1932

Abstract

Since its first appearance in the 1960s, solid support–free liquid–liquid chromatography has played an ever-growing role in the field of natural products research. The use of the two phases of a liquid biphasic system, the mobile and stationary phases, renders the technique highly versatile and adaptable to a wide spectrum of target molecules, from hydrophobic to highly polar small molecules to proteins. Generally considered a niche technique used only for small-scale preparative separations, liquid–liquid chromatography currently lags far behind conventional liquid–solid chromatography and liquid–liquid extraction in process modeling and industrial acceptance. This review aims to expose a broader audience to this high-potential separation technique by presenting the wide variety of available operating modes and solvent systems as well as structured, model-based design approaches. Topics currently offering opportunities for further investigation are also addressed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101420-033548
2021-06-07
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-101420-033548.html?itemId=/content/journals/10.1146/annurev-chembioeng-101420-033548&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ito Y, Weinstein M, Aoki I, Harada R, Kimura E, Nunogaki K. 1966.. The coil planet centrifuge. . Nature 212::98587
    [Google Scholar]
  2. 2. 
    Craig LC, Post O. 1949.. Apparatus for countercurrent distribution. . Anal. Chem. 21::5004
    [Google Scholar]
  3. 3. 
    Foucault AP. 1995.. Centrifugal Partition Chromatography. Abingdon, UK:: Taylor & Francis
    [Google Scholar]
  4. 4. 
    Conway WD. 1990.. Countercurrent Chromatography: Apparatus, Theory, and Applications. Weinheim, Ger:.: Wiley-VCH
    [Google Scholar]
  5. 5. 
    Berthod A. 2002.. Countercurrent Chromatography: The Support-Free Liquid Stationary Phase. Compr. Anal. Chem. 38 . Amsterdam:: Elsevier Sci. Technol.
    [Google Scholar]
  6. 6. 
    Morley R, Minceva M. 2020.. Operating mode and parameter selection in liquid-liquid chromatography. . J. Chromatogr. A 1617::460479
    [Google Scholar]
  7. 7. 
    Pauli GF, Pro SM, Friesen JB. 2008.. Countercurrent separation of natural products. . J. Nat. Prod. 71::1489508
    [Google Scholar]
  8. 8. 
    Ito Y. 2005.. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. . J. Chromatogr. A 1065::14568
    [Google Scholar]
  9. 9. 
    Goll J, Morley R, Minceva M. 2017.. Trapping multiple dual mode centrifugal partition chromatography for the separation of intermediately-eluting components: operating parameter selection. . J. Chromatogr. A 1496::6879
    [Google Scholar]
  10. 10. 
    Morley R, Minceva M. 2017.. Trapping multiple dual mode centrifugal partition chromatography for the separation of intermediately-eluting components: throughput maximization strategy. . J. Chromatogr. A 1501::2638
    [Google Scholar]
  11. 11. 
    Hopmann EA. 2013.. Development of a Centrifugal Partition Chromatographic Separation: From Molecule to Process. Munich, Ger:.: Verlag Dr. Hut
    [Google Scholar]
  12. 12. 
    Goll J, Frey A, Minceva M. 2013.. Study of the separation limits of continuous solid support free liquid-liquid chromatography: separation of capsaicin and dihydrocapsaicin by centrifugal partition chromatography. . J. Chromatogr. A 1284::5968
    [Google Scholar]
  13. 13. 
    Ito Y. 1987.. High-speed countercurrent chromatography. . Nature 326::41920
    [Google Scholar]
  14. 14. 
    Ito Y, Bowman RL. 1970.. Countercurrent chromatography: liquid-liquid partition chromatography without solid support. . Science 167::28183
    [Google Scholar]
  15. 15. 
    Ito Y. 2005.. Origin and evolution of the coil planet centrifuge: a personal reflection of my 40 years of CCC research and development. . Sep. Purif. Rev. 34::13154
    [Google Scholar]
  16. 16. 
    Sutherland I, Brown L, Forbes S, Games G, Hawes D, et al. 1998.. Countercurrent chromatography (CCC) and its versatile application as an industrial purification & production process. . J. Liq. Chromatogr. Relat. Technol. 21::27998
    [Google Scholar]
  17. 17. 
