1932

Abstract

RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems to solve pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101420-014055
2021-06-07
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-101420-014055.html?itemId=/content/journals/10.1146/annurev-chembioeng-101420-014055&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nishimura S, Jones DS, Khorana HG. 1965. Studies on polynucleotides: XLVIII. The in vitro synthesis of a co-polypeptide containing two amino acids in alternating sequence dependent upon a DNA-like polymer containing two nucleotides in alternating sequence. J. Mol. Biol. 13:302–24
    [Google Scholar]
  2. 2. 
    Fuller DH, Berglund P. 2020. Amplifying RNA vaccine development. N. Engl. J. Med. 382:2469–71
    [Google Scholar]
  3. 3. 
    Cech TR. 2000. The ribosome is a ribozyme. Science 289:878–79
    [Google Scholar]
  4. 4. 
    Atkinson SR, Marguerat S, Bähler J. 2012. Exploring long non-coding RNAs through sequencing. Semin. Cell Dev. Biol. 23:200–5
    [Google Scholar]
  5. 5. 
    Villa JK, Su Y, Contreras LM, Hammond MC 2018. Synthetic biology of small RNAs and riboswitches. Regulating with RNA Bacteria and Archaea G Storz, K Papenfort 527–45 Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  6. 6. 
    Lilley DMJ. 2011. Mechanisms of RNA catalysis. Philos. Trans. R. Soc. B Biol. Sci. 366:2910–17
    [Google Scholar]
  7. 7. 
    Roth A, Breaker RR. 2009. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78:305–34
    [Google Scholar]
  8. 8. 
    Harcourt EM, Kietrys AM, Kool ET. 2017. Chemical and structural effects of base modifications in messenger RNA. Nature 541:339–46
    [Google Scholar]
  9. 9. 
    Green AA, Silver PA, Collins JJ, Yin P. 2014. Toehold switches: de-novo-designed regulators of gene expression. Cell 159:925–39
    [Google Scholar]
  10. 10. 
    Slomovic S, Pardee K, Collins JJ. 2015. Synthetic biology devices for in vitro and in vivo diagnostics. PNAS 112:14429–35
    [Google Scholar]
  11. 11. 
    Nussinov R, Jacobson AB. 1980. Fast algorithm for predicting the secondary structure of single-stranded RNA. PNAS 77:6309–13
    [Google Scholar]
  12. 12. 
    Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB et al. 2011. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32:170–73
    [Google Scholar]
  13. 13. 
    Wu YX, Kwon YJ. 2016. Aptamers: the “evolution” of SELEX. Methods 106:21–28
    [Google Scholar]
  14. 14. 
    Porter EB, Polaski JT, Morck MM, Batey RT. 2017. Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nat. Chem. Biol. 13:295–301
    [Google Scholar]
  15. 15. 
    Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A et al. 2014. Paper-based synthetic gene networks. Cell 159:940–54
    [Google Scholar]
  16. 16. 
    Pardee K, Green AA, Takahashi MK, Braff D, Lambert G et al. 2016. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165:1255–66
    [Google Scholar]
  17. 17. 
    Doyle F, Lapsia S, Spadaro S, Wurz ZE, Bhaduri-McIntosh S, Tenenbaum SA. 2017. Engineering structurally interacting RNA (sxRNA). Sci. Rep. 7:45393
    [Google Scholar]
  18. 18. 
    Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A et al. 2020. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9:2276
    [Google Scholar]
  19. 19. 
    Thavarajah W, Silverman AD, Verosloff MS, Kelley-Loughnane N, Jewett MC, Lucks JB. 2019. Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor. ACS Synth. Biol. 9:10–18
    [Google Scholar]
  20. 20. 
    Jung JK, Alam KK, Verosloff MS, Capdevila DA, Desmau M et al. 2020. Cell-free biosensors for rapid detection of water contaminants. Nat. Biotechnol. 38:1451–59
    [Google Scholar]
  21. 21. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA et al. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  22. 22. 
    Cong L, Ran FA, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23
    [Google Scholar]
  23. 23. 
    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ et al. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–42
    [Google Scholar]
  24. 24. 
