1932

Abstract

With its multifaceted nature, plant pollen serves not only as a key element in the reproductive cycle of seed plants but also as an influential contributor to environmental, human health, safety, and climate-related concerns. Pollen functions as a carrier of nutrients and organisms and holds a pivotal role in sustaining pollinator populations. Moreover, it is vital in ensuring the safety and quality of our food supply while presenting potential therapeutic applications. Pollen, often referred to as the diamond of the organic world due to its distinctive physical structures and properties, has been underappreciated from a material science and engineering standpoint. We propose adopting a more interdisciplinary and comprehensive approach to its study. Recent groundbreaking research has focused on the development of pollen-based building blocks that transform practically indestructible plant pollen into microgel, paper, and sponge, thereby unveiling numerous potential applications. In this review, we highlight the transformative potential of plant pollen as it is converted into a variety of building blocks, thereby unlocking myriad prospective applications through eco-friendly processing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101121-085959
2024-07-24
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/15/1/annurev-chembioeng-101121-085959.html?itemId=/content/journals/10.1146/annurev-chembioeng-101121-085959&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kearns CA, Inouye DW, Waser NM. 1998.. Endangered mutualisms: the conservation of plant-pollinator interactions. . Annu. Rev. Ecol. Syst. 29::83112
    [Crossref] [Google Scholar]
  2. 2.
    Linhart YB, Grant MC. 1996.. Evolutionary significance of local genetic differentiation in plants. . Annu. Rev. Ecol. Syst. 27::23777
    [Crossref] [Google Scholar]
  3. 3.
    Cho N-J. 2022.. Preparing for tomorrow with materials today. . Mater. Today 61::13
    [Crossref] [Google Scholar]
  4. 4.
    Llnskens HF, Jorde W. 1997.. Pollen as food and medicine—a review. . Econ. Bot. 51::7886
    [Crossref] [Google Scholar]
  5. 5.
    Kroyer G, Hegedus N. 2001.. Evaluation of bioactive properties of pollen extracts as functional dietary food supplement. . Innov. Food Sci. Emerg. Technol. 2::17174
    [Crossref] [Google Scholar]
  6. 6.
    Komosinska-Vassev K, Olczyk P, Kaźmierczak J, Mencner L, Olczyk K. 2015.. Bee pollen: chemical composition and therapeutic application. . Evid. Based Complement. Altern. Med. 2015::297425
    [Crossref] [Google Scholar]
  7. 7.
    Kocot J, Kiełczykowska M, Luchowska-Kocot D, Kurzepa J, Musik I. 2018.. Antioxidant potential of propolis, bee pollen, and royal jelly: possible medical application. . Oxid. Med. Cell. Longev. 2018::7074209
    [Crossref] [Google Scholar]
  8. 8.
    Denisow B, Denisow-Pietrzyk M. 2016.. Biological and therapeutic properties of bee pollen: a review. . J. Sci. Food Agric. 96::43039
    [Crossref] [Google Scholar]
  9. 9.
    Hornick T, Richter A, Harpole WS, Bastl M, Bohlmann S, et al. 2021.. An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals. . Plants People Planet 4::11021
    [Crossref] [Google Scholar]
  10. 10.
    Halbritter H, Ulrich S, Grímsson F, Weber M, Zetter R, et al. 2018.. Pollen morphology and ultrastructure. . See Reference 11 , pp. 3765. Cham, Switz:.: Springer Int. Publ.
  11. 11.
    Halbritter H, Ulrich S, Grímsson F, Weber M, Zetter R, et al., eds. 2018.. Illustrated Pollen Terminology. Cham, Switz:.: Springer Int. Publ. , 2nd ed..
    [Google Scholar]
  12. 12.
    Guiot J, Cramer W. 2016.. Climate change: the 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. . Science 354::46568
    [Crossref] [Google Scholar]
  13. 13.
