1932

Abstract

Electrochemical synthesis of organic chemical commodities provides an alternative to conventional thermochemical manufacturing and enables the direct use of renewable electricity to reduce greenhouse gas emissions from the chemical industry. We discuss electrochemical synthesis approaches that use abundant carbon feedstocks for the production of the largest petrochemical precursors and basic organic chemical products: light olefins, olefin oxidation derivatives, aromatics, and methanol. First, we identify feasible routes for the electrochemical production of each commodity while considering the reaction thermodynamics, available feedstocks, and competing thermochemical processes. Next, we summarize successful catalysis and reaction engineering approaches to overcome technological challenges that prevent electrochemical routes from operating at high production rates, selectivity, stability, and energy conversion efficiency. Finally, we provide an outlook on the strategies that must be implemented to achieve large-scale electrochemical manufacturing of major organic chemical commodities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101121-090840
2023-06-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/14/1/annurev-chembioeng-101121-090840.html?itemId=/content/journals/10.1146/annurev-chembioeng-101121-090840&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    US Dep. Energy 2018. Manufacturing energy and carbon footprints report, 2018 Rep. Adv. Manuf. Off., US Dep. Energy. Washington, DC: https://www.energy.gov/sites/default/files/2021-12/2018_mecs_chemicals_energy_carbon_footprint_0.pdf
  2. 2.
    Mallapragada D, Dvorkin Y, Modestino M, Esposito D, Smith W et al. 2023. Decarbonization of the chemical industry through electrification: barriers and opportunities. Joule 723–41
  3. 3.
    Biddinger EJ, Modestino MA. 2020. Electro-organic syntheses for green chemical manufacturing. Electrochem. Soc. Interface 29:43–47
    [Google Scholar]
  4. 4.
    Schiffer ZJ, Manthiram K. 2017. Electrification and decarbonization of the chemical industry. Joule 1:10–14
    [Google Scholar]
  5. 5.
    De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. 2019. What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science 364:eaav3506
    [Google Scholar]
  6. 6.
    Blanco DE, Modestino MA. 2019. Organic electrosynthesis for sustainable chemical manufacturing. Trends Chem. 1:8–10
    [Google Scholar]
  7. 7.
    Botte GG. 2014. Electrochemical manufacturing in the chemical industry. Electrochem. Soc. Interface 23:49–55
    [Google Scholar]
  8. 8.
    US Dep. Energy 2015. Bandwidth study on energy use and potential energy saving opportunities in U.S. chemical manufacturing Rep. Energy Effic. Renew. Energy, US Dep. Energy Washington, DC: https://www.energy.gov/sites/prod/files/2015/08/f26/chemical_bandwidth_report.pdf
  9. 9.
    Amghizar I, Dedeyne JN, Brown DJ, Marin GB, Van Geem KM. 2020. Sustainable innovations in steam cracking: CO2 neutral olefin production. React. Chem. Eng. 5:239–57
    [Google Scholar]
  10. 10.
    Ghanta M, Fahey D, Subramaniam B. 2013. Environmental impacts of ethylene production from diverse feedstocks and energy sources. Appl. Petrochem. Res. 4:167–79
    [Google Scholar]
  11. 11.
    Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK et al. 2019. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119:7610–72
    [Google Scholar]
  12. 12.
    Zhang Z, Bian L, Tian H, Liu Y, Bando Y et al. 2022. Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol. Small 18:e2107450
    [Google Scholar]
  13. 13.
    Pappijn CAR, Ruitenbeek M, Reyniers M-F, Van Geem KM. 2020. Challenges and opportunities of carbon capture and utilization: electrochemical conversion of CO2 to ethylene. Front. Energy Res. 8:557466
    [Google Scholar]
  14. 14.
    Xia R, Overa S, Jiao F. 2022. Emerging electrochemical processes to decarbonize the chemical industry. JACS Au 2:1054–70
    [Google Scholar]
  15. 15.
    Hori Y, Kikuchi K, Murata A, Suzuki S. 1986. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 15:897–98
    [Google Scholar]
  16. 16.