    Chen JS, Ma E, Harrington LB, Da Costa M, Tian X et al. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–39
    [Google Scholar]
  25. 25. 
    Rees HA, Liu DR. 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19:770–88
    [Google Scholar]
  26. 26. 
    Roberts TC, Langer R, Wood MJA. 2020. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19:673–94
    [Google Scholar]
  27. 27. 
    Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S et al. 2021. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384:5403–16
    [Google Scholar]
  28. 28. 
    Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A et al. 2020. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383:272603–15
    [Google Scholar]
  29. 29. 
    Tan X, Letendre JH, Collins JJ, Wong WW. 2021. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell 184:4881–98
    [Google Scholar]
  30. 30. 
    Jernigan DB, Lindstrom SL, Johnson JR, Miller JD, Hoelscher M et al. 2011. Detecting 2009 pandemic influenza A (H1N1) virus infection: availability of diagnostic testing led to rapid pandemic response. Clin. Infect. Dis. 52:S36–S43
    [Google Scholar]
  31. 31. 
    World Health Organ 2019. Global Health Estimates 2016: Deaths by Cause, Age, Sex by Country and by Region 2000–2016 Geneva: World Health Organ.
  32. 32. 
    Worldometer 2021. COVID-19 Coronavirus Pandemic . https://www.worldometers.info/coronavirus/
  33. 33. 
    van der Vliet GM, Schukkink RAF, van Gemen B. 1993. Nucleic acid sequence-based amplification (NASBA) for the identification of mycobacteria. Microbiology 139:2423–29
    [Google Scholar]
  34. 34. 
    Chappell J, Takahashi MK, Lucks JB. 2015. Creating small transcription activating RNAs. Nat. Chem. Biol. 11:214–20
    [Google Scholar]
  35. 35. 
    Takahashi MK, Tan X, Dy AJ, Braff D, Akana RT et al. 2018. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun. 9:3347
    [Google Scholar]
  36. 36. 
    Verosloff M, Chappell J, Perry KL, Thompson JR, Lucks JB. 2019. PLANT-Dx: a molecular diagnostic for point-of-use detection of plant pathogens. ACS Synth. Biol. 8:902–5
    [Google Scholar]
  37. 37. 
    Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC et al. 2018. Field-deployable viral diagnostics using CRISPR-Cas13. Science 360:444–48
    [Google Scholar]
  38. 38. 
    Ackerman CM, Myhrvold C, Thakku SG, Freije CA, Metsky HC et al. 2020. Massively multiplexed nucleic acid detection with Cas13. Nature 582:277–82
    [Google Scholar]
  39. 39. 
    Zhang F, Abudayyeh OO, Gootenberg JS. 2020. A protocol for detection of COVID-19 using CRISPR diagnostics Protoc., Broad Inst. Cambridge, MA.: https://www.broadinstitute.org/files/publications/special/COVID-19%20detection%20(updated).pdf
  40. 40. 
    Broughton JP, Deng X, Yu G, Fasching CL, Servellita V et al. 2020. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38:870–74
    [Google Scholar]
  41. 41. 
    World Health Organ 2019. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2017: Special Focus on Inequalities Geneva: World Health Organ.
  42. 42. 
    Sachs JD. 2012. From Millennium Development Goals to sustainable development goals. Lancet 379:2206–11
    [Google Scholar]
  43. 43. 
    Baker JL, Sudarsan N, Weinberg Z, Roth A, Stockbridge RB, Breaker RR. 2012. Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335:233–35
    [Google Scholar]
  44. 44. 
    Dambach M, Sandoval M, Updegrove TB, Anantharam V, Aravind L et al. 2015. The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Mol. Cell 57:1099–109
    [Google Scholar]
  45. 45. 
    Price IR, Gaballa A, Ding F, Helmann JD, Ke A. 2015. Mn2+-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol. Cell 57:1110–23
    [Google Scholar]
  46. 46. 
    McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. 2017. Riboswitch diversity and distribution. RNA 23:995–1011
    [Google Scholar]
  47. 47. 
    Greenlee EB, Stav S, Atilho RM, Brewer KI, Harris KA et al. 2018. Challenges of ligand identification for the second wave of orphan riboswitch candidates. RNA Biol 15:377–90
    [Google Scholar]
  48. 48. 