    Alotaibi SS, Sayed SM, Alosaimi M, Alharthi R, Banjar A, et al. 2020.. Pollen molecular biology: applications in the forensic palynology and future prospects: a review. . Saudi J. Biol. Sci. 27::118590
    [Crossref] [Google Scholar]
  14. 14.
    Edlund AF, Swanson R, Preuss D. 2004.. Pollen and stigma structure and function: the role of diversity in pollination. . Plant Cell 16::S84S97
    [Crossref] [Google Scholar]
  15. 15.
    Mackenzie G, Beckett S, Atkin S, Diego-Taboada A. 2014.. Pollen and spore shells—nature's microcapsules. . In Microencapsulation in the Food Industry, ed. AG Gaonkar, N Vasisht, AR Khare, R Sobel , pp. 28397. San Diego, CA:: Academic
    [Google Scholar]
  16. 16.
    Zhao D, Li Y, Zhang Z, Xu T, Ye C, et al. 2023.. Extraordinary microcarriers derived from spores and pollens. . Mater. Horiz. 10::112139
    [Crossref] [Google Scholar]
  17. 17.
    Wang H, Potroz MG, Jackman JA, Khezri B, Marić T, et al. 2017.. Bioinspired spiky micromotors based on sporopollenin exine capsules. . Adv. Funct. Mater. 27::1702338
    [Crossref] [Google Scholar]
  18. 18.
    Potroz MG, Mundargi RC, Gillissen JJ, Tan E-L, Meker S, et al. 2017.. Plant-based hollow microcapsules for oral delivery applications: toward optimized loading and controlled release. . Adv. Funct. Mater. 27::1700270
    [Crossref] [Google Scholar]
  19. 19.
    Mundargi RC, Potroz MG, Park S, Shirahama H, Lee JH, et al. 2016.. Natural sunflower pollen as a drug delivery vehicle. . Small 12::116773
    [Crossref] [Google Scholar]
  20. 20.
    Zakhireh S, Barar J, Beygi-Khosrowshahi Y, Barzegari A, Omidi Y, Adibkia K. 2022.. Hollow pollen grains as scaffolding building blocks in bone tissue engineering. . BioImpacts 12::18393
    [Google Scholar]
  21. 21.
    Shou X, Yu Y, Wu D, Wang F, Sun W, et al. 2022.. Spiny pollen-based antigen-presenting clusters for promoting T cells expansion. . Chem. Eng. J. 437::135374
    [Crossref] [Google Scholar]
  22. 22.
    Mayorga-Martinez CC, Fojtů M, Vyskočil J, Cho N-J, Pumera M. 2022.. Pollen-based magnetic microrobots are mediated by electrostatic forces to attract, manipulate, and kill cancer cells. . Adv. Funct. Mater. 32::2207272
    [Crossref] [Google Scholar]
  23. 23.
    Wang L, Jackman JA, Ng WB, Cho N-J. 2016.. Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. . Adv. Funct. Mater. 26::862330
    [Crossref] [Google Scholar]
  24. 24.
    Wang L, Ng W, Jackman JA, Cho N-J. 2016.. Graphene-functionalized natural microcapsules: modular building blocks for ultrahigh sensitivity bioelectronic platforms. . Adv. Funct. Mater. 26::2097103
    [Crossref] [Google Scholar]
  25. 25.
    Zhao Z, Hwang Y, Yang Y, Fan T, Song J, et al. 2020.. Actuation and locomotion driven by moisture in paper made with natural pollen. . PNAS 117::871118
    [Crossref] [Google Scholar]
  26. 26.
    Hwang Y, Kim MK, Zhao Z, Kim B, Chang T, et al. 2022.. Plant-based substrate materials for flexible green electronics. . Adv. Mater. Technol. 7::2200446
    [Crossref] [Google Scholar]
  27. 27.
    Hwang Y, Ibrahim MSB, Deng J, Jackman JA, Cho NJ. 2021.. Colloid-mediated fabrication of a 3D pollen sponge for oil remediation applications. . Adv. Funct. Mater. 31::2101091
    [Crossref] [Google Scholar]
  28. 28.