    Ito Y. 2005.. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. . J. Chromatogr. A 1065::14568
    [Google Scholar]
  18. 18. 
    Minceva M. 2013.. Model-based design of preparative liquid-chromatography processes. Thesis, Univ. Erlangen-Nuremberg, Erlangen, Ger:
    [Google Scholar]
  19. 19. 
    Murayama W, Kobayashi T, Kosuge Y, Yano H, Nunogaki Y, Nunogaki K. 1982.. A new centrifugal counter-current chromatograph and its application. . J. Chromatogr. A 239::64349
    [Google Scholar]
  20. 20. 
    Couillard F. 2010.. Cells and connecting channels for centrifugal partition chromatography devices. US Patent 2010/0200488 A1
    [Google Scholar]
  21. 21. 
    Schwienheer C, Merz J, Schembecker G. 2015.. Investigation, comparison and design of chambers used in centrifugal partition chromatography on the basis of flow pattern and separation experiments. . J. Chromatogr. A 1390::3949
    [Google Scholar]
  22. 22. 
    Nunogaki Y. 1989.. Centrifugal counter-current distribution chromatography. US Patent 4877523A
    [Google Scholar]
  23. 23. 
    de La Poype F, de La Poype R, Durand P, Foucault A, Legrand J, et al. 2003.. Cell centrifuge partition chromatography device. US Patent 2003/6537452 B1
    [Google Scholar]
  24. 24. 
    Foucault A, Legrand J, Marchal L, Durand D. 2008.. Method for optimally sizing cells of a centrifugal partition chromatography device. US Patent 2008/0035546 A1
    [Google Scholar]
  25. 25. 
    Sutherland IA, Audo G, Bourton E, Couillard F, Fisher D, et al. 2008.. Rapid linear scale-up of a protein separation by centrifugal partition chromatography. . J. Chromatogr. A 1190::5762
    [Google Scholar]
  26. 26. 
    Sutherland I, Hewitson P, Ignatova S. 2009.. New 18-l process-scale counter-current chromatography centrifuge. . J. Chromatogr. A 1216::42015
    [Google Scholar]
  27. 27. 
    Ignatova S, Wood P, Hawes D, Janaway L, Keay D, Sutherland I. 2007.. Feasibility of scaling from pilot to process scale. . J. Chromatogr. A 1151::2024
    [Google Scholar]
  28. 28. 
    Ward DP, Hewitson P, Cárdenas-Fernández M, Hamley-Bennett C, Alba Díaz-Rodríguez A, et al. 2017.. Centrifugal partition chromatography in a biorefinery context: Optimisation and scale-up of monosaccharide fractionation from hydrolysed sugar beet pulp. . J. Chromatogr. A 1497::5663
    [Google Scholar]
  29. 29. 
    Roehrer S, Minceva M. 2019.. Evaluation of inter-apparatus separation method transferability in countercurrent chromatography and centrifugal partition chromatography. . Separations 6::36
    [Google Scholar]
  30. 30. 
    Lorántfy L, Rutterschmid D, Örkényi R, Bakonyi D, Faragó J, et al. 2020.. Continuous industrial-scale centrifugal partition chromatography with automatic solvent system handling: concept and instrumentation. . Org. Proc. Res. Dev. 24:(11):267688
    [Google Scholar]
  31. 31. 
    Bouju E, Berthod A, Faure K. 2015.. Scale-up in centrifugal partition chromatography: the “free-space between peaks” method. . J. Chromatogr. A 1409::7078
    [Google Scholar]
  32. 32. 
    Friesen JB, Pauli GF. 2005.. G.U.E.S.S.—a generally useful estimate of solvent systems for CCC. . J. Liq. Chromatogr. Relat. Technol. 28::2777806
    [Google Scholar]
  33. 33. 
    Skalicka-Woźniak K, Garrard I. 2015.. A comprehensive classification of solvent systems used for natural product purifications in countercurrent and centrifugal partition chromatography. . Nat. Prod. Rep. 32::155661
    [Google Scholar]
  34. 34. 