    Grate D, Wilson C. 1999. Laser-mediated, site-specific inactivation of RNA transcripts. PNAS 96:6131–36
    [Google Scholar]
  49. 49. 
    Paige JS, Wu KY, Jaffrey SR. 2011. RNA mimics of green fluorescent protein. Science 333:642–46
    [Google Scholar]
  50. 50. 
    Manna S, Truong J, Hammond MC. 2021. Guanidine biosensors enable comparison of cellular turn-on kinetics of riboswitch-based biosensor and reporter. ACS Synth. Biol. 10:3566–78
    [Google Scholar]
  51. 51. 
    Alam KK, Tawiah KD, Lichte MF, Porciani D, Burke DH. 2017. A fluorescent split aptamer for visualizing RNA-RNA assembly in vivo. ACS Synth. Biol. 6:1710–21
    [Google Scholar]
  52. 52. 
    Lloyd J, Tran CH, Wadhwani K, Samaniego CC, Subramanian HKK, Franco E. 2018. Dynamic control of aptamer-ligand activity using strand displacement reactions. ACS Synth. Biol. 7:30–37
    [Google Scholar]
  53. 53. 
    Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. 2015. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol. Adv. 33:1141–61
    [Google Scholar]
  54. 54. 
    Boussebayle A, Torka D, Ollivaud S, Braun J, Bofill-Bosch C et al. 2019. Next-level riboswitch development—implementation of Capture-SELEX facilitates identification of a new synthetic riboswitch. Nucleic Acids Res 47:4883–95
    [Google Scholar]
  55. 55. 
    Chua THT, Mai DHA, Pham DN, Le HTQ, Lee EY. 2020. Developments of riboswitches and toehold switches for molecular detection—biosensing and molecular diagnostics. Int. J. Mol. Sci. 21:3192
    [Google Scholar]
  56. 56. 
    Espah Borujeni A, Mishler DM, Wang J, Huso W, Salis HM 2015. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Res 44:1–13
    [Google Scholar]
  57. 57. 
    Wu MJ, Andreasson JOL, Kladwang W, Greenleaf WJ, Das R. 2019. Automated design of diverse stand-alone riboswitches. ACS Synth. Biol. 8:1838–46
    [Google Scholar]
  58. 58. 
    Rees DC, Williams TN, Gladwin MT. 2010. Sickle-cell disease. Lancet 376:2018–31
    [Google Scholar]
  59. 59. 
    Kerem E, Corey M, Kerem B-s, Rommens J, Markiewicz D et al. 1990. The relation between genotype and phenotype in cystic fibrosis—analysis of the most common mutation (ΔF508). N. Engl. J. Med. 323:1517–22
    [Google Scholar]
  60. 60. 
    Cao A, Galanello R. 2010. Beta-thalassemia. Genet. Med. 12:61–76
    [Google Scholar]
  61. 61. 
    Briner AE, Donohoue PD, Gomaa AA, Selle K, Slorach EM et al. 2014. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell 56:333–39
    [Google Scholar]
  62. 62. 
    Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–26
    [Google Scholar]
  63. 63. 
    Cho SW, Kim S, Kim Y, Kweon J, Kim HS et al. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–41
    [Google Scholar]
  64. 64. 
    Anderson KR, Haeussler M, Watanabe C, Janakiraman V, Lund J et al. 2018. CRISPR off-target analysis in genetically engineered rats and mice. Nat. Methods 15:512–14
    [Google Scholar]
  65. 65. 
    Thyme SB, Akhmetova L, Montague TG, Valen E, Schier AF. 2016. Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nat. Commun. 7:11750
    [Google Scholar]
  66. 66. 
    Dang Y, Jia G, Choi J, Ma H, Anaya H et al. 2015. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol 16:280
    [Google Scholar]
  67. 67. 
    Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. 2019. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat. Biotechnol. 37:657–66
    [Google Scholar]
  68. 68. 
    Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33:985–89
    [Google Scholar]
  69. 69. 
