1932

Abstract

High-performance wearable and implantable devices capable of recording physiological signals and delivering appropriate therapeutics in real time are playing a pivotal role in revolutionizing personalized healthcare. However, the mechanical and biochemical mismatches between rigid, inorganic devices and soft, organic human tissues cause significant trouble, including skin irritation, tissue damage, compromised signal-to-noise ratios, and limited service time. As a result, profuse research efforts have been devoted to overcoming these issues by using flexible and stretchable device designs and soft materials. Here, we summarize recent representative research and technological advances for soft bioelectronics, including conformable and stretchable device designs, various types of soft electronic materials, and surface coating and treatment methods. We also highlight applications of these strategies to emerging soft wearable and implantable devices. We conclude with some current limitations and offer future prospects of this booming field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101420-024336
2021-06-07
2024-09-21
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-101420-024336.html?itemId=/content/journals/10.1146/annurev-chembioeng-101420-024336&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Reportlinker 2018. Wearable medical devices global market opportunities and strategies to 2022. Newswire PR Aug. 15. https://www.prnewswire.com/news-releases/wearable-medical-devices-global-market-opportunities-and-strategies-to-2022-300697842.html
    [Google Scholar]
  2. 2. 
    Shi H, Zhao H, Liu Y, Gao W, Dou S-C. 2019. Systematic analysis of a military wearable device based on a multi-level fusion framework: research directions. Sensors 19:122651
    [Google Scholar]
  3. 3. 
    Koo JH, Song J, Yoo S, Sunwoo S, Son D, Kim D 2020. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics. Adv. Mater. Technol. 5:10e2000407
    [Google Scholar]
  4. 4. 
    Yin Y, Zeng Y, Chen X, Fan Y 2016. The internet of things in healthcare: an overview. J. Ind. Inf. Integr. 1:3–13
    [Google Scholar]
  5. 5. 
    Choi C, Choi MK, Hyeon T, Kim D-H. 2016. Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2:111006–17
    [Google Scholar]
  6. 6. 
    Anzaldo D. 2015. Wearable sports technology—market landscape and compute SoC trends. Proceedings of the 2015 International SoC Design Conference Piscataway, NJ: IEEE
    [Google Scholar]
  7. 7. 
    Lim S, Son D, Kim J, Lee YB, Song J-K et al. 2015. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 25:3375–83
    [Google Scholar]
  8. 8. 
    Pang Y, Yang Z, Yang Y, Ren T 2020. Wearable electronics based on 2D materials for human physiological information detection. Small 16:151901124
    [Google Scholar]
  9. 9. 
    Gao Y, Yu L, Yeo JC, Lim CT. 2020. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32:151902133
    [Google Scholar]
  10. 10. 
    Amjadi M, Sheykhansari S, Nelson BJ, Sitti M. 2018. Recent advances in wearable transdermal delivery systems. Adv. Mater. 30:71704530
    [Google Scholar]
  11. 11. 
    Kaewkannate K, Kim S 2016. A comparison of wearable fitness devices. BMC Public Health 16:433
    [Google Scholar]
  12. 12. 
    Kutilek P, Volf P, Viteckova S, Smrcka P, Krivanek V et al. 2017. Wearable systems for monitoring the health condition of soldiers: review and application. Proceedings of the 2017 International Conference on Military Technologies. Piscataway, NJ: IEEE
    [Google Scholar]
  13. 13. 
    O'Neill CT, Phipps NS, Cappello L, Paganoni S, Walsh CJ. 2017. A soft wearable robot for the shoulder: Design, characterization, and preliminary testing. Proceedings of the 2017 International Conference on Rehabilitation Robotics Piscataway, NJ: IEEE
    [Google Scholar]
  14. 14. 
    In H, Kang BB, Sin M, Cho K-J. 2015. Exo-Glove: a wearable robot for the hand with a soft tendon routing system. IEEE Robot. Autom. Mag. 22:197–105
    [Google Scholar]
  15. 15. 
    Chambers R, Gabbett TJ, Cole MH, Beard A. 2015. The use of wearable microsensors to quantify sport-specific movements. Sport. Med. 45:71065–81
    [Google Scholar]
  16. 16. 
    Hegde N, Bries M, Sazonov E. 2016. A comparative review of footwear-based wearable systems. Electronics 5:348
    [Google Scholar]
  17. 17. 
    Wood J 2017. Revolutions in wearable technology for apparel. High-Performance Apparel J McLoughlin, T Sabir 325–39 Cambridge, MA: Woodhead Publ.
    [Google Scholar]
  18. 18. 