    McClure BA, Franklin-Tong V. 2006.. Gametophytic self-incompatibility: understanding the cellular mechanisms involved in “self” pollen tube inhibition. . Planta 224::23345
    [Crossref] [Google Scholar]
  29. 29.
    Egger M, Mutschlechner S, Wopfner N, Gadermaier G, Briza P, Ferreira F. 2006.. Pollen-food syndromes associated with weed pollinosis: an update from the molecular point of view. . Allergy 61::46176
    [Crossref] [Google Scholar]
  30. 30.
    Asam C, Hofer H, Wolf M, Aglas L, Wallner M. 2015.. Tree pollen allergens—an update from a molecular perspective. . Allergy 70::120111
    [Crossref] [Google Scholar]
  31. 31.
    Shi JX, Cui MH, Yang L, Kim YJ, Zhang DB. 2015.. Genetic and biochemical mechanisms of pollen wall development. . Trends Plant Sci. 20::74153
    [Crossref] [Google Scholar]
  32. 32.
    Ariizumi T, Toriyama K. 2011.. Genetic regulation of sporopollenin synthesis and pollen exine development. . Annu. Rev. Plant Biol. 62::43760
    [Crossref] [Google Scholar]
  33. 33.
    Wiermann R, Gubatz S. 1992.. Pollen wall and sporopollenin. . Int. Rev. Cytol. 140::3572
    [Crossref] [Google Scholar]
  34. 34.
    Dresselhaus T, Franklin-Tong N. 2013.. Male–female crosstalk during pollen germination, tube growth and guidance, and double fertilization. . Mol. Plant 6::101836
    [Crossref] [Google Scholar]
  35. 35.
    Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, et al. 2005.. Pollen limitation of plant reproduction: pattern and process. . Annu. Rev. Ecol. Evol. Syst. 36::46797
    [Crossref] [Google Scholar]
  36. 36.
    Morales CL, Traveset A. 2008.. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. . Crit. Rev. Plant Sci. 27::22138
    [Crossref] [Google Scholar]
  37. 37.
    D'Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, et al. 2007.. Allergenic pollen and pollen allergy in Europe. . Allergy 62::97690
    [Crossref] [Google Scholar]
  38. 38.
    Blackmore S, Wortley AH, Skvarla JJ, Rowley JR. 2007.. Pollen wall development in flowering plants. . New Phytol. 174::48398
    [Crossref] [Google Scholar]
  39. 39.
    Kieliszek M, Piwowarek K, Kot AM, Błażejak S, Chlebowska-Śmigiel A, Wolska I. 2018.. Pollen and bee bread as new health-oriented products: a review. . Trends Food Sci. Technol. 71::17080
    [Crossref] [Google Scholar]
  40. 40.
    Diego-Taboada A, Beckett ST, Atkin SL, Mackenzie G. 2014.. Hollow pollen shells to enhance drug delivery. . Pharmaceutics 6::8096
    [Crossref] [Google Scholar]
  41. 41.
    Sunderland N, Huang B. 1987.. Ultrastructural aspects of pollen dimorphism. . Int. Rev. Cytol. 107::175220
    [Crossref] [Google Scholar]
  42. 42.
    Maric T, Nasir MZM, Rosli NF, Budanović M, Webster RD, et al. 2020.. Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti-cancer drug carrier. . Adv. Funct. Mater. 30::2000112
    [Crossref] [Google Scholar]
  43. 43.
    Potroz MG, Mundargi RC, Park JH, Tan E-L, Cho N-J. 2016.. Extraction of plant-based capsules for microencapsulation applications. . J. Vis. Exp. 2016::54768
    [Google Scholar]
  44. 44.
    Chen S, Shi Q, Jang T, Ibrahim MSB, Deng J, et al. 2021.. Engineering natural pollen grains as multifunctional 3D printing materials. . Adv. Funct. Mater. 31::2106276
    [Crossref] [Google Scholar]
  45. 45.