    Ryan DE, Taussig D, Steinfeld I, Phadnis SM, Lunstad BD et al. 2018. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 46:792–803
    [Google Scholar]
  70. 70. 
    Yin H, Song C-Q, Suresh S, Wu Q, Walsh S et al. 2017. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35:1179–87
    [Google Scholar]
  71. 71. 
    Siu K-H, Chen W 2019. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function. Nat. Chem. Biol. 15:217–20
    [Google Scholar]
  72. 72. 
    Hanewich-Hollatz MH, Chen Z, Hochrein LM, Huang J, Pierce NA. 2019. Conditional guide RNAs: programmable conditional regulation of CRISPR/Cas function in bacterial and mammalian cells via dynamic RNA nanotechnology. ACS Cent. Sci. 5:1241–49
    [Google Scholar]
  73. 73. 
    Kundert K, Lucas JE, Watters KE, Fellmann C, Ng AH et al. 2019. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs. Nat. Commun. 10:2127
    [Google Scholar]
  74. 74. 
    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–57
    [Google Scholar]
  75. 75. 
    Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ et al. 2017. RNA editing with CRISPR-Cas13. Science 358:1019–27
    [Google Scholar]
  76. 76. 
    CRISPR Ther 2020. CRISPR Therapeutics and Vertex announce new clinical data for investigational gene-editing therapy CTX001™ in severe hemoglobinopathies at the 25th Annual European Hematology Association (EHA) Congress. News Rel., June 12. https://investors.vrtx.com/news-releases/news-release-details/crispr-therapeutics-and-vertex-announce-new-clinical-data
  77. 77. 
    Editas Med 2020. Allergan and Editas Medicine announce dosing of first patient in landmark phase 1/2 clinical trial of CRISPR medicine AGN-151587 (EDIT-101) for the treatment of LCA10 contacts. News Rel., March 4. https://ir.editasmedicine.com/news-releases/news-release-details/allergan-and-editas-medicine-announce-dosing-first-patient
  78. 78. 
    Rauch S, He E, Srienc M, Zhou H, Zhang Z, Dickinson BC. 2019. Programmable RNA-guided RNA effector proteins built from human parts. Cell 178:122–34
    [Google Scholar]
  79. 79. 
    Exec. Off. Pres 2019. Mitigating the impact of pandemic influenza through vaccine innovation. Rep., Counc. Econ. Advis. Washington, DC: Sept. https://trumpwhitehouse.archives.gov/wp-content/uploads/2019/09/Mitigating-the-Impact-of-Pandemic-Influenza-through-Vaccine-Innovation.pdf
  80. 80. 
    Hodgson J. 2020. The pandemic pipeline. Nat. Biotechnol. 38:523–32
    [Google Scholar]
  81. 81. 
    Pres. Counc. Advis. Sci. Technol 2010. Report to the President on reengineering the influenza vaccine production enterprise to meet the challenges of pandemic influenza Rep., Exec. Off. Pres. Washington, DC:
  82. 82. 
    Pardi N, Hogan MJ, Porter FW, Weissman D. 2018. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17:261–79
    [Google Scholar]
  83. 83. 
    Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. 2020. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines 5:11
    [Google Scholar]
  84. 84. 
    Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M et al. 2015. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–96
    [Google Scholar]
  85. 85. 
    Linares-Fernández S, Lacroix C, Exposito J-Y, Verrier B. 2020. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol. Med. 26:311–23
    [Google Scholar]
  86. 86. 
    Jain R, Frederick JP, Huang EY, Burke KE, Mauger DM et al. 2018. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther 28:5285–96
    [Google Scholar]
  87. 87. 
    Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S et al. 2018. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 26:446–55
    [Google Scholar]
  88. 88. 
    Heidenreich R, Jasny E, Kowalczyk A, Lutz J, Probst J et al. 2015. A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int. J. Cancer 137:372–84
    [Google Scholar]
  89. 89. 
    Kormann MSD, Hasenpusch G, Aneja MK, Nica G, Flemmer AW et al. 2011. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29:154–57
    [Google Scholar]
  90. 90. 
    Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH et al. 2010. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38:5884–92
    [Google Scholar]
  91. 91. 