    Skalicka-Woźniak K, Garrard I. 2014.. Counter-current chromatography for the separation of terpenoids: a comprehensive review with respect to the solvent systems employed. . Phytochem. Rev. 13::54772
    [Google Scholar]
  35. 35. 
    Camacho-Frias E, Foucault A. 1996.. Solvent systems in centrifugal partition chromatography. . Analusis 24::15967
    [Google Scholar]
  36. 36. 
    Oka F, Oka H, Ito Y. 1991.. Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography. . J. Chromatogr. A 538::99108
    [Google Scholar]
  37. 37. 
    Berthod A. 1991.. Practical approach to high-speed counter-current chromatography. . J. Chromatogr. A 550::67793
    [Google Scholar]
  38. 38. 
    Friesen JB, McAlpine JB, Chen S-N, Pauli GF. 2015.. Countercurrent separation of natural products: an update. . J. Nat. Prod. 78::176596
    [Google Scholar]
  39. 39. 
    Ito Y, Knight M, Finn TM. 2013.. Spiral countercurrent chromatography. . J. Chromatogr. Sci. 51::72638
    [Google Scholar]
  40. 40. 
    Bezold F, Goll J, Minceva M. 2015.. Study of the applicability of non-conventional aqueous two-phase systems in counter-current and centrifugal partition chromatography. . J. Chromatogr. A 1388::12632
    [Google Scholar]
  41. 41. 
    Sutherland IA. 2007.. Review of centrifugal liquid-liquid chromatography using aqueous two-phase solvent (ATPS) systems: its scale-up and prospects for the future production of high-value biologics. . Curr. Opin. Drug Discov. 10::54049
    [Google Scholar]
  42. 42. 
    Ruiz-Angel MJ, Pino V, Carda-Broch S, Berthod A. 2007.. Solvent systems for countercurrent chromatography: an aqueous two phase liquid system based on a room temperature ionic liquid. . J. Chromatogr. A 1151::6573
    [Google Scholar]
  43. 43. 
    Schwienheer C, Merz J, Schembecker G. 2015.. Selection and use of poly ethylene glycol and phosphate based aqueous two-phase systems for the separation of proteins by centrifugal partition chromatography. . J. Liq. Chromatogr. Relat. Technol. 38::92941
    [Google Scholar]
  44. 44. 
    Bezold F, Minceva M. 2019.. A water-free solvent system containing an L-menthol-based deep eutectic solvent for centrifugal partition chromatography applications. . J. Chromatogr. A 1587::16671
    [Google Scholar]
  45. 45. 
    Friesen JB, Pauli GF. 2009.. GUESSmix-guided optimization of elution-extrusion counter-current separations. . J. Chromatogr. A 1216::422531
    [Google Scholar]
  46. 46. 
    Ito Y, Conway WD. 1986.. High-speed countercurrent chromatography. . Crit. Rev. Anal. Chem. 17::65143
    [Google Scholar]
  47. 47. 
    Hostettmann K, Hostettmann M, Marston A. 1984.. Isolation of natural products by droplet counter-current chromatography and related methods. . Nat. Prod. Rep. 1::47181
    [Google Scholar]
  48. 48. 
    Menet J-M, Thiébaut D, eds. 1999.. Countercurrent Chromatography. Boca Raton, FL:: CRC Press
    [Google Scholar]
  49. 49. 
    Hostettmann K, Hostettmann M, Marston A. 1998.. Preparative Chromatography Techniques: Applications in Natural Product Isolation. Berlin:: Springer-Verlag
    [Google Scholar]
  50. 50. 
    Berthod A. 2009.. Countercurrent chromatography. . In Advances in Chromatography, Vol. 47, ed. E Grushka, N Grinberg , pp. 32352. Boca Raton, FL:: CRC Press
    [Google Scholar]
  51. 51. 
    Luca SV, Bujor A, Miron A, Aprotosoaie AC, Skalicka-Wozniak K, Trifan A. 2019.. Preparative separation and bioactivity of oligomeric proanthocyanidins. . Phytochem. Rev. 19::1093140
    [Google Scholar]
  52. 52. 
    Luca SV, Miron A, Ignatova S, Skalicka-Wozniak K. 2019.. An overview of the two-phase solvent systems used in the countercurrent separation of phenylethanoid glycosides and iridoids and their biological relevance. . Phytochem. Rev. 18::377403
    [Google Scholar]
  53. 53. 
    Friesen JB, Pauli GF. 2007.. Rational development of solvent system families in counter-current chromatography. . J. Chromatogr. A 1151::5159
    [Google Scholar]
  54. 54. 
    Lu Y, Berthod A, Hu R, Ma W, Pan Y. 2009.. Screening of complex natural extracts by countercurrent chromatography using a parallel protocol. . Anal. Chem. 81::404859
    [Google Scholar]
  55. 55. 
    Friesen JB, Pauli GF. 2008.. Performance characteristics of countercurrent separation in analysis of natural products of agricultural significance. . J. Agric. Food Chem. 56::1928
    [Google Scholar]
  56. 56. 
    Liang J, Meng J, Wu D, Guo M, Wu S. 2015.. A novel 9 × 9 map-based solvent selection strategy for targeted counter-current chromatography isolation of natural products. . J. Chromatogr. A 1400::2739
    [Google Scholar]
  57. 57. 
    Wei Y, Razwan Sardar M, Sutherland IA, Fisher D. 2011.. Separation of delphinidin-3-O-sambubioside, cyanidin-3-O-sambubioside and p-coumaric acid from cranberry by CCC followed by prep-HPLC using robotic CCC solvent system selection. . Chromatographia 74::36773
    [Google Scholar]
  58. 58. 
    Hopmann E, Arlt W, Minceva M. 2011.. Solvent system selection in counter-current chromatography using conductor-like screening model for real solvents. . J. Chromatogr. A 1218::24250
    [Google Scholar]
  59. 59. 
    Hopmann E, Frey A, Minceva M. 2012.. A priori selection of the mobile and stationary phase in centrifugal partition chromatography and counter-current chromatography. . J. Chromatogr. A 1238::6876
    [Google Scholar]
  60. 60. 
    Liu Y, Kuang P, Guo S, Sun Q, Xue T, Li H. 2018.. An overview of recent progress in solvent systems, additives and modifiers of counter current chromatography. . New J. Chem. 42::6584600
    [Google Scholar]
  61. 61. 
    Renon H, Prausnitz JM. 1968.. Local compositions in thermodynamic excess functions for liquid mixtures. . AIChE J. 14::13544
    [Google Scholar]
  62. 62. 
    Abrams DS, Prausnitz JM. 1975.. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. . AIChE J. 21::11628
    [Google Scholar]
  63. 63. 
    Fredenslund A, Gmehling J, Rasmussen P. 1977.. Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method. Amsterdam:: Elsevier Sci.
    [Google Scholar]
  64. 64. 
    Fredenslund A, Jones RL, Prausnitz JM. 1975.. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. . AIChE J. 21::108699
    [Google Scholar]
  65. 65. 
    Klamt A. 1995.. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. . J. Phys. Chem. 99::222435
    [Google Scholar]
  66. 66. 
    Gross J, Sadowski G. 2001.. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. . Ind. Eng. Chem. Res. 40::124460
    [Google Scholar]
  67. 67. 
    Sørensen JM, Arlt W, Macedo A, Rasmussen P. 1979.. Liquid-Liquid Equilibrium Data Collection. DECHEMA Chem. Data Ser. V . Frankfurt/Main:: Scholium Int.
    [Google Scholar]
  68. 68. 
    Frey A, Hopmann E, Minceva M. 2014.. Selection of biphasic liquid systems in liquid-liquid chromatography using predictive thermodynamic models. . Chem. Eng. Technol. 37::166374
    [Google Scholar]
  69. 69. 
    Frey A. 2017.. Systematic selection and tailoring of biphasic solvent systems in liquid-liquid chromatography. PhD thesis, Friedrich-Alexander Univ. Erlangen-Nuremberg, Erlangen, Ