi M, Groppi G, et al. 2022.. Numerical and experimental investigation of pressure drop in periodic open cellular structures for intensification of catalytic processes. . ACS Eng. Au 2::11833
    [Crossref] [Google Scholar]
  66. 66.
    Horneber T, Rauh C, Delgado A. 2014.. Numerical simulations of fluid dynamics in carrier structures for catalysis: characterization and need for optimization. . Chem. Eng. Sci. 117::22938
    [Crossref] [Google Scholar]
  67. 67.
    Kumar P, Topin F. 2014.. Micro-structural impact of different strut shapes and porosity on hydraulic properties of Kelvin-like metal foams. . Transp. Porous Media 105::5781
    [Crossref] [Google Scholar]
  68. 68.
    Habisreuther P, Djordjevic N, Zarzalis N. 2009.. Statistical distribution of residence time and tortuosity of flow through open-cell foams. . Chem. Eng. Sci. 64::494354
    [Crossref] [Google Scholar]
  69. 69.
    Horneber T, Rauh C, Delgado A. 2012.. Fluid dynamic characterisation of porous solids in catalytic fixed-bed reactors. . Microporous Mesoporous Mater. 154::17074
    [Crossref] [Google Scholar]
  70. 70.
    Della Torre A, Lucci F, Montenegro G, Onorati A, Dimopoulos Eggenschwiler P, et al. 2016.. CFD modeling of catalytic reactions in open-cell foam substrates. . Comput. Chem. Eng. 92::5563
    [Crossref] [Google Scholar]
  71. 71.
    Kumar P, Topin F. 2017.. State-of-the-art of pressure drop in open-cell porous foams: review of experiments and correlations. . J. Fluids Eng. 139::111401
    [Crossref] [Google Scholar]
  72. 72.
    Meinicke S, Dietrich B, Wetzel T. 2018.. Pore-scale numerical analysis of hydrodynamics and conjugate heat transfer in solid sponges. . In Proceedings of the International Heat Transfer Conference 16, Beijing, China, Aug. 10–15, pp. 810916. Danbury, CT:: Begell House
    [Google Scholar]
  73. 73.
    Zimmer A, PachecoAraújo JD, Andreassen KA, Grande CA. 2021.. Effect of manufacturing techniques in pressure drop on triple periodical minimal surface packings. . Chem. Ing. Tech. 93::96773
    [Crossref] [Google Scholar]
  74. 74.
    Asif M, Grande CA. 2022.. TPMS contactors designed with imprinted porosity: numerical evaluation of momentum and energy transport. . Ind. Eng. Chem. Res. 61::1855666
    [Crossref] [Google Scholar]
  75. 75.
    Bolton S, Kasturi A, Palko S, Lai C, Love L, et al. 2019.. 3D printed structures for optimized carbon capture technology in packed bed columns. . Sep. Sci. Technol. 54::204758
    [Crossref] [Google Scholar]
  76. 76.
    Neukäufer J, Ashour MA, Sarajlic N, Klein H, Rehfeldt S, et al. 2023.. Development of enhanced three-dimensional printed packings for scale-up of distillation columns: a successful case study. . AIChE J. 69::e17902
    [Crossref] [Google Scholar]
  77. 77.
    Papetti V, Dimopoulos Eggenschwiler P, Della Torre A, Lucci F, Ortona A, Montenegro G. 2018.. Additive manufactured open cell polyhedral structures as substrates for automotive catalysts. . Int. J. Heat Mass Transfer 126::103547
    [Crossref] [Google Scholar]
  78. 78.
    Cai X, Wörner M, Marschall H, Deutschmann O. 2016.. Numerical study on the wettability dependent interaction of a rising bubble with a periodic open cellular structure. . Catal. Today 273::15160
    [Crossref] [Google Scholar]
  79. 79.
    Dejean B, Meyer M, Rouzineau D. 2020.. Design and conception of an innovative packing for separation column—part I: hydrodynamic study on wire intersections. . Chem. Eng. Res. Des. 160::1119
    [Crossref] [Google Scholar]
  80. 80.
    Miramontes E, Love LJ, Lai C, Sun X, Tsouris C. 2020.. Additively manufactured packed bed device for process intensification of CO2 absorption and other chemical processes. . Chem. Eng. J. 388::124092
    [Crossref] [Google Scholar]
  81. 81.
    Mathlouthi G, Kügele S, Elsayed F, Voß R, Renze P, et al. 2023.. Wettability prediction for 3D-printed surfaces using reverse engineering and computational fluid dynamics simulations. . Ind. Eng. Chem. Res. 62::162735
    [Crossref] [Google Scholar]
  82. 82.