    Awasthi S, Hook LM, Pardi N, Wang F, Myles A et al. 2019. Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes. Sci. Immunol. 4:eaaw7083
    [Google Scholar]
  92. 92. 
    Thess A, Grund S, Mui BL, Hope MJ, Baumhof P et al. 2015. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23:1456–64
    [Google Scholar]
  93. 93. 
    Egli M, Manoharan M. 2019. Re-engineering RNA molecules into therapeutic agents. Acc. Chem. Res. 52:41036–47
    [Google Scholar]
  94. 94. 
    Verbeke R, Lentacker I, De Smedt SC, Dewitte H. 2019. Three decades of messenger RNA vaccine development. Nano Today 28:100766
    [Google Scholar]
  95. 95. 
    Li Y, Teague B, Zhang Y, Su Z, Porter E et al. 2019. In vitro evolution of enhanced RNA replicons for immunotherapy. Sci. Rep. 9:6932
    [Google Scholar]
  96. 96. 
    Wagner TE, Becraft JR, Bodner K, Teague B, Zhang X et al. 2018. Small-molecule-based regulation of RNA-delivered circuits in mammalian cells. Nat. Chem. Biol. 14:1043–50
    [Google Scholar]
  97. 97. 
    Cella F, Wroblewska L, Weiss R, Siciliano V. 2018. Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells. Nat. Commun. 9:4392
    [Google Scholar]
  98. 98. 
    Li K, Liu Y, Xu Z, Zhang Y, Yao Y, Nair V et al. 2020. Prevention of avian retrovirus infection in chickens using CRISPR/Cas9 delivered by Marek's disease virus. Mol. Ther. Acids 21:343–53
    [Google Scholar]
  99. 99. 
    Warner KD, Hajdin CE, Weeks KM. 2018. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17:547–58
    [Google Scholar]
  100. 100. 
    Disney MD. 2019. Targeting RNA with small molecules to capture opportunities at the intersection of chemistry, biology, and medicine. J. Am. Chem. Soc. 141:6776–90
    [Google Scholar]
  101. 101. 
    Opalinska JB, Gewirtz AM. 2002. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov. 1:503–14
    [Google Scholar]
  102. 102. 
    Liang XH, Sun H, Shen W, Wang S, Yao J et al. 2017. Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Res 45:169528–46
    [Google Scholar]
  103. 103. 
    Scoles DR, Minikel EV, Pulst SM. 2019. Antisense oligonucleotides: a primer. Neurol. Genet. 5:e323
    [Google Scholar]
  104. 104. 
    Cartegni L, Krainer AR. 2003. Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat. Struct. Biol. 10:120–25
    [Google Scholar]
  105. 105. 
    Chen I. 2019. An antisense oligonucleotide splicing modulator to treat spinal muscular atrophy. Nature Milestones Dec. https://www.nature.com/articles/d42859-019-00090-4
    [Google Scholar]
  106. 106. 
    Michaels WE, Bridges RJ, Hastings ML. 2020. Antisense oligonucleotide-mediated correction of CFTR splicing improves chloride secretion in cystic fibrosis patient-derived bronchial epithelial cells. Nucleic Acids Res 48:7454–67
    [Google Scholar]
  107. 107. 
    Sadewasser A, Dietzel E, Michel S, Klüver M, Helfer M et al. 2019. Anti-Niemann Pick C1 single-stranded oligonucleotides with locked nucleic acids potently reduce Ebola virus infection in vitro. Mol. Ther. Acids 16:686–97
    [Google Scholar]
  108. 108. 
    Ferlini A, Goyenvalle A, Muntoni F. 2021. RNA-targeted drugs for neuromuscular diseases. Science 371:652429–31
    [Google Scholar]
  109. 109. 
    van Roon-Mom WMC, Roos RAC, de Bot ST. 2018. Dose-dependent lowering of mutant Huntingtin using antisense oligonucleotides in Huntington disease patients. Nucleic Acid Ther 28:59–62
    [Google Scholar]
  110. 110. 
    McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A et al. 2018. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J. Clin. Investig. 128:3558–67
    [Google Scholar]
  111. 111. 