    Zhao Z, Deng J, Tae H, Ibrahim MS, Suresh S, Cho NJ. 2022.. Recyclable and reusable natural plant-based paper for repeated digital printing and unprinting. . Adv. Mater. 34::2109367
    [Crossref] [Google Scholar]
  46. 46.
    Thakur M, Nanda V. 2020.. Composition and functionality of bee pollen: a review. . Trends Food Sci. Technol. 98::82106
    [Crossref] [Google Scholar]
  47. 47.
    Attia YA, Al-Hanoun A, Tag El-Din AE, Bovera F, Shewika YE. 2011.. Effect of bee pollen levels on productive, reproductive and blood traits of NZW rabbits. . J. Anim. Physiol. Anim. Nutr. 95::294303
    [Crossref] [Google Scholar]
  48. 48.
    McLachlan JS, Clark JS, Manos PS. 2005.. Molecular indicators of tree migration capacity under rapid climate change. . Ecology 86::208898
    [Crossref] [Google Scholar]
  49. 49.
    Cruzan MB, Templeton AR. 2000.. Paleoecology and coalescence: phylogeographic analysis of hypotheses from the fossil record. . Trends Ecol. Evol. 15::49196
    [Crossref] [Google Scholar]
  50. 50.
    Jolly D, Prentice IC, Bonnefille R, Ballouche A, Bengo M, et al. 1998.. Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years. . J. Biogeogr. 25::100727
    [Crossref] [Google Scholar]
  51. 51.
    Mauri A, Davis BAS, Collins PM, Kaplan JO. 2015.. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. . Quat. Sci. Rev. 112::10927
    [Crossref] [Google Scholar]
  52. 52.
    Montali E, Mercuri AM, Trevisan Grandi G, Accorsi CA. 2006.. Towards a “crime pollen calendar”—pollen analysis on corpses throughout one year. . Forensic Sci. Int. 163::21123
    [Crossref] [Google Scholar]
  53. 53.
    Riding JB, Rawlins BG, Coley KH. 2007.. Changes in soil pollen assemblages on footwear worn at different sites. . Palynology 31::13551
    [Crossref] [Google Scholar]
  54. 54.
    Bryant VM. 2013.. Use of quaternary proxies in forensic science | analytical techniques in forensic palynology. . In Encyclopedia of Quaternary Science, ed. SA Elias, CJ Mock , pp. 55666. Amsterdam:: Elsevier. , 2nd ed..
    [Google Scholar]
  55. 55.
    Szibor R, Schubert C, Schöning R, Krause D, Wendt U. 1998.. Pollen analysis reveals murder season. . Nature 395::44950
    [Crossref] [Google Scholar]
  56. 56.
    Bell KL, de Vere N, Keller A, Richardson RT, Gous A, et al. 2016.. Pollen DNA barcoding: current applications and future prospects. . Genome 59::62940
    [Crossref] [Google Scholar]
  57. 57.
    Galimberti A, De Mattia F, Bruni I, Scaccabarozzi D, Sandionigi A, et al. 2014.. A DNA barcoding approach to characterize pollen collected by honeybees. . PLOS ONE 9::e109363
    [Crossref] [Google Scholar]
  58. 58.
    Damialis A, Kaimakamis E, Konoglou M, Akritidis I, Traidl-Hoffmann C, Gioulekas D. 2017.. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: How high can they fly?. Sci. Rep. 7::44535
    [Crossref] [Google Scholar]
  59. 59.
    Burd M. 1994.. Bateman's principle and plant reproduction: the role of pollen limitation in fruit and seed set. . Bot. Rev. 60::83139
    [Crossref] [Google Scholar]
  60. 60.
    Fan T-F, Park S, Shi Q, Zhang X, Liu Q, et al. 2020.. Transformation of hard pollen into soft matter. . Nat. Commun. 11::1449
    [Crossref] [Google Scholar]
  61. 61.
    Barrier S, Diego-Taboada A, Thomasson MJ, Madden L, Pointon JC, et al. 2011.. Viability of plant spore exine capsules for microencapsulation. . J. Mater. Chem. 21::97581
    [Crossref] [Google Scholar]
  62. 62.