    Hori Y, Murata A, Takahashi R, Suzuki S. 1988. Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J. Chem. Soc. Chem. Commun. 1988:17–19
    [Google Scholar]
  17. 17.
    Roberts FS, Kuhl KP, Nilsson A. 2015. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54:5179–82
    [Google Scholar]
  18. 18.
    Reller C, Krause R, Volkova E, Schmid B, Neubauer S et al. 2017. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 7:1602114
    [Google Scholar]
  19. 19.
    Dinh C-T, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM et al. 2018. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360:783–87
    [Google Scholar]
  20. 20.
    Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J. 2017. Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18:3266–73
    [Google Scholar]
  21. 21.
    Kortlever R, Shen J, Schouten KJ, Calle-Vallejo F, Koper MTM. 2015. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6:4073–82
    [Google Scholar]
  22. 22.
    Hori Y, Murata A, Ito S-y, Yoshinami Y, Koga O. 1989. Nickel and iron modified copper electrode for electroreduction of CO2 by in-situ electrodeposition. Chem. Lett. 18:1567–70
    [Google Scholar]
  23. 23.
    Kim D, Resasco J, Yu Y, Asiri AM, Yang P. 2014. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5:4948
    [Google Scholar]
  24. 24.
    Ye W, Guo X, Ma T. 2021. A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products. Chem. Eng. J. 414:128825
    [Google Scholar]
  25. 25.
    Akira M, Yoshio H. 1991. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 64:123–27
    [Google Scholar]
  26. 26.
    Hori Y, Takahashi R, Yoshinami Y, Murata A. 1997. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101:7075–81
    [Google Scholar]
  27. 27.
    Hori Y, Murata A, Takahashi R, Suzuki S. 1987. Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J. Am. Chem. Soc. 109:5022–23
    [Google Scholar]
  28. 28.
    Chen X, Chen J, Alghoraibi NM, Henckel DA, Zhang R et al. 2020. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4:20–27
    [Google Scholar]
  29. 29.
    Li F, Thevenon A, Rosas-Hernández A, Wang Z, Li Y et al. 2020. Molecular tuning of CO2-to-ethylene conversion. Nature 577:509–13
    [Google Scholar]
  30. 30.
    Kim C, Bui JC, Luo X, Cooper JK, Kusoglu A et al. 2021. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6:1026–34
    [Google Scholar]
  31. 31.
    Kim C, Weng L-C, Bell AT. 2020. Impact of pulsed electrochemical reduction of CO2 on the formation of C2+ products over Cu. ACS Catal. 10:12403–13
    [Google Scholar]
  32. 32.
    De Gregorio GL, Burdyny T, Loiudice A, Iyengar P, Smith WA, Buonsanti R. 2020. Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 10:4854–62
    [Google Scholar]
  33. 33.
    Lum Y, Yue B, Lobaccaro P, Bell AT, Ager JW. 2017. Optimizing C–C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J. Phys. Chem. C 121:14191–203
    [Google Scholar]
  34. 34.
    Hashiba H, Yotsuhashi S, Deguchi M, Yamada Y. 2016. Systematic analysis of electrochemical CO2 reduction with various reaction parameters using combinatorial reactors. ACS Comb. Sci. 18:203–8
    [Google Scholar]
  35. 35.
    Burdyny T, Smith WA. 2019. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12:1442–53
    [Google Scholar]
  36. 36.
    García de Arquer FP, Dinh C-T, Ozden A, Wicks J, McCallum C et al. 2020. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367:661–66
    [Google Scholar]
  37. 37.
    Jouny M, Hutchings GS, Jiao F. 2019. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2:1062–70
    [Google Scholar]
  38. 38.
    Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP. 2012. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 63:541–69
    [Google Scholar]
  39. 39.
    Vasileff A, Zhi X, Xu C, Ge L, Jiao Y et al. 2019. Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys. ACS Catal. 9:9411–17
    [Google Scholar]
  40. 40.