    Hecht C, Grünewald M. 2019.. Erstes Design und Einsatz 3D-gedruckter Strukturen in Blasensäulenreaktoren. . Chem. Ing. Tech. 91::127380
    [Crossref] [Google Scholar]
  83. 83.
    Littwin G, von Beyer M, Freund H. 2021.. Detailed investigation of liquid distribution and holdup in periodic open cellular structures using computed tomography. . Chem. Eng. Process. Process Intensif. 168::108579
    [Crossref] [Google Scholar]
  84. 84.
    Kawas B, Mizzi B, Dejean B, Rouzineau D, Meyer M. 2021.. Design and conception of an innovative packing for separation column—part II: design and characterization of a wire based packing. . Chem. Eng. Res. Des. 169::189203
    [Crossref] [Google Scholar]
  85. 85.
    Kawas B, Mizzi B, Rouzineau D, Meyer M. 2021.. Design and conception of an innovative packing for separation column—part III: development of new hydrodynamic and mass transfer correlations for a wire-based lattice packing. . Chem. Eng. Res. Des. 172::2133
    [Crossref] [Google Scholar]
  86. 86.
    Neukäufer J, Hanusch F, Kutscherauer M, Rehfeldt S, Klein H, Grützner T. 2019.. Methodik zur Entwicklung additiv gefertigter Packungsstrukturen im Bereich der thermischen Trenntechnik. . Chem. Ing. Tech. 91::101423
    [Crossref] [Google Scholar]
  87. 87.
    Sarajlic N, Neukäufer J, Ashour M, Grützner T, Meinicke S, et al. 2022.. Simulation of the liquid flow distribution in laboratory-scale additively manufactured packings. . Chem. Eng. Res. Design 196::2839
    [Google Scholar]
  88. 88.
    Sarajlic N, Stadler M, Ashour MA, Neukäufer J, Grützner T, et al. 2022.. Untersuchung der Flüssigkeitsverteilung in additiv gefertigten strukturierten Laborpackungen. . Chem. Ing. Tech. 94::10029
    [Crossref] [Google Scholar]
  89. 89.
    Fratalocchi L, Groppi G, Visconti CG, Lietti L, Tronconi E. 2022.. Packed-POCS with skin: a novel concept for the intensification of non-adiabatic catalytic processes demonstrated in the case of the Fischer-Tropsch synthesis. . Catal. Today 383::1520
    [Crossref] [Google Scholar]
  90. 90.
    Dul'nev GN. 1965.. Heat transfer through solid disperse systems. . J. Eng. Phys. Thermophys. 9::27579
    [Crossref] [Google Scholar]
  91. 91.
    Dubil K, Wolf H, Wetzel T, Dietrich B. 2022.. Development of a generalized thermal resistance model for the calculation of effective thermal conductivities in periodic open cellular structures (POCS). . Int. J. Heat Mass Transfer 183::122083
    [Crossref] [Google Scholar]
  92. 92.
    Bianchi E, Schwieger W, Freund H. 2016.. Assessment of periodic open cellular structures for enhanced heat conduction in catalytic fixed-bed reactors. . Adv. Eng. Mater. 18::60814
    [Crossref] [Google Scholar]
  93. 93.
    Bracconi M, Ambrosetti M, Maestri M, Groppi G, Tronconi E. 2020.. Analysis of the effective thermal conductivity of isotropic and anisotropic periodic open cellular structures for the intensification of catalytic processes. . Chem. Eng. Process. Process Intensif. 158::108169
    [Crossref] [Google Scholar]
  94. 94.
    Wu Z, Caliot C, Flamant G, Wang Z. 2011.. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances. . Int. J. Heat Mass Transfer 54::152737
    [Crossref] [Google Scholar]
  95. 95.
    Busse C, Inayat A, Freund H, Schwieger W. 2016.. Periodische offene zellulare Strukturen als Katalysatorträger für die Oxidation von Methanol zu Formaldehyd—Charakterisierung des Wärmeübergangs. Paper presented at the Annual Meeting on Reaction Engineering 2016, Würzburg, Ger.:, May 2–4
    [Google Scholar]
  96. 96.
    Ferroni C, Bracconi M, Ambrosetti M, Groppi G, Maestri M, Tronconi E. 2023.. Coupling cellular substrates and radial flow reactors for enhanced exhaust abatement in automotive DeNOx-SCR. . Chem. Eng. J. 467::143349
    [Crossref] [Google Scholar]
  97. 97.