    Atwe SU, Ma Y, Gill HS. 2014.. Pollen grains for oral vaccination. . J. Control. Release 194::4552
    [Crossref] [Google Scholar]
  63. 63.
    Tan E-L, Potroz MG, Ferracci G, Jackman JA, Jung H, et al. 2018.. Light-induced surface modification of natural plant microparticles: toward colloidal science and cellular adhesion applications. . Adv. Funct. Mater. 28::1707568
    [Crossref] [Google Scholar]
  64. 64.
    Prabhakar AK, Potroz MG, Tan E-L, Jung H, Park JH, Cho N-J. 2018.. Macromolecular microencapsulation using pine pollen: loading optimization and controlled release with natural materials. . ACS Appl. Mater. Interfaces 10::2842839
    [Crossref] [Google Scholar]
  65. 65.
    Mundargi RC, Potroz MG, Park JH, Seo J, Tan EL, et al. 2016.. Eco-friendly streamlined process for sporopollenin exine capsule extraction. . Sci. Rep. 6::19960
    [Crossref] [Google Scholar]
  66. 66.
    Mundargi RC, Potroz MG, Park JH, Seo J, Lee JH, Cho N-J. 2016.. Extraction of sporopollenin exine capsules from sunflower pollen grains. . RSC Adv. 6::1653339
    [Crossref] [Google Scholar]
  67. 67.
    Gonzalez-Cruz P, Uddin MJ, Atwe SU, Abidi N, Gill HS. 2018.. Chemical treatment method for obtaining clean and intact pollen shells of different species. . ACS Biomater. Sci. Eng. 4::231929
    [Crossref] [Google Scholar]
  68. 68.
    Lale SV, Gill HS. 2018.. Pollen grains as a novel microcarrier for oral delivery of proteins. . Int. J. Pharm. 552::35259
    [Crossref] [Google Scholar]
  69. 69.
    Uddin MJ, Gonzalez-Cruz P, Warzywoda J, Gill HS. 2020.. Sporopollenin spikes augment antigen-specific immune response and generate long-lived humoral immunity. . Adv. Therap. 3::2000102
    [Crossref] [Google Scholar]
  70. 70.
    Park S, Chin H, Hwang Y, Fan T-F, Cho N-J. 2020.. A facile approach to patterning pollen microparticles for in situ imaging. . Appl. Mater. Today 20::100702
    [Crossref] [Google Scholar]
  71. 71.
    Fan T-F, Hwang Y, Ibrahim MS, Ferracci G, Cho N-J. 2020.. Influence of chemical and physical change of pollen microgels on swelling/de-swelling behavior. . Macromol. Rapid Commun. 41::2000155
    [Crossref] [Google Scholar]
  72. 72.
    Sun M, Fan X, Meng X, Song J, Chen W, et al. 2019.. Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. . Nanoscale 11::1838292
    [Crossref] [Google Scholar]
  73. 73.
    Seo J, Wang L, Ng W, Cho N-J. 2016.. Preparation of highly monodisperse electroactive pollen biocomposites. . ChemNanoMat 2::41418
    [Crossref] [Google Scholar]
  74. 74.
    Zhang Y, Zhang L, Yang L, Vong CI, Chan KF, et al. 2019.. Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of C. diff toxins. . Sci. Adv. 5::eaau9650
    [Crossref] [Google Scholar]
  75. 75.
    Mackenzie G, Boa AN, Diego-Taboada A, Atkin SL, Sathyapalan T. 2015.. Sporopollenin, the least known yet toughest natural biopolymer. . Front. Mater. 2::66
    [Crossref] [Google Scholar]
  76. 76.
    Mackenzie G, Shaw G. 1980.. Sporopollenin. . Int. J. Pept. Protein Res. 15::298300
    [Crossref] [Google Scholar]
  77. 77.
    Adamson R, Gregson S, Shaw G. 1983.. New applications of sporopollenin as a solid phase support for peptide synthesis and the use of sonic agitation. . Int. J. Pept. Protein Res. 22::56064
    [Crossref] [Google Scholar]
  78. 78.