    Wang L, Nitopi SA, Bertheussen E, Orazov M, Morales-Guio CG et al. 2018. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8:7445–54
    [Google Scholar]
  41. 41.
    Li CW, Ciston J, Kanan MW. 2014. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508:504–7
    [Google Scholar]
  42. 42.
    Bertheussen E, Verdaguer-Casadevall A, Ravasio D, Montoya JH, Trimarco DB et al. 2016. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper. Angew. Chem. Int. Ed. 55:1450–54
    [Google Scholar]
  43. 43.
    Han L, Zhou W, Xiang C. 2018. High-rate electrochemical reduction of carbon monoxide to ethylene using Cu-nanoparticle-based gas diffusion electrodes. ACS Energy Lett. 3:855–60
    [Google Scholar]
  44. 44.
    Li J, Wang Z, McCallum C, Xu Y, Li F et al. 2019. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2:1124–31
    [Google Scholar]
  45. 45.
    Ozden A, Wang Y, Li F, Luo M, Sisler J et al. 2021. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5:706–19
    [Google Scholar]
  46. 46.
    Romero Cuellar NS, Scherer C, Kaçkar B, Eisenreich W, Huber C et al. 2020. Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities. J. CO2 Util. 36:263–75
    [Google Scholar]
  47. 47.
    Gurudayal Perone D, Malani S, Lum Y, Haussener S, Ager JW. 2019. Sequential cascade electrocatalytic conversion of carbon dioxide to C–C coupled products. ACS Appl. Energy Mater. 2:4551–59
    [Google Scholar]
  48. 48.
    Zhu P-X, Wang L-C, Stewart F, Ding D, Matz J et al. 2021. Direct conversion of natural gases in solid oxide cells: a mini-review. Electrochem. Commun. 128:107068
    [Google Scholar]
  49. 49.
    Wu W, Wang L-C, Hu H, Bian W, Gomez JY et al. 2021. Electrochemically engineered, highly energy-efficient conversion of ethane to ethylene and hydrogen below 550°C in a protonic ceramic electrochemical cell. ACS Catal. 11:12194–202
    [Google Scholar]
  50. 50.
    Zhang X, Ye L, Li H, Chen F, Xie K 2020. Electrochemical dehydrogenation of ethane to ethylene in a solid oxide electrolyzer. ACS Catal. 10:3505–13
    [Google Scholar]
  51. 51.
    Zhu C, Hou S, Hu X, Lu J, Chen F, Xie K 2019. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer. Nat. Commun. 10:1173
    [Google Scholar]
  52. 52.
    Gunduz S, Dogu D, Deka DJ, Meyer KE, Fuller A et al. 2019. Application of solid electrolyte cells in ion pump and electrolyzer modes to promote catalytic reactions: an overview. Catal. Today 323:3–13
    [Google Scholar]
  53. 53.
    Metcalfe IS. 1994. Stabilised-zirconia solid electrolyte membranes in catalysis. Catal. Today 20:283–93
    [Google Scholar]
  54. 54.
    Skinner SJ, Kilner JA. 2003. Oxygen ion conductors. Mater. Today 6:30–37
    [Google Scholar]
  55. 55.
    Duan C, Huang J, Sullivan N, O'Hayre R. 2020. Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 7:011314
    [Google Scholar]
  56. 56.
    Duan C, Kee RJ, Zhu H, Karakaya C, Chen Y et al. 2018. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557:217–22
    [Google Scholar]
  57. 57.
    Ding D, Zhang Y, Wu W, Chen D, Liu M, He T. 2018. A novel low-thermal-budget approach for the co-production of ethylene and hydrogen via the electrochemical non-oxidative deprotonation of ethane. Energy Environ. Sci. 11:1710–16
    [Google Scholar]
  58. 58.
    Wu W, Hu H, Ding D. 2021. Low-temperature ethylene production for indirect electrification in chemical production. Cell Rep. Phys. Sci. 2:100405
    [Google Scholar]
  59. 59.