    Lind A, Vistad Ø, Sunding MF, Andreassen KA, Cavka JH, Grande CA. 2020.. Multi-purpose structured catalysts designed and manufactured by 3D printing. . Mater. Des. 187::108377
    [Crossref] [Google Scholar]
  98. 98.
    Hock S, Rein C, Rose M. 2022.. 3D-printed acidic monolithic catalysts for liquid-phase catalysis with enhanced mass transfer properties. . ChemCatChem 14::E202101947
    [Crossref] [Google Scholar]
  99. 99.
    Jang GG, Thompson JA, Sun X, Tsouris C. 2021.. Process intensification of CO2 capture by low-aqueous solvent. . Chem. Eng. J. 426::131240
    [Crossref] [Google Scholar]
  100. 100.
    Hornung CH, Singh S, Saubern S. 2018.. Additive layer manufacturing of catalytic static mixers for continuous flow reactors. . Johnson Matthey Technol. Rev. 62::35060
    [Crossref] [Google Scholar]
  101. 101.
    Kundra M, Grall T, Ng D, Xie Z, Hornung CH. 2021.. Continuous flow hydrogenation of flavorings and fragrances using 3D-printed catalytic static mixers. . Ind. Eng. Chem. Res. 60::19892002
    [Crossref] [Google Scholar]
  102. 102.
    Vilé G, Ng D, Xie Z, Martinez-Botella I, Tsanaktsidis J, Hornung CH. 2022.. 3D-printed structured reactor with integrated single-atom catalyst film for hydrogenation. . ChemCatChem 14::e202101941
    [Crossref] [Google Scholar]
  103. 103.
    Perego C. 1999.. Experimental methods in catalytic kinetics. . Catal. Today 52::13345
    [Crossref] [Google Scholar]
  104. 104.
    Ambrosetti M, Bonincontro D, Balzarotti R, Beretta A, Groppi G, Tronconi E. 2022.. H2 production by methane steam reforming over Rh/Al2O3 catalyst packed in Cu foams: a strategy for the kinetic investigation in concentrated conditions. . Catal. Today 387::10718
    [Crossref] [Google Scholar]
  105. 105.
    Parra-Cabrera C, Achille C, Kuhn S, Ameloot R. 2018.. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. . Chem. Soc. Rev. 47::20930
    [Crossref] [Google Scholar]
  106. 106.
    Fee C, Nawada S, Dimartino S. 2014.. 3D printed porous media columns with fine control of column packing morphology. . J. Chromatogr. A 1333::1824
    [Crossref] [Google Scholar]
  107. 107.
    Dixit T, Al-Hajri E, Paul MC, Nithiarasu P, Kumar S. 2022.. High performance, microarchitected, compact heat exchanger enabled by 3D printing. . Appl. Therm. Eng. 210::118339
    [Crossref] [Google Scholar]
  108. 108.
    Ambrosetti M. 2022.. A perspective on power-to-heat in catalytic processes for decarbonization. . Chem. Eng. Process. Process Intensif. 182::109187
    [Crossref] [Google Scholar]
  109. 109.
    Dou L, Yan C, Zhong L, Zhang D, Zhang J, Li X, Xiao L. 2019.. Enhancing CO2 methanation over a metal foam structured catalyst by electric internal heating. . Chem. Commun. 56::2058
    [Crossref] [Google Scholar]
  110. 110.
    Zheng L, Ambrosetti M, Marangoni D, Beretta A, Groppi G, Tronconi E. 2023.. Electrified methane steam reforming on a washcoated SiSiC foam for low-carbon hydrogen production. . AIChE J. 69::e17620
    [Crossref] [Google Scholar]
  111. 111.
    Zheng L, Ambrosetti M, Beretta A, Groppi G, Tronconi E. 2023.. Electrified CO2 valorization driven by direct Joule heating of catalytic cellular substrates. . Chem. Eng. J. 466::143154
    [Crossref] [Google Scholar]
  112. 112.
    Ambrosetti M, Beretta A, Groppi G, Tronconi E. 2021.. A numerical investigation of electrically-heated methane steam reforming over structured catalysts. . Front. Chem. Eng. 3::747636
    [Crossref] [Google Scholar]
  113. 113.
    Bordet A, Lacroix L-M, Fazzini P-F, Carrey J, Soulantica K, Chaudret B. 2016.. Magnetically induced continuous CO2 hydrogenation using composite iron carbide nanoparticles of exceptionally high heating power. . Angew. Chem. Int. Ed. 55::1589498
    [Crossref] [Google Scholar]
  114. 114.