    Pehlivan E, Yildiz S. 1988.. Modified sporopollenin as a novel anion, cation and ligand exchange medium. . Anal. Lett. 21::297309
    [Crossref] [Google Scholar]
  79. 79.
    Shaw G, Sykes M, Humble RW, Mackenzie G, Marsden D, Pehlivan E. 1988.. The use of modified sporopollenin from Lycopodium clavatum as a novel ion- or ligand-exchange medium. . React. Polym. 9::21117
    [Google Scholar]
  80. 80.
    Akyuz L, Sargin I, Kaya M, Ceter T, Akata I. 2017.. A new pollen-derived microcarrier for pantoprazole delivery. . Mater. Sci. Eng. C 71::93742
    [Crossref] [Google Scholar]
  81. 81.
    Hamad SA, Dyab AFK, Stoyanov SD, Paunov VN. 2011.. Encapsulation of living cells into sporopollenin microcapsules. . J. Mater. Chem. 21::1801823
    [Crossref] [Google Scholar]
  82. 82.
    Diego-Taboada A, Maillet L, Banoub JH, Lorch M, Rigby AS, et al. 2013.. Protein free microcapsules obtained from plant spores as a model for drug delivery: ibuprofen encapsulation, release and taste masking. . J. Mater. Chem. B 1::70713
    [Crossref] [Google Scholar]
  83. 83.
    Mundargi RC, Tan E-L, Seo J, Cho N-J. 2016.. Encapsulation and controlled release formulations of 5-fluorouracil from natural Lycopodium clavatum spores. . J. Ind. Eng. Chem. 36::1028
    [Crossref] [Google Scholar]
  84. 84.
    Lorch M, Thomasson MJ, Diego-Taboada A, Barrier S, Atkin SL, et al. 2009.. MRI contrast agent delivery using spore capsules: controlled release in blood plasma. . Chem. Commun. 2009::644244
    [Crossref] [Google Scholar]
  85. 85.
    Fan T-F, Hwang Y, Potroz MG, Lau K-L, Tan E-L, et al. 2020.. Degradation of the sporopollenin exine capsules (SECs) in human plasma. . Appl. Mater. Today 19::100594
    [Crossref] [Google Scholar]
  86. 86.
    Paunov VN, Mackenzie G, Stoyanov SD. 2007.. Sporopollenin micro-reactors for in-situ preparation, encapsulation and targeted delivery of active components. . J. Mater. Chem. 17::60912
    [Crossref] [Google Scholar]
  87. 87.
    Deng Z, Pei Y, Wang S, Zhou B, Li J, et al. 2019.. Carboxymethylpachymaran entrapped plant-based hollow microcapsules for delivery and stabilization of β-galactosidase. . Food Funct. 10::478291
    [Crossref] [Google Scholar]
  88. 88.
    Diego-Taboada A, Sathyapalan T, Courts F, Lorch M, Almutairi F, et al. 2022.. Spore exines increase vitamin D clinical bioavailability by mucoadhesion and bile triggered release. . J. Control. Release 350::24455
    [Crossref] [Google Scholar]
  89. 89.
    Yang Y, Zhang Q, Zhang J, Chen A, Chen Y, et al. 2021.. Natural pollen extract for photothermal therapy. . Mater. Des. 202::109573
    [Crossref] [Google Scholar]
  90. 90.
    Sargin I, Akyuz L, Kaya M, Tan G, Ceter T, et al. 2017.. Controlled release and anti-proliferative effect of imatinib mesylate loaded sporopollenin microcapsules extracted from pollens of Betula pendula. . Int. J. Biol. Macromol. 105::74956
    [Crossref] [Google Scholar]
  91. 91.
    Uddin MJ, Gill HS. 2017.. Ragweed pollen as an oral vaccine delivery system: mechanistic insights. . J. Control. Release 268::41626
    [Crossref] [Google Scholar]
  92. 92.