    Awolusi I, Marks E, Hallowell M. 2018. Wearable technology for personalized construction safety monitoring and trending: review of applicable devices. Autom. Constr. 85:96–106
    [Google Scholar]
  19. 19. 
    Kritzler M, Bäckman M, Tenfält A, Michahelles F. 2015. Wearable technology as a solution for workplace safety. MUM '15: Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia213–17 New York: Assoc. Comput. Mach.
    [Google Scholar]
  20. 20. 
    Song Y, Min J, Gao W 2019. Wearable and implantable electronics: moving toward precision therapy. ACS Nano 13:1112280–86
    [Google Scholar]
  21. 21. 
    Koydemir HC, Ozcan A. 2018. Wearable and implantable sensors for biomedical applications. Annu. Rev. Anal. Chem. 11:127–46
    [Google Scholar]
  22. 22. 
    Corduas F, Mancuso E, Lamprou DA. 2020. Long-acting implantable devices for the prevention and personalised treatment of infectious, inflammatory and chronic diseases. J. Drug Deliv. Sci. Technol. 60:101952
    [Google Scholar]
  23. 23. 
    Sunwoo SH, Lee JS, Bae S, Shin YJ, Kim CS et al. 2019. Chronic and acute stress monitoring by electrophysiological signals from adrenal gland. PNAS 116:41146–51
    [Google Scholar]
  24. 24. 
    Ouyang H, Liu Z, Li N, Shi B, Zou Y et al. 2019. Symbiotic cardiac pacemaker. Nat. Commun. 10:1821
    [Google Scholar]
  25. 25. 
    Gutruf P, Yin RT, Lee KB, Ausra J, Brennan JA et al. 2019. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 10:5742
    [Google Scholar]
  26. 26. 
    Son D, Lee J, Lee DJ, Ghaffari R, Yun S et al. 2015. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 9:65937–46
    [Google Scholar]
  27. 27. 
    Li C, Guo C, Fitzpatrick V, Ibrahim A, Zwierstra MJ et al. 2020. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5:61–81
    [Google Scholar]
  28. 28. 
    Brouwer TF, Yilmaz D, Lindeboom R, Buiten MS, Olde Nordkamp LRA et al. 2016. Long-term clinical outcomes of subcutaneous versus transvenous implantable defibrillator therapy. J. Am. Coll. Cardiol. 68:192047–55
    [Google Scholar]
  29. 29. 
    Deshmukh A, Brown L, Barbe MF, Braverman AS, Tiwari E et al. 2020. Fully implantable neural recording and stimulation interfaces: peripheral nerve interface applications. J. Neurosci. Methods 333:108562
    [Google Scholar]
  30. 30. 
    Lee JH, Kim H, Kim JH, Lee S-HH. 2016. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 16:6959–76
    [Google Scholar]
  31. 31. 
    Sunwoo SH, Kim T 2016. Materials and designs for multimodal flexible neural probes. Stretchable Bioelectronics for Medical Devices and Systems J Rogers, R Ghaffari, DH Kim 293–308 Cham, Switz: Springer
    [Google Scholar]
  32. 32. 
    Kim MS, Lee GJ, Choi C, Kim MS, Lee M et al. 2020. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 3:9546–53
    [Google Scholar]
  33. 33. 
    Choi G, Song Y, Lim H, Lee SH, Lee HK et al. 2020. Antibacterial nanopillar array for an implantable intraocular lens. Adv. Healthc. Mater. 9:182000447
    [Google Scholar]
  34. 34. 
    Gesing AL, Alves FDP, Paul S, Cordioli JA 2018. On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices. Sci. Rep. 8:3920
    [Google Scholar]
  35. 35. 
    Pons-Faudoa FP, Ballerini A, Sakamoto J, Grattoni A. 2019. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed. Microdevices 21:247
    [Google Scholar]
  36. 36. 
    Cha GD, Kang D, Lee J, Kim DH 2019. Bioresorbable electronic implants: history, materials, fabrication, devices, and clinical applications. Adv. Healthc. Mater. 8:111801660
    [Google Scholar]
  37. 37. 
    Sardu C, Marfella R, Santamaria M, Papini S, Parisi Q et al. 2018. Stretch, injury and inflammation markers evaluation to predict clinical outcomes after implantable cardioverter defibrillator therapy in heart failure patients with metabolic syndrome. Front. Physiol. 9:758
    [Google Scholar]
  38. 38. 
    Smith D. 2003. Postoperative inflammation after implantation of the implantable contact lens. Ophthalmology 110:122335–41
    [Google Scholar]
  39. 39. 
    Ling Y, An T, Yap LW, Zhu B, Gong S, Cheng W. 2020. Disruptive, soft, wearable sensors. Adv. Mater. 32:181904664
    [Google Scholar]
  40. 40. 