    Mortensen PM, Engbæk JS, Vendelbo SB, Hansen MF, Østberg M. 2017.. Direct hysteresis heating of catalytically active Ni-Co nanoparticles as steam reforming catalyst. . Ind. Eng. Chem. Res. 56::1400613
    [Crossref] [Google Scholar]
  115. 115.
    Pérez-Camacho MN, Abu-Dahrieh J, Rooney D, Sun K. 2015.. Biogas reforming using renewable wind energy and induction heating. . Catal. Today 242::12938
    [Crossref] [Google Scholar]
  116. 116.
    Goyal H, Chen T-Y, Chen W, Vlachos DG. 2022.. A review of microwave-assisted process intensified multiphase reactors. . Chem. Eng. J. 430::133183
    [Crossref] [Google Scholar]
  117. 117.
    Ramirez A, Hueso JL, Mallada R, Santamaria J. 2017.. In situ temperature measurements in microwave-heated gas-solid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene epoxidation reaction. . Chem. Eng. J. 316::5060
    [Crossref] [Google Scholar]
  118. 118.
    Ramirez A, Hueso JL, Mallada R, Santamaria J. 2020.. Microwave-activated structured reactors to maximize propylene selectivity in the oxidative dehydrogenation of propane. . Chem. Eng. J. 393::124746
    [Crossref] [Google Scholar]
  119. 119.
    Julian I, Ramirez H, Hueso JL, Mallada R, Santamaria J. 2019.. Non-oxidative methane conversion in microwave-assisted structured reactors. . Chem. Eng. J. 377::119764
    [Crossref] [Google Scholar]
  120. 120.
    Spille C, Lyberis A, Maiwald MI, Herzog D, Hoffmann M, et al. 2020.. SMART-reactors: tailoring gas holdup distribution by additively manufactured lattice structures. . Chem. Eng. Technol. 43::205361
    [Crossref] [Google Scholar]
  121. 121.
    Wang S, Rohlfs P, Börnhorst M, Schillaci A, Marschall H, Deutschmann O, Wörner M. 2022.. Bubble cutting by cylinder—elimination of wettability effects by a separating liquid film. . Chem. Ing. Tech. 94::38592
    [Crossref] [Google Scholar]
  122. 122.
    Wagner M, Zalucky J, Bieberle M, Hampel U. 2015.. Hydrodynamic investigations of bubbly flow in periodic open cellular structures by ultrafast X-ray tomography. . In Proceedings of the 10th Pacific Symposium on Flow Visualization and Image Processing, Naples, Italy, ed. G Cardone . Kihei, HI:: Pac. Cent. Therm. Fluids Eng.
    [Google Scholar]
  123. 123.
    Spille C, Tholan VP, Straiton B, Johannsen M, Hoffmann M, et al. 2021.. Electrical capacitance volume tomography (ECVT) for characterization of additively manufactured lattice structures (AMLS) in gas-liquid systems. . Fluids 6::321
    [Crossref] [Google Scholar]
  124. 124.
    Ashour MA, Neukäufer J, Sarajlic N, Klein H, Rehfeldt S, et al. 2022.. Flexible 3D-printed test rig for liquid distribution characterization of laboratory-scale packings. . Chem. Ing. Tech. 94::101016
    [Crossref] [Google Scholar]
  125. 125.
    Hamamah ZA, Grützner T. 2022.. Liquid-liquid centrifugal extractors: types and recent applications—a review. . ChemBioEng Rev. 9::286318
    [Crossref] [Google Scholar]
  126. 126.
    Tarancón A, Esposito V, Torrell M, Di Vece M, Son JS, et al. 2022.. 2022 roadmap on 3D printing for energy. . J. Phys. Energy 4::11501
    [Crossref] [Google Scholar]
  127. 127.
    Miramontes E, Jiang EA, Love LJ, Lai C, Sun X, Tsouris C. 2020.. Process intensification of CO2 absorption using a 3D printed intensified packing device. . AIChE J. 66::e16285
    [Crossref] [Google Scholar]
  128. 128.
    Warren Z, Tasso Guaraldo T, Martins AS, Wenk J, Mattia D. 2023.. Photocatalytic foams for water treatment: a systematic review and meta-analysis. . J. Environ. Chem. Eng. 11::109238
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101121-085630
Loading
/content/journals/10.1146/annurev-chembioeng-101121-085630
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error