    Jiang W, Han L, Yang L, Xu T, He J, et al. 2020.. Natural fish trap-like nanocage for label-free capture of circulating tumor cells. . Adv. Sci. 7::2002259
    [Crossref] [Google Scholar]
  93. 93.
    Wang L, Jackman JA, Tan E-L, Park JH, Potroz MG, et al. 2017.. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. . Nano Energy 36::3845
    [Crossref] [Google Scholar]
  94. 94.
    Sun M, Chen W, Fan X, Tian C, Sun L, Xie H. 2020.. Cooperative recyclable magnetic microsubmarines for oil and microplastics removal from water. . Appl. Mater. Today 20::100682
    [Crossref] [Google Scholar]
  95. 95.
    Zhang Y, Yan K, Ji F, Zhang L. 2018.. Enhanced removal of toxic heavy metals using swarming biohybrid adsorbents. . Adv. Funct. Mater. 28::1806340
    [Crossref] [Google Scholar]
  96. 96.
    Wakil A, Mackenzie G, Diego-Taboada A, Bell JG, Atkin SL. 2010.. Enhanced bioavailability of eicosapentaenoic acid from fish oil after encapsulation within plant spore exines as microcapsules. . Lipids 45::64549
    [Crossref] [Google Scholar]
  97. 97.
    Diego-Taboada A, Cousson P, Raynaud E, Huang Y, Lorch M, et al. 2012.. Sequestration of edible oil from emulsions using new single and double layered microcapsules from plant spores. . J. Mater. Chem. 22::976773
    [Crossref] [Google Scholar]
  98. 98.
    Shirani M, Kamboh MA, Akbari-adergani B, Akbari A, Sadia Arain S, Rashidi Nodeh H. 2021.. Sonodecoration of magnetic phosphonated-functionalized sporopollenin as a novel green nanocomposite for stir bar sorptive dispersive microextraction of melamine in milk and milk-based food products. . Food Chem. 341::128460
    [Crossref] [Google Scholar]
  99. 99.
    Lee H-C, Heil T, Sun J-K, Schmidt BVKJ. 2019.. Dispersed nano-MOFs via a stimuli-responsive biohybrid-system with enhanced photocatalytic performance. . Mater. Horizons 6::8029
    [Crossref] [Google Scholar]
  100. 100.
    Barrier S, Rigby AS, Diego-Taboada A, Thomasson MJ, Mackenzie G, Atkin SL. 2010.. Sporopollenin exines: a novel natural taste masking material. . LWT 43::7376
    [Crossref] [Google Scholar]
  101. 101.
    Bosch M, Cheung AY, Hepler PK. 2005.. Pectin methylesterase, a regulator of pollen tube growth. . Plant Physiol. 138::133446
    [Crossref] [Google Scholar]
  102. 102.
    Shi Q, Ibrahim MSB, Zhang X, Hwang Y, Chin H, et al. 2022.. Unraveling the distinct germination processes of sporopollenin-based pollen grains and spores through morphological analyses upon natural nano-architectonics process. . Appl. Mater. Today 27::101471
    [Crossref] [Google Scholar]
  103. 103.
    Mani MP, Sadia M, Jaganathan SK, Khudzari AZ, Supriyanto E, et al. 2022.. A review on 3D printing in tissue engineering applications. . J. Polym. Eng. 42::24365
    [Crossref] [Google Scholar]
  104. 104.
    Zhao Z, Kumar J, Hwang Y, Deng J, Ibrahim MSB, et al. 2021.. Digital printing of shape-morphing natural materials. . PNAS 118::e2113715118
    [Crossref] [Google Scholar]
  105. 105.
    Hwang Y, Sadhu A, Shin S, Leow SW, Zhao Z, et al. 2021.. An intrinsically micro-/nanostructured pollen substrate with tunable optical properties for optoelectronic applications. . Adv. Mater. 33::e2100566
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101121-085959
Loading
/content/journals/10.1146/annurev-chembioeng-101121-085959
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error