    Ly CV, Miller TM. 2018. Emerging antisense oligonucleotide and viral therapies for ALS. Curr. Opin. Neurol. 31:648–54
    [Google Scholar]
  112. 112. 
    DeVos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K et al. 2013. Antisense reduction of tau in adult mice protects against seizures. J. Neurosci. 33:12887–97
    [Google Scholar]
  113. 113. 
    Eriz B, Luis O, Burzio Menendez VA, Villegas Olavarria JE 2015. Antisense oligonucleotides for treatment of cancer stem cells. US Patent WO2014153209A8
  114. 114. 
    Kim J, Hu C, El Achkar CM, Black LE, Douville J et al. 2019. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381:1644–52
    [Google Scholar]
  115. 115. 
    Dowdy S. 2017. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35:222–29
    [Google Scholar]
  116. 116. 
    Lam JKW, Chow MYT, Zhang Y, Leung SWS. 2015. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Acids 4: e252
    [Google Scholar]
  117. 117. 
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–98
    [Google Scholar]
  118. 118. 
    Soprano DR, Herbert J, Soprano KJ, Schon EA, Goodman DS. 1985. Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat. J. Biol. Chem. 260:11793–98
    [Google Scholar]
  119. 119. 
    Hu B, Weng Y, Xia X, Liang X, Huang Y. 2019. Clinical advances of siRNA therapeutics. J. Gene Med. 21: e3097
    [Google Scholar]
  120. 120. 
    Bofill-De Ros X, Gu S. 2016. Guidelines for the optimal design of miRNA-based shRNAs. Methods 103:157–66
    [Google Scholar]
  121. 121. 
    Zhang D, Lu J. 2020. In silico design of siRNAs targeting existing and future respiratory viruses with VirusSi. bioRxiv. https://doi.org/10.1101/2020.08.13.250076
    [Crossref]
  122. 122. 
    Biscans A, Caiazzi J, Davis S, McHugh N, Sousa J, Khvorova A. 2020. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res 48:147665–80
    [Google Scholar]
  123. 123. 
    Jones D, Metzger HJ, Schatz A, Waksman SA. 1944. Control of gram-negative bacteria in experimental animals by streptomycin. Science 100:103–5
    [Google Scholar]
  124. 124. 
    Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X et al. 2014. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345:688–93
    [Google Scholar]
  125. 125. 
    Cheung AK, Hurley B, Kerrigan R, Shu L, Chin DN et al. 2018. Discovery of small molecule splicing modulators of survival motor neuron-2 (SMN2) for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61:11021–36
    [Google Scholar]
  126. 126. 
    Garcia-Lopez A, Tessaro F, Jonker HRA, Wacker A, Richter C et al. 2018. Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes. Nat. Commun. 9:2032
    [Google Scholar]
  127. 127. 
    Sivaramakrishnan M, McCarthy KD, Campagne S, Huber S, Meier S et al. 2017. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8:1476
    [Google Scholar]
  128. 128. 
    Parsons J, Castaldi MP, Dutta S, Dibrov SM, Wyles DL, Hermann T. 2009. Conformational inhibition of the hepatitis C virus internal ribosome entry site RNA. Nat. Chem. Biol. 5:823–25
    [Google Scholar]
  129. 129. 
    Haniff HS, Tong Y, Liu X, Chen JL, Suresh BM et al. 2020. Targeting the SARS-CoV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders. ACS Cent. Sci. 6:101713–21
    [Google Scholar]
  130. 130. 
    Blount KF, Breaker RR. 2006. Riboswitches as antibacterial drug targets. Nat. Biotechnol. 24:1558–64
    [Google Scholar]
  131. 131. 
    Mulhbacher J, Brouillette E, Allard M, Fortier L-C, Malouin F, Lafontaine DA. 2010. Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLOS Pathog 6:e1000865
    [Google Scholar]
  132. 132. 
    Wang H, Mann PA, Xiao L, Gill C, Calgoci AM et al. 2017. Dual-targeting small-molecule inhibitors of the Staphylococcus aureus FMN riboswitch disrupt riboflavin homeostasis in an infectious setting. Cell Chem. Biol. 24:576–88
    [Google Scholar]
  133. 133. 
    Mukherjee H, Blain JC, Vandivier LE, Chin DN, Friedman JE et al. 2020. PEARL-seq: a photoaffinity platform for the analysis of small molecule-RNA interactions. ACS Chem. Biol. 15:2374–81
    [Google Scholar]
  134. 134. 
    Stefaniak F, Bujnicki JM. 2020. AnnapuRNA: a scoring function for predicting RNA-small molecule interactions. bioRxiv. 2020.09.08.287136. doi: 10.1101/2020.09.08.287136
  135. 135. 
    Haché M, Swoboda KJ, Sethna N, Farrow-Gillespie A, Khandji A et al. 2016. Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J. Child Neurol. 31:899–906
    [Google Scholar]
  136. 136. 
    Connelly CM, Moon MH, Schneekloth JS Jr. 2016. The emerging role of RNA as a therapeutic target for small molecules. Cell Chem. Biol. 23:1077–90
    [Google Scholar]
  137. 137. 
    Zhou J, Rossi J. 2017. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16:181–202
    [Google Scholar]
  138. 138. 
    Disney MD, Winkelsas AM, Velagapudi SP, Southern M, Fallahi M, Childs-Disney JL. 2016. Inforna 2.0: a platform for the sequence-based design of small molecules targeting structured RNAs. ACS Chem. Biol. 11:1720–28
    [Google Scholar]
  139. 139. 
    Morgan BS, Sanaba BG, Donlic A, Karloff DB, Forte JE et al. 2019. R-BIND: an interactive database for exploring and developing RNA-targeted chemical probes. ACS Chem. Biol. 14:2691–700
    [Google Scholar]
  140. 140. 
    Sciabola S, Xi H, Cruz D, Cao Q, Lawrence C, Zhang T et al. 2020. PFRED: a computational platform for siRNA and antisense oligonucleotides design. bioRxiv. 2020.08.25.265983. https://doi.org/10.1101/2020.08.25.265983
    [Crossref]
  141. 141. 
    Thiel BC, Flamm C, Hofacker IL. 2017. RNA structure prediction: from 2D to 3D. Emerg. Top. Life Sci. 1:275–85
    [Google Scholar]
  142. 142. 
    Miao Z, Adamiak RQ, Antczak M, Batey RT, Becka AJ et al. 2017. RNA-Puzzles round III: 3D RNA structure prediction of five riboswitches and one ribozyme. RNA 23:655–72
    [Google Scholar]
  143. 143. 
    Miao Z, Adamiak RW, Antczak M, Boniecki MJ, Bujnicki JM et al. 2020. RNA-Puzzles round IV: 3D structure predictions of four ribozymes and two aptamers. RNA 26:982–95
    [Google Scholar]
  144. 144. 
    Portela F. 2018. An unexpectedly effective Monte Carlo technique for the RNA inverse folding problem. bioRxiv. https://doi.org/10.1101/345587
    [Crossref]
  145. 145. 
    Watkins AM, Geniesse C, Kladwang W, Zakrevsky P, Jaeger L, Das R. 2018. Blind prediction of noncanonical RNA structure at atomic accuracy. Sci. Adv. 4: eaar5316
    [Google Scholar]
  146. 146. 
    Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM. 2019. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20:474–89
    [Google Scholar]
  147. 147. 
    Lee J, Kladwang W, Lee M, Cantu D, Azizyan M et al. 2014. . RNA design rules from a massive open laboratory. PNAS 111:2122–27
    [Google Scholar]
  148. 148. 
    Anderson-Lee J, Fisker E, Kosaraju V, Wu M, Kong J et al. 2016. Principles for predicting RNA secondary structure design difficulty. J. Mol. Biol. 428:748–57
    [Google Scholar]
  149. 149. 
    Wu MJ, Andreasson JOL, Kladwang W, Greenleaf WJ, Eterna Particip, Das R. 2017. Prospects for recurrent neural network models to learn RNA biophysics from high-throughput data. bioRxiv. https://doi.org/10.1101/227611
    [Crossref]
  150. 150. 