    Lin J-Y, Shao L, Si F-Z, Liu S-B, Fu X-Z, Luo J-L. 2018. Co2CrO4 nanopowders as an anode catalyst for simultaneous conversion of ethane to ethylene and power in proton-conducting fuel cell reactors. J. Phys. Chem. C 122:4165–71
    [Google Scholar]
  60. 60.
    Zavyalova U, Holena M, Schlögl R, Baerns M. 2011. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem. 3:1935–47
    [Google Scholar]
  61. 61.
    Holzhäuser FJ, Mensah JB, Palkovits R. 2020. (Non-)Kolbe electrolysis in biomass valorization—a discussion of potential applications. Green Chem. 22:286–301
    [Google Scholar]
  62. 62.
    Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD. 2011. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A 407:1–19
    [Google Scholar]
  63. 63.
    Iglesias J, Martínez-Salazar I, Maireles-Torres P, Martin Alonso D, Mariscal R, López-Granados M 2020. Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers. Chem. Soc. Rev. 49:5704–71
    [Google Scholar]
  64. 64.
    Andreev VN, Grinberg VA, Dedov AG, Loktev AS, Moiseev II, Tsivadze AY. 2013. Electrocatalytic biomass conversion into petrochemicals. Review. Prot. Metals Phys. Chem. Surf. 49:32–39
    [Google Scholar]
  65. 65.
    Wiebe A, Gieshoff T, Mohle S, Rodrigo E, Zirbes M, Waldvogel SR 2018. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57:5594–619
    [Google Scholar]
  66. 66.
    Qiu Y, Lopez-Ruiz JA, Sanyal U, Andrews E, Gutiérrez OY, Holladay JD. 2020. Anodic electrocatalytic conversion of carboxylic acids on thin films of RuO2, IrO2, and Pt. Appl. Catal. B 277:119277
    [Google Scholar]
  67. 67.
    Qiu Y, Lopez-Ruiz JA, Zhu G, Engelhard MH, Gutiérrez OY, Holladay JD. 2022. Electrocatalytic decarboxylation of carboxylic acids over RuO2 and Pt nanoparticles. Appl. Catal. B 305:121060
    [Google Scholar]
  68. 68.
    Kapałka A, Lanova B, Baltruschat H, Fóti G, Comninellis C. 2008. DEMS study of the acetic acid oxidation on boron-doped diamond eelectrode. J. Electrochem. Soc. 155:E96
    [Google Scholar]
  69. 69.
    Liu S, Govindarajan N, Prats H, Chan K 2022. Understanding the reaction mechanism of Kolbe electrolysis on Pt anodes. Chem. Catal. 2:1100–13
    [Google Scholar]
  70. 70.
    Schäfer H-J. 1990. Recent contributions of Kolbe electrolysis to organic synthesis. Electrochemistry IV: Topics in Current Chemistry E Steckhan pp.91–151. Berlin, Heidelberg: Springer
    [Google Scholar]
  71. 71.
    Pereira GAG, Perez JR, Carazzolle MF, de Castro Morschbacker ALR, Roza L, dos Santos Andrade MH. 2013. Method for the production of olefins, an olefin, a polyolefin, and use of the polyolefin. US Patent No. 20130203953A1
  72. 72.
    Meyers J, Mensah JB, Holzhäuser FJ, Omari A, Blesken CC et al. 2019. Electrochemical conversion of a bio-derivable hydroxy acid to a drop-in oxygenate diesel fuel. Energy Environ. Sci. 12:2406–11
    [Google Scholar]
  73. 73.
    Creusen G, Holzhäuser FJ, Artz J, Palkovits S, Palkovits R. 2018. Producing widespread monomers from biomass using economical carbon and ruthenium–titanium dioxide electrocatalysts. ACS Sustain. Chem. Eng. 6:17108–13
    [Google Scholar]
  74. 74.
    Levy P, Sanderson J, Kispert R, Wise D. 1981. Biorefining of biomass to liquid fuels and organic chemicals. Enzyme Microb. Technol. 3:207–15
    [Google Scholar]
  75. 75.
    Int. Energy Agency 2006. Energy technology perspectives 2006 Rep. Int. Energy Agency Paris: https://www.iea.org/reports/energy-technology-perspectives-2006
  76. 76.
    Nexant Inc 2007. Benzene/Toluene Rep. PERP 06/07-6 Nexant Inc. London:
  77. 77.
    Wu W, Gaffney A, Ding D. 2020. Electrochemical conversion of natural gas to value added chemicals. Direct Natural Gas Conversion to Value-Added Chemicals J Hu, D Shekhawat 1–24. Boca Raton, FL: CRC Press
    [Google Scholar]
  78. 78.
    Kosinov N, Hensen EJM. 2020. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization. Adv. Mater. 32:e2002565
    [Google Scholar]
  79. 79.
    Gao J, Zheng Y, Jehng J-M, Tang Y, Wachs IE, Podkolzin SG. 2015. Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science 348:686–90
    [Google Scholar]
  80. 80.
    Tempelman CHL, Hensen EJM. 2015. On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction. Appl. Catal. B 176–77:731–39
    [Google Scholar]
  81. 81.
    Vourros A, Kyriakou V, Garagounis I, Vasileiou E, Stoukides M. 2017. Chemical reactors with high temperature proton conductors as a main component: progress in the past decade. Solid State Ion. 306:76–81
    [Google Scholar]
  82. 82.
    Morejudo SH, Zanón R, Escolástico S, Yuste-Tirados I, Malerød-Fjeld H et al. 2016. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353:563–66
    [Google Scholar]
  83. 83.
    Biswas R, Uellendahl H, Ahring BK. 2015. Wet explosion: a universal and efficient pretreatment process for lignocellulosic biorefineries. BioEnergy Res 8:1101–16
    [Google Scholar]
  84. 84.
    Garedew M, Lin F, Song B, DeWinter TM, Jackson JE et al. 2020. Greener routes to biomass waste valorization: lignin transformation through electrocatalysis for renewable chemicals and fuels production. ChemSusChem 13:4214–37
    [Google Scholar]
  85. 85.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110:3552–99
    [Google Scholar]
  86. 86.
    Gosselink RJA, de Jong E, Guran B, Abächerli A. 2004. Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind. Crops. Prod. 20:121–29
    [Google Scholar]
  87. 87.
    Zhang Z, Song J, Han B. 2017. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev. 117:6834–80
    [Google Scholar]
  88. 88.
    Garedew M, Lam CH, Petitjean L, Huang S, Song B et al. 2021. Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green Chem. 23:2868–99
    [Google Scholar]
  89. 89.
    Du X, Zhang H, Sullivan KP, Gogoi P, Deng Y. 2020. Electrochemical lignin conversion. ChemSusChem 13:4318–43
    [Google Scholar]
  90. 90.
    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W 2010. Lignin biosynthesis and structure. Plant Physiol. 153:895–905
    [Google Scholar]
  91. 91.
    Chioccara F, Poli S, Rindone B, Pilati T, Brunow G et al. 1993. Regio- and diastereo-selective synthesis of dimeric lignans using oxidative coupling. Acta Chem. Scand. 47:610–16
    [Google Scholar]
  92. 92.
    Mahdavi B, Lafrance A, Martel A, Lessard J, Brossard L. 1997. Electrocatalytic hydrogenolysis of lignin model dimers at Raney nickel electrodes. J. Appl. Electrochem. 27:605–11
    [Google Scholar]
  93. 93.
    Wu WB, Huang JM. 2014. Electrochemical cleavage of aryl ethers promoted by sodium borohydride. J. Org. Chem. 79:10189–95
    [Google Scholar]
  94. 94.
    Lan C, Fan H, Shang Y, Shen D, Li G. 2020. Electrochemically catalyzed conversion of cornstalk lignin to aromatic compounds: an integrated process of anodic oxidation of a Pb/PbO2 electrode and hydrogenation of a nickel cathode in sodium hydroxide solution. Sustain. Energy Fuels 4:1828–36
    [Google Scholar]
  95. 95.