    Drees C, Makic MB, Case K, Mancuso MP, Hill A et al. 2016. Skin irritation during video-EEG monitoring. Neurodiagn. J. 56:3139–50
    [Google Scholar]
  41. 41. 
    Lau-Zhu A, Lau MPH, McLoughlin G. 2019. Mobile EEG in research on neurodevelopmental disorders: opportunities and challenges. Dev. Cogn. Neurosci. 36:100635
    [Google Scholar]
  42. 42. 
    Lee SM, Kim JH, Park C, Hwang J-YY, Hong JS et al. 2016. Self-adhesive and capacitive carbon nanotube-based electrode to record electroencephalograph signals from the hairy scalp. IEEE Trans. Biomed. Eng. 63:1138–47
    [Google Scholar]
  43. 43. 
    Zou Y, Dehzangi O, Nathan V, Jafari R. 2014. Automatic removal of EEG artifacts using electrode-scalp impedance. Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE
    [Google Scholar]
  44. 44. 
    Someya T, Bao Z, Malliaras GG 2016. The rise of plastic bioelectronics. Nature 540:7633379–85
    [Google Scholar]
  45. 45. 
    Feron K, Lim R, Sherwood C, Keynes A, Brichta A, Dastoor PC. 2018. Organic bioelectronics: materials and biocompatibility. Int. J. Mol. Sci. 19:82382
    [Google Scholar]
  46. 46. 
    Pan L, Wang F, Cheng Y, Leow WR, Zhang YW et al. 2020. A supertough electro-tendon based on spider silk composites. Nat. Commun. 11:1332
    [Google Scholar]
  47. 47. 
    Prodanov D, Delbeke J. 2016. Mechanical and biological interactions of implants with the brain and their impact on implant design. Front. Neurosci. 10:11
    [Google Scholar]
  48. 48. 
    Bhattarai SR, Bhattarai N, Viswanathamurthi P, Yi HK, Hwang PH, Kim HY. 2006. Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity. J. Biomed. Mater. Res. A 78:2247–57
    [Google Scholar]
  49. 49. 
    Nolta NF, Ghelich P, Han M. 2019. Recessed traces for planarized passivation of chronic neural microelectrodes. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2019.5125–28
    [Google Scholar]
  50. 50. 
    Abidian MR, Martin DC. 2008. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29:91273–83
    [Google Scholar]
  51. 51. 
    Lee Y, Kim J, Koo JH, Kim TH, Kim DH. 2018. Nanomaterials for bioelectronics and integrated medical systems. Korean J. Chem. Eng. 35:1–11
    [Google Scholar]
  52. 52. 
    Lee Y, Kim J, Joo H, Raj MS, Ghaffari R, Kim D-H. 2017. Wearable sensing systems with mechanically soft assemblies of nanoscale materials. Adv. Mater. Technol. 2:91700053
    [Google Scholar]
  53. 53. 
    Hong S, Lee S, Kim D-H. 2019. Materials and design strategies of stretchable electrodes for electronic skin and its applications. Proc. IEEE 107:102185–97
    [Google Scholar]
  54. 54. 
    Rogers JA, Someya T, Huang Y. 2010. Materials and mechanics for stretchable electronics. Science 327:59731603–7
    [Google Scholar]
  55. 55. 
    Lu N, Yang S 2015. Mechanics for stretchable sensors. Curr. Opin. Solid State Mater. Sci. 19:3149–59
    [Google Scholar]
  56. 56. 
    Nassar JM, Rojas JP, Hussain AM, Hussain MM. 2016. From stretchable to reconfigurable inorganic electronics. Extreme Mech. Lett. 9:245–68
    [Google Scholar]
  57. 57. 
    Wang C, Wang C, Huang Z, Xu S. 2018. Materials and structures toward soft electronics. Adv. Mater. 30:501801368
    [Google Scholar]
  58. 58. 
    Jang H, Dai Z, Ha K-H, Ameri SK, Lu N. 2019. Stretchability of PMMA-supported CVD graphene and of its electrical contacts. 2D Mater 7:014003
    [Google Scholar]
  59. 59. 
    Arab Hassani F, Jin H, Yokota T, Someya T, Thakor NV 2020. Soft sensors for a sensing-actuation system with high bladder voiding efficiency. Sci. Adv. 6:18eaba0412
    [Google Scholar]
  60. 60. 
    Qi D, Liu Z, Yu M, Liu Y, Tang Y et al. 2015. Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms. Adv. Mater. 27:203145–51
    [Google Scholar]
  61. 61. 
    Li T, Suo Z, Lacour SP, Wagner S. 2005. Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20:123274–77
    [Google Scholar]
  62. 62. 
    Gray DS, Tien J, Chen CS 2004. High-conductivity elastomeric electronics. Adv. Mater. 16:5393–97
    [Google Scholar]
  63. 63. 
    Hsu Y-Y, Gonzalez M, Bossuyt F, Axisa F, Vanfleteren J, De Wolf I. 2009. In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect. J. Mater. Res. 24:123573–82
    [Google Scholar]
  64. 64. 
    Hsu Y-Y, Gonzalez M, Bossuyt F, Vanfleteren J, De Wolf I. 2011. Polyimide-enhanced stretchable interconnects: design, fabrication, and characterization. IEEE Trans. Electron Devices 58:82680–88
    [Google Scholar]
  65. 65. 
    Su Y, Wu J, Fan Z, Hwang K-C, Song J et al. 2012. Postbuckling analysis and its application to stretchable electronics. J. Mech. Phys. Solids 60:3487–508
    [Google Scholar]
  66. 66. 
    Zhang Y, Xu S, Fu H, Lee J, Su J et al. 2013. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9:338062–70
    [Google Scholar]
  67. 67. 
    Widlund T, Yang S, Hsu Y-Y, Lu N 2014. Stretchability and compliance of freestanding serpentine-shaped ribbons. Int. J. Solids Struct. 51:23–244026–37
    [Google Scholar]
  68. 68. 
    Xu S, Zhang Y, Jia L, Mathewson KE, Jang K-I et al. 2014. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344:617970–74
    [Google Scholar]
  69. 69. 
    Yang S, Chen Y-C, Nicolini L, Pasupathy P, Sacks J et al. 2015.. “ Cut-and-paste” manufacture of multiparametric epidermal sensor systems. Adv. Mater. 27:416423–30
    [Google Scholar]
  70. 70. 
    Jeong H, Wang L, Ha T, Mitbander R, Yang X et al. 2019. Modular and reconfigurable wireless e-tattoos for personalized sensing. Adv. Mater. Technol. 4:81900117
    [Google Scholar]
  71. 71. 
    Fan JA, Yeo W-H, Su Y, Hattori Y, Lee W et al. 2014. Fractal design concepts for stretchable electronics. Nat. Commun. 5:3266
    [Google Scholar]
  72. 72. 
    Xu S, Zhang Y, Cho J, Lee J, Huang X et al. 2013. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4:1543
    [Google Scholar]
  73. 73. 
    Jeong J-W, Kim MK, Cheng H, Yeo W-H, Huang X et al. 2014. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthc. Mater. 3:5642–48
    [Google Scholar]
  74. 74. 
    Jang K-I, Chung HU, Xu S, Lee CH, Luan H et al. 2015. Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 6:6566
    [Google Scholar]
  75. 75. 
    Liu Z, Yu M, Lv J, Li Y, Yu Z 2014. Dispersed, porous nanoislands landing on stretchable nanocrack gold films: maintenance of stretchability and controllable impedance. ACS Appl. Mater. Interfaces 6:1613487–95
    [Google Scholar]
  76. 76. 
    Vachicouras N, Tringides CM, Campiche PB, Lacour SP. 2017. Engineering reversible elasticity in ductile and brittle thin films supported by a plastic foil. Extreme Mech. Lett. 15:63–69
    [Google Scholar]
  77. 77. 
    Vachicouras N, Tarabichi O, Kanumuri VV, Tringides CM, Macron J et al. 2019. Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Sci. Transl. Med. 11:514eaax9487
    [Google Scholar]
  78. 78. 
    Jang N-S, Kim K-H, Ha S-H, Jung S-H, Lee HM, Kim J-M 2017. Simple approach to high-performance stretchable heaters based on kirigami patterning of conductive paper for wearable thermotherapy applications. ACS Appl. Mater. Interfaces 9:2319612–21
    [Google Scholar]
  79. 79. 
    Wang L, Qiao S, Ameri SK, Jeong H, Lu N. 2017. A thin elastic membrane conformed to a soft and rough substrate subjected to stretching/compression. J. Appl. Mech. 84:11111003
    [Google Scholar]
  80. 80. 
    Wang L, Lu N. 2016. Conformability of a thin elastic membrane laminated on a soft substrate with slightly wavy surface. J. Appl. Mech. 83:4041007
    [Google Scholar]
  81. 81. 
    Cheng H, Wang S 2014. Mechanics of interfacial delamination in epidermal electronics systems. J. Appl. Mech. 81:4044501
    [Google Scholar]
  82. 82. 
    Wang S, Li M, Wu J, Kim D-H, Lu N et al. 2012. Mechanics of epidermal electronics. J. Appl. Mech 79:3031022
    [Google Scholar]
  83. 83. 