    Andreasson JOL, Gotrik MR, Wu MJ, Wayment-Steele HK, Kladwang W et al. 2019. Crowdsourced RNA design discovers diverse, reversible, efficient, self-contained molecular sensors. bioRxiv. https://doi.org/10.1101/2019.12.16.877183
    [Crossref]
  151. 151. 
    Koodli RV, Keep B, Coppess KR, Portela F, Das R. 2019. EternaBrain: automated RNA design through move sets and strategies from an internet-scale RNA videogame. PLOS Comput. Biol. 15:e1007059
    [Google Scholar]
  152. 152. 
    Angenent-Mari NM, Garruss AS, Soenksen LR, Church G, Collins JJ. 2019. Deep learning for RNA synthetic biology. bioRxiv. https://doi.org/10.1101/872077
    [Crossref]
  153. 153. 
    Jaeger L. 2001. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res 29:455–63
    [Google Scholar]
  154. 154. 
    Geary C, Chworos A, Verzemnieks E, Voss NR, Jaeger L. 2017. Composing RNA nanostructures from a syntax of RNA structural modules. Nano Lett 17:7095–101
    [Google Scholar]
  155. 155. 
    Yesselman JD, Das R. 2015. RNA-Redesign: a web server for fixed-backbone 3D design of RNA. Nucleic Acids Res 43:W498–W501
    [Google Scholar]
  156. 156. 
    Yesselman JD, Denny SK, Bisaria N, Herschlag D, Greenleaf WJ Das R. 2019. Sequence-dependent RNA helix conformational preferences predictably impact tertiary structure formation. PNAS 116:16847–55
    [Google Scholar]
  157. 157. 
    Yesselman JD, Eiler D, Carlson ED, Gotrik MR, d'Aquino AE et al. 2019. Computational design of three-dimensional RNA structure and function. Nat. Nanotechnol. 14:866–73
    [Google Scholar]
  158. 158. 
    Denny SK, Bisaria N, Yesselman JD, Das R, Herschlag D, Greenleaf WJ. 2018. High-throughput investigation of diverse junction elements in RNA tertiary folding. Cell 174:377–390.e20
    [Google Scholar]
  159. 159. 
    Guo S, Vieweger M, Zhang K, Yin H, Wang H et al. 2020. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat. Commun. 11:972
    [Google Scholar]
  160. 160. 
    Krissanaprasit A, Key C, Fergione M, Froehlich K, Pontula S et al. 2019. Genetically encoded, functional single-strand RNA origami: anticoagulant. Adv. Mater. 31:1808262
    [Google Scholar]
  161. 161. 
    Malone RW, Felgner PL Verma IM. 1989. Cationic liposome-mediated RNA transfection. PNAS 86:166077–81
    [Google Scholar]
  162. 162. 
    Tang J, Breaker RR. 1997. Rational design of allosteric ribozymes. Chem. Biol. 4:6453–59
    [Google Scholar]
  163. 163. 
    Winkler W, Nahvi A, Breaker RR. 2002. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:6910952–56
    [Google Scholar]
  164. 164. 
    Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ. 2004. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22:7841–47
    [Google Scholar]
  165. 165. 
    Dirks RM, Pierce NA. 2004. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J. Comput. Chem. 25:101295–304
    [Google Scholar]
  166. 166. 
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5:7621–28
    [Google Scholar]
  167. 167. 
    Cruz JA, Blanchet M-F, Boniecki M, Bujnicki JM, Chen S-J et al. 2012. RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. RNA 18:4610–25
    [Google Scholar]
  168. 168. 
    Dagan N, Barda N, Kepten E, Miron O, Perchik S et al. 2021. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med. 384:151412–23
    [Google Scholar]
  169. 169. 
    Food Drug Adm. (FDA) 2016. FDA approves first drug for spinal muscular atrophy. Press Rel. Dec. 23. https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-spinal-muscular-atrophy
  170. 170. 
    Moderna 2020. Moderna announces first participant dosed in NIH-led phase 1 study of mRNA vaccine (mRNA-1273) against novel coronavirus. Press Rel., March 16. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-first-participant-dosed-nih-led-phase-1-study
/content/journals/10.1146/annurev-chembioeng-101420-014055
Loading
/content/journals/10.1146/annurev-chembioeng-101420-014055
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error