    Hernández Carucci JR, Halonen V, Eränen K, Wärnå J, Ojala S et al. 2010. Ethylene oxide formation in a microreactor: from qualitative kinetics to detailed modeling. Ind. Eng. Chem. Res. 49:10897–907
    [Google Scholar]
  96. 96.
    Özbek MO, van Santen RA. 2013. The mechanism of ethylene epoxidation catalysis. Catal. Lett. 143:131–41
    [Google Scholar]
  97. 97.
    Dahms H, Bockris JOM. 1964. The relative electrocatalytic activity of noble metals in the oxidation of ethylene. J. Electrochem. Soc. 111:728
    [Google Scholar]
  98. 98.
    Jirkovsky JS, Busch M, Ahlberg E, Panas I, Krtil P. 2011. Switching on the electrocatalytic ethene epoxidation on nanocrystalline RuO2. J. Am. Chem. Soc. 133:5882–92
    [Google Scholar]
  99. 99.
    Leow WR, Lum Y, Ozden A, Wang Y, Nam D-H et al. 2020. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368:1228–33
    [Google Scholar]
  100. 100.
    Barecka MH, Ager JW, Lapkin AA. 2021. Economically viable CO2 electroreduction embedded within ethylene oxide manufacturing. Energy Environ. Sci. 14:1530–43
    [Google Scholar]
  101. 101.
    Jin K, Maalouf JH, Lazouski N, Corbin N, Yang D, Manthiram K 2019. Epoxidation of cyclooctene using water as the oxygen atom source at manganese oxide electrocatalysts. J. Am. Chem. Soc. 141:6413–18
    [Google Scholar]
  102. 102.
    Rebsdat S, Mayer D. 2000. Ethylene oxide. Ullmann's Encyclopedia of Industrial Chemistry Hoboken, NJ: Wiley
    [Google Scholar]
  103. 103.
    Lundin A, Panas I, Ahlberg E. 2007. A mechanistic investigation of ethylene oxide hydrolysis to ethanediol. J. Phys. Chem. A 111:9087–92
    [Google Scholar]
  104. 104.
    Muniz Filho RCD, Alves de Sousa SA, da Silva Pereira F, Castro Ferreira MM. 2010. Theoretical study of acid-catalyzed hydrolysis of epoxides. J. Phys. Chem. A 114:5187–94
    [Google Scholar]
  105. 105.
    Lum Y, Huang JE, Wang Z, Luo M, Nam D-H et al. 2020. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nat. Catal. 3:14–22
    [Google Scholar]
  106. 106.
    Khatib SJ, Oyama ST. 2015. Direct oxidation of propylene to propylene oxide with molecular oxygen: a review. Catal. Rev. 57:306–44
    [Google Scholar]
  107. 107.
    Speight JG. 2019. Handbook of Petrochemical Processes Boca Raton, FL: CRC Press
  108. 108.
    Ghanta M, Ruddy T, Fahey D, Busch D, Subramaniam B. 2012. Is the liquid-phase H2O2-based ethylene oxide process more economical and greener than the gas-phase O2-based silver-catalyzed process?. Ind. Eng. Chem. Res. 52:18–29
    [Google Scholar]
  109. 109.
    Holbrook L, Wise H. 1975. Electrooxidation of olefins at a silver electrode. J. Catal. 38:294–98
    [Google Scholar]
  110. 110.
    Stafford GR. 1987. The electrogenerative partial oxidation of propylene. Electrochim. Acta 32:1137–43
    [Google Scholar]
  111. 111.
    Otsuka K, Shimizu Y, Yamanaka I, Komatsu T. 1989. Wacker type and π-allyl type oxidations of propylene controlled by fuel cell system in the gas phase. Catal. Lett. 3:365–69
    [Google Scholar]
  112. 112.
    Winiwarter A, Silvioli L, Scott SB, Enemark-Rasmussen K, Sariç M et al. 2019. Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium. Energy Environ. Sci. 12:1055–67
    [Google Scholar]
  113. 113.
    Winiwarter A, Boyd MJ, Scott SB, Higgins DC, Seger B et al. 2021. CO as a probe molecule to study surface adsorbates during electrochemical oxidation of propene. ChemElectroChem 8:250–56
    [Google Scholar]
  114. 114.
    Li H, Abraham CS, Anand M, Cao A, Norskov JK. 2022. Opportunities and challenges in electrolytic propylene epoxidation. J. Phys. Chem. Lett. 13:2057–63
    [Google Scholar]
  115. 115.
    Green DW, Southard MZ. 2019. Perry's Chemical Engineers' Handbook New York: McGraw-Hill Educ.
  116. 116.
    Mikkelsen M, Jørgensen M, Krebs FC. 2010. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3:43–81
    [Google Scholar]
  117. 117.
    Qiao J, Liu Y, Hong F, Zhang J. 2014. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43:631–75
    [Google Scholar]
  118. 118.
    Albo J, Alvarez-Guerra M, Castaño P, Irabien A. 2015. Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem. 17:2304–24
    [Google Scholar]
  119. 119.
    Sarp S, Gonzalez Hernandez S, Chen C, Sheehan SW 2021. Alcohol production from carbon dioxide: methanol as a fuel and chemical feedstock. Joule 5:59–76
    [Google Scholar]
  120. 120.
    Liu Y, Li F, Zhang X, Ji X 2020. Recent progress on electrochemical reduction of CO2 to methanol. Curr. Opin. Green Sustain. Chem. 23:10–17
    [Google Scholar]
  121. 121.
    Boutin E, Robert M. 2021. Molecular electrochemical reduction of CO2 beyond two electrons. Trends Chem. 3:359–72
    [Google Scholar]
  122. 122.
    Zhu G, Li Y, Zhu H, Su H, Chan SH, Sun Q. 2017. Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper. Nano Res. 10:1641–50
    [Google Scholar]
  123. 123.
    Yang Y, Evans J, Rodriguez JA, White MG, Liu P. 2010. Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys. Chem. Chem. Phys. 12:9909–17
    [Google Scholar]
  124. 124.
    Canfield D, Frese K Jr. 1983. Reduction of carbon dioxide to methanol on n-and p-GaAs and p-InP. Effect of crystal face, electrolyte and current density. J. Electrochem. Soc. 130:1772–73
    [Google Scholar]
  125. 125.
    Zhang W, Hu Y, Ma L, Zhu G, Wang Y et al. 2018. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 5:1700275
    [Google Scholar]
  126. 126.
    Lu L, Sun X, Ma J, Yang D, Wu H et al. 2018. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem. Int. Ed. 57:14149–53
    [Google Scholar]
  127. 127.
    Zhang FY, Sheng T, Tian N, Liu L, Xiao C et al. 2017. Cu overlayers on tetrahexahedral Pd nanocrystals with high-index facets for CO2 electroreduction to alcohols. Chem. Commun. 53:8085–88
    [Google Scholar]
  128. 128.
    Periasamy AP, Ravindranath R, Senthil Kumar SM, Wu WP, Jian TR, Chang HT 2018. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol. Nanoscale 10:11869–80
    [Google Scholar]
  129. 129.
    Albo J, Irabien A. 2016. Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J. Catal. 343:232–39
    [Google Scholar]
  130. 130.
    Zhang W, Qin Q, Dai L, Qin R, Zhao X et al. 2018. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew. Chem. Int. Ed. 57:9475–79
    [Google Scholar]
  131. 131.
    Yang D, Zhu Q, Chen C, Liu H, Liu Z et al. 2019. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 10:677
    [Google Scholar]
  132. 132.
    Yang H-P, Qin S, Wang H, Lu J-X. 2015. Organically doped palladium: a highly efficient catalyst for electroreduction of CO2 to methanol. Green Chem. 17:5144–48
    [Google Scholar]
  133. 133.
    Schizodimou A, Kyriacou G. 2012. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 78:171–76
    [Google Scholar]
  134. 134.