    Kim J, Son D, Lee M, Song C, Song J-K et al. 2016. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Sci. Adv. 2:1e1501101
    [Google Scholar]
  84. 84. 
    Son D, Chae SI, Kim M, Choi MK, Yang J et al. 2016. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv. Mater. 28:429326–32
    [Google Scholar]
  85. 85. 
    Kim J, Shim HJ, Yang J, Choi MK, Kim DC et al. 2017. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 29:381700217
    [Google Scholar]
  86. 86. 
    Jeong J-W, Yeo W-H, Akhtar A, Norton JJS, Kwack Y-J et al. 2013. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25:476839–46
    [Google Scholar]
  87. 87. 
    Ameri SK, Kim M, Kuang IA, Perera WK, Alshiekh M et al. 2018. Imperceptible electrooculography graphene sensor system for human-robot interface. npj 2D Mater. Appl. 2:19
    [Google Scholar]
  88. 88. 
    Kim D-H, Viventi J, Amsden JJ, Xiao J, Vigeland L et al. 2010. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9:6511–17
    [Google Scholar]
  89. 89. 
    Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP et al. 2000. Adhesive force of a single gecko foot-hair. Nature 405:6787681–85
    [Google Scholar]
  90. 90. 
    Sahay R, Low HY, Baji A, Foong S, Wood KL. 2015. A state-of-the-art review and analysis on the design of dry adhesion materials for applications such as climbing micro-robots. RSC Adv 5:6350821–32
    [Google Scholar]
  91. 91. 
    Boesel LF, Greiner C, Arzt E, del Campo A. 2010. Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Adv. Mater. 22:192125–37
    [Google Scholar]
  92. 92. 
    Kamperman M, Kroner E, del Campo A, McMeeking RM, Arzt E 2010. Functional adhesive surfaces with “gecko” effect: the concept of contact splitting. Adv. Eng. Mater. 12:5335–48
    [Google Scholar]
  93. 93. 
    Yao H, Gao H. 2006. Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54:61120–46
    [Google Scholar]
  94. 94. 
    Pang C, Koo JH, Nguyen A, Caves JM, Kim M-G et al. 2015. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27:4634–40
    [Google Scholar]
  95. 95. 
    Kim T, Park J, Sohn J, Cho D, Jeon S 2016. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 10:44770–78
    [Google Scholar]
  96. 96. 
    Choi MK, Park OK, Choi C, Qiao S, Ghaffari R et al. 2016. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Healthc. Mater. 5:180–87
    [Google Scholar]
  97. 97. 
    Ying M, Bonifas AP, Lu N, Su Y, Li R et al. 2012. Silicon nanomembranes for fingertip electronics. Nanotechnology 23:34344004
    [Google Scholar]
  98. 98. 
    Xu L, Gutbrod SR, Bonifas AP, Su Y, Sulkin MS et al. 2014. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5:3329
    [Google Scholar]
  99. 99. 
    Park J, Choi S, Janardhan AH, Lee S-YY, Raut S et al. 2016. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 8:344344ra86
    [Google Scholar]
  100. 100. 
    Choi C, Choi MK, Liu S, Kim MS, Park OK et al. 2017. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8:1664
    [Google Scholar]
  101. 101. 
    Kim D-H, Lu N, Ghaffari R, Kim Y-S, Lee SP et al. 2011. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10:4316–23
    [Google Scholar]
  102. 102. 
    Zhang Y, Zheng N, Cao Y, Wang F, Wang P et al. 2019. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 5:4eaaw1066
    [Google Scholar]
  103. 103. 
    Liu J, Fu TM, Cheng Z, Hong G, Zhou T et al. 2015. Syringe-injectable electronics. Nat. Nanotechnol. 10:7629–35
    [Google Scholar]
  104. 104. 
    Zhou T, Hong G, Fu T-M, Yang X, Schuhmann TG et al. 2017. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. PNAS 114:235894–99
    [Google Scholar]
  105. 105. 
    Fu T-M, Hong G, Zhou T, Schuhmann TG, Viveros RD, Lieber CM. 2016. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13:10875–82
    [Google Scholar]
  106. 106. 
    Tian B, Liu J, Dvir T, Jin L, Tsui JH et al. 2012. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11:986–94
    [Google Scholar]
  107. 107. 
    Xie C, Liu J, Fu TM, Dai X, Zhou W, Lieber CM. 2015. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14:121286–92
    [Google Scholar]
  108. 108. 
    Wang X, Guo X, Ye J, Zheng N, Kohli P et al. 2019. Freestanding 3D mesostructures, functional devices, and shape-programmable systems based on mechanically induced assembly with shape memory polymers. Adv. Mater. 31:21805615
    [Google Scholar]
  109. 109. 
    Xu S, Yan Z, Jang K-I, Huang W, Fu H et al. 2015. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347:6218154–59
    [Google Scholar]
  110. 110. 
    Wang X, Feiner R, Luan H, Zhang Q, Zhao S et al. 2020. Three-dimensional electronic scaffolds for monitoring and regulation of multifunctional hybrid tissues. Extrem. Mech. Lett. 35:100634
    [Google Scholar]
  111. 111. 
    Yan Z, Han M, Shi Y, Badea A, Yang Y et al. 2017. Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. PNAS 114:45E9455–64
    [Google Scholar]
  112. 112. 
    Li Q, Nan K, Le Floch P, Lin Z, Sheng H et al. 2019. Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett 19:85781–89
    [Google Scholar]
  113. 113. 
    Kim DC, Shim HJ, Lee W, Koo JH, Kim D-H. 2020. Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 32:151902743
    [Google Scholar]
  114. 114. 
    Guo R, Liu J. 2017. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions. J. Micromech. Microeng 27:10104002
    [Google Scholar]
  115. 115. 
    Ota H, Chen K, Lin Y, Kiriya D, Shiraki H et al. 2014. Highly deformable liquid-state heterojunction sensors. Nat. Commun. 5:5032
    [Google Scholar]
  116. 116. 
    Wen X, Wang B, Huang S, Liu TL, Lee M-S et al. 2019. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens. Bioelectron. 131:37–45
    [Google Scholar]
  117. 117. 
    Gannarapu A, Gozen BA. 2016. Freeze-printing of liquid metal alloys for manufacturing of 3D, conductive, and flexible networks. Adv. Mater. Technol. 1:41600047
    [Google Scholar]
  118. 118. 
    Choi MK, Park I, Kim DC, Joh E, Park OK et al. 2015. Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv. Funct. Mater. 25:467109–18
    [Google Scholar]
  119. 119. 
    Son D, Koo JH, Song JK, Kim J, Lee M et al. 2015. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics. ACS Nano 9:55585–93
    [Google Scholar]
  120. 120. 
    Kim J, Ghaffari R, Kim D-H. 2017. The quest for miniaturized soft bioelectronic devices. Nat. Biomed. Eng. 1:0049
    [Google Scholar]
  121. 121. 
    Koo JH, Song J-K, Kim D-H. 2019. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology 30:13132001
    [Google Scholar]
  122. 122. 
    Lee E, Kim HJ, Park Y, Lee S, Lee SY et al. 2019. Direct patterning of a carbon nanotube thin layer on a stretchable substrate. Micromachines 10:8530
    [Google Scholar]
  123. 123. 
    Gilshteyn EP, Lin S, Kondrashov VA, Kopylova DS, Tsapenko AP et al. 2018. A one-step method of hydrogel modification by single-walled carbon nanotubes for highly stretchable and transparent electronics. ACS Appl. Mater. Interfaces 10:3328069–75
    [Google Scholar]
  124. 124. 
    Li X, Li Y, Guan T, Xu F, Sun J. 2018. Durable, highly electrically conductive cotton fabrics with healable superamphiphobicity. ACS Appl. Mater. Interfaces 10:1412042–50
    [Google Scholar]
  125. 125. 
    Yang M, Pan J, Xu A, Luo L, Cheng D et al. 2018. Conductive cotton fabrics for motion sensing and heating applications. Polymers 10:6568
    [Google Scholar]
  126. 126. 
    Lin Z-I, Lou C-W, Pan Y-J, Hsieh C-T, Huang C-H et al. 2017. Conductive fabrics made of polypropylene/multi-walled carbon nanotube coated polyester yarns: mechanical properties and electromagnetic interference shielding effectiveness. Compos. Sci. Technol. 141:74–82
    [Google Scholar]
  127. 127. 
    Hu L, Pasta M, La Mantia F, Cui L, Jeong S et al. 2010. Stretchable, porous, and conductive energy textiles. Nano Lett 10:2708–14
    [Google Scholar]
  128. 128. 
    Jia L-C, Xu L, Ren F, Ren P-G, Yan D-X, Li Z-M 2019. Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144:101–8
    [Google Scholar]
  129. 129. 
    Tseghai GB, Mengistie DA, Malengier B, Fante KA, Van Langenhove L. 2020. PEDOT:PSS-based conductive textiles and their applications. Sensors 20:71881
    [Google Scholar]
  130. 130. 
    Tadesse MG, Mengistie DA, Chen Y, Wang L, Loghin C, Nierstrasz V. 2019. Electrically conductive highly elastic polyamide/lycra fabric treated with PEDOT:PSS and polyurethane. J. Mater. Sci. 54:9591–602
    [Google Scholar]
  131. 131. 
    Song W-L, Gong C, Li H, Cheng X-D, Chen M et al. 2017. Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl. Mater. Interfaces 9:4136119–29
    [Google Scholar]
  132. 132. 
    Zhao Z, Huang Q, Yan C, Liu Y, Zeng X et al. 2020. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 70:104528
    [Google Scholar]
  133. 133. 
    Ganji M, Tanaka A, Gilja V, Halgren E, Dayeh SA. 2017. Scaling effects on the electrochemical stimulation performance of Au, Pt, and PEDOT:PSS electrocorticography arrays. Adv. Funct. Mater. 27:421703019
    [Google Scholar]
  134. 134. 
    Ganji M, Elthakeb AT, Tanaka A, Gilja V, Halgren E, Dayeh SA. 2017. Scaling effects on the electrochemical performance of poly(3,4-ethylenedioxythiophene (PEDOT), Au, and Pt for electrocorticography recording. Adv. Funct. Mater. 27:421703018
    [Google Scholar]
  135. 135. 
    Ganji M, Kaestner E, Hermiz J, Rogers N, Tanaka A et al. 2018. Development and translation of PEDOT:PSS microelectrodes for intraoperative monitoring. Adv. Funct. Mater. 28:121700232
    [Google Scholar]
  136. 136. 
    Wang Y, Zhu C, Pfattner R, Yan H, Jin L et al. 2017. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3:3e1602076
    [Google Scholar]
  137. 137. 
    Fang Y, Li Y, Li Y, Ding M, Xie J, Hu B. 2020. Solution-processed submicron free-standing, conformal, transparent, breathable epidermal electrodes. ACS Appl. Mater. Interfaces 12:2123689–96
    [Google Scholar]
  138. 138. 
    Lu B, Yuk H, Lin S, Jian N, Qu K et al. 2019. Pure PEDOT:PSS hydrogels. Nat. Commun. 10:1043
    [Google Scholar]
  139. 139. 
    Aregueta-Robles UA, Woolley AJ, Poole-Warren LA, Lovell NH, Green RA. 2014. Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. 7:15
    [Google Scholar]
  140. 140. 
    Cha GD, Lee WH, Lim C, Choi MK, Kim D-HH. 2020. Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale 12:1910456–73
    [Google Scholar]
  141. 141. 
    Choi S, Han SI, Kim D, Hyeon T, Kim D-H. 2019. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48:61566–95
    [Google Scholar]
  142. 142. 
    Wang H, Biswas SK, Zhu S, Lu Y, Yue Y et al. 2020. Self-healable electro-conductive hydrogels based on core-shell structured nanocellulose/carbon nanotubes hybrids for use as flexible supercapacitors. Nanomaterials 10:1112
    [Google Scholar]
  143. 143. 
    Liu Y, Liu J, Chen S, Lei T, Kim Y et al. 2019. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3:58–68
    [Google Scholar]
  144. 144. 
    Choi C, Lee Y, Cho KW, Koo JH, Kim D-H. 2019. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 52:173–81
    [Google Scholar]
  145. 145. 
    Nam J, Lim HK, Kim NH, Park JK, Kang ES et al. 2020. Supramolecular peptide hydrogel-based soft neural interface augments brain signals through a three-dimensional electrical network. ACS Nano 14:1664–75
    [Google Scholar]
  146. 146. 
    Lim C, Shin Y, Jung J, Kim JH, Lee S, Kim DH 2019. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Mater 7:3031502
    [Google Scholar]
  147. 147. 
    Hong S, Lee J, Do K, Lee M, Kim JH et al. 2017. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Adv. Funct. Mater. 27:481704353
    [Google Scholar]
  148. 148. 
    Joo H, Jung D, Sunwoo S-H, Koo JH, Kim D-H. 2020. Material design and fabrication strategies for stretchable metallic nanocomposites. Small 16:111906270
    [Google Scholar]
  149. 149. 
    Du J, Wang L, Shi Y, Zhang F, Hu S et al. 2020. Optimized CNT-PDMS flexible composite for attachable health-care device. Sensors 20:164523
    [Google Scholar]
  150. 150. 
    Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H et al. 2017. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16:3303–8
    [Google Scholar]
  151. 151. 
    Chu M, Nguyen T, Pandey V, Zhou Y, Pham HN et al. 2019. Respiration rate and volume measurements using wearable strain sensors. npj Digit. Med. 2:8
    [Google Scholar]
  152. 152. 
    Ren M, Zhou Y, Wang Y, Zheng G, Dai K et al. 2019. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem. Eng. J. 360:762–77
    [Google Scholar]
  153. 153. 
    Zhou X, Zhu L, Fan L, Deng H, Fu Q. 2018. Fabrication of highly stretchable, washable, wearable, water-repellent strain sensors with multi-stimuli sensing ability. ACS Appl. Mater. Interfaces 10:3731655–63
    [Google Scholar]
  154. 154. 
    Song Y, Chen H, Chen X, Wu H, Guo H et al. 2018. All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy 53:189–97
    [Google Scholar]
  155. 155. 
    Zheng Y, Li Y, Dai K, Wang Y, Zheng G et al. 2018. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 156:276–86
    [Google Scholar]
  156. 156. 
    Dang Z-M, Yuan J-K, Zha J-W, Zhou T, Li S-T, Hu G-H. 2012. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 57:4660–723
    [Google Scholar]
  157. 157. 
    Matsuhisa N, Inoue D, Zalar P, Jin H, Matsuba Y et al. 2017. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16:8834–40
    [Google Scholar]
  158. 158. 
    Choi S, Han SI, Jung D, Hwang HJ, Lim C et al. 2018. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol 13:111048–56
    [Google Scholar]
  159. 159. 
    Sunwoo SH, Han SI, Kang H, Cho YS, Jung D et al. 2020. Stretchable low-impedance nanocomposite comprised of Ag-Au core-shell nanowires and Pt black for epicardial recording and stimulation. Adv. Mater. Technol. 5:31900768
    [Google Scholar]
  160. 160. 
    Liu Z, Wang H, Huang P, Huang J, Zhang Y et al. 2019. Highly stable and stretchable conductive films through thermal-radiation-assisted metal encapsulation. Adv. Mater. 31:351901360
    [Google Scholar]
  161. 161. 
    Ereifej ES, Smith CS, Meade SM, Chen K, Feng H, Capadona JR. 2018. The neuroinflammatory response to nanopatterning parallel grooves into the surface structure of intracortical microelectrodes. Adv. Funct. Mater. 28:121704420
    [Google Scholar]
  162. 162. 
    Buzsaki G. 2004. Neuronal oscillations in cortical networks. Science 304:56791926–29
    [Google Scholar]
  163. 163. 
    Kim E, Kim J-Y, Choi H. 2017. An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth. Micro Nano Syst. Lett. 5:28
    [Google Scholar]
  164. 164. 
    Ferlauto L, D'Angelo AN, Vagni P, Airaghi Leccardi MJI, Mor FM et al. 2018. Development and characterization of PEDOT:PSS/alginate soft microelectrodes for application in neuroprosthetics. Front. Neurosci. 12:648
    [Google Scholar]
  165. 165. 
    Abidian MR, Martin DC. 2009. Multifunctional nanobiomaterials for neural interfaces. Adv. Funct. Mater. 19:4573–85
    [Google Scholar]
  166. 166. 
    Kim SJ, Cho HR, Cho KW, Qiao S, Rhim JS et al. 2015. Multifunctional cell-culture platform for aligned cell sheet monitoring, transfer printing, and therapy. ACS Nano 9:32677–88
    [Google Scholar]
  167. 167. 
    Cho KW, Kim SJ, Kim J, Song SY, Lee WH et al. 2019. Large scale and integrated platform for digital mass culture of anchorage dependent cells. Nat. Commun. 10:4824
    [Google Scholar]
  168. 168. 
    Kim SJ, Cho KW, Cho HR, Wang L, Park SY et al. 2016. Stretchable and transparent biointerface using cell-sheet-graphene hybrid for electrophysiology and therapy of skeletal muscle. Adv. Funct. Mater. 26:193207–17
    [Google Scholar]
  169. 169. 
    Green RA, Lim KS, Henderson WC, Hassarati RT, Martens PJ et al. 2013. Living electrodes: tissue engineering the neural interface. Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)pp. 6957–60 Piscataway, NJ: IEEE
    [Google Scholar]
  170. 170. 
    Wise AK, Fallon JB, Neil AJ, Pettingill LN, Geaney MS et al. 2011. Combining cell-based therapies and neural prostheses to promote neural survival. Neurotherapeutics 8:4774–87
    [Google Scholar]
  171. 171. 
    Serruya MD, Harris JP, Adewole DO, Struzyna LA, Burrell JC et al. 2018. Engineered axonal tracts as “living electrodes” for synaptic-based modulation of neural circuitry. Adv. Funct. Mater. 28:12e1701183
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101420-024336
Loading
/content/journals/10.1146/annurev-chembioeng-101420-024336
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error