    Mahyoub SA, Qaraah FA, Chen C, Zhang F, Yan S, Cheng Z 2020. An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO. Sustain. Energy Fuels 4:50–67
    [Google Scholar]
  135. 135.
    Wu Y, Jiang Z, Lu X, Liang Y, Wang H. 2019. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575:639–42
    [Google Scholar]
  136. 136.
    Fornaciari JC, Primc D, Kawashima K, Wygant BR, Verma S et al. 2020. A perspective on the electrochemical oxidation of methane to methanol in membrane electrode assemblies. ACS Energy Lett. 5:2954–63
    [Google Scholar]
  137. 137.
    Arminio-Ravelo JA, Escudero-Escribano M. 2021. Strategies toward the sustainable electrochemical oxidation of methane to methanol. Curr. Opin. Green Sustain. Chem. 30:100489
    [Google Scholar]
  138. 138.
    Jiang H, Zhang L, Han Z, Tang Y, Sun Y et al. 2021. Direct conversion of methane to methanol by electrochemical methods. Green Energy Environ. 7:1132–42
    [Google Scholar]
  139. 139.
    Luo Y-R. 2007. Comprehensive Handbook of Chemical Bond Energies Boca Raton, FL: CRC Press
  140. 140.
    Heo P, Ito K, Tomita A, Hibino T. 2008. A proton-conducting fuel cell operating with hydrocarbon fuels. Angew. Chem. Int. Ed. 47:7841–44
    [Google Scholar]
  141. 141.
    Boyd MJ, Latimer AA, Dickens CF, Nielander AC, Hahn C et al. 2019. Electro-oxidation of methane on platinum under ambient conditions. ACS Catal. 9:7578–87
    [Google Scholar]
  142. 142.
    Hahn F, Melendres C. 2001. Anodic oxidation of methane at noble metal electrodes: an ‘in situ’ surface enhanced infrared spectroelectrochemical study. Electrochim. Acta 46:3525–34
    [Google Scholar]
  143. 143.
    Xie S, Lin S, Zhang Q, Tian Z, Wang Y. 2018. Selective electrocatalytic conversion of methane to fuels and chemicals. J. Energy Chem. 27:1629–36
    [Google Scholar]
  144. 144.
    Arnarson L, Schmidt PS, Pandey M, Bagger A, Thygesen KS et al. 2018. Fundamental limitation of electrocatalytic methane conversion to methanol. Phys. Chem. Chem. Phys. 20:11152–59
    [Google Scholar]
  145. 145.
    Sarno M, Ponticorvo E, Funicello N, De Pasquale S. 2020. Methane electrochemical oxidation at low temperature on Rh single atom/NiO/V2O5 nanocomposite. Appl. Catal. A 603:117746
    [Google Scholar]
  146. 146.
    Oh C, Kim J, Hwang YJ, Ma M, Park JH 2021. Electrocatalytic methane oxidation on Co3O4- incorporated ZrO2 nanotube powder. Appl. Catal. B 283:119653
    [Google Scholar]
  147. 147.
    Xu N, Coco CA, Wang Y, Su T, Wang Y et al. 2021. Electro-conversion of methane to alcohols on “capsule-like” binary metal oxide catalysts. Appl. Catal. B 282:119572
    [Google Scholar]
  148. 148.
    Kim RS, Surendranath Y. 2019. Electrochemical reoxidation enables continuous methane-to-methanol catalysis with aqueous Pt salts. ACS Cent. Sci. 5:1179–86
    [Google Scholar]
  149. 149.
    Lee B, Hibino T. 2011. Efficient and selective formation of methanol from methane in a fuel cell-type reactor. J. Catal. 279:233–40
    [Google Scholar]
  150. 150.
    Tomita A, Nakajima J, Hibino T. 2008. Direct oxidation of methane to methanol at low temperature and pressure in an electrochemical fuel cell. Angew. Chem. Int. Ed. 47:1462–64
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101121-090840
Loading
/content/journals/10.1146/annurev-chembioeng-101121-090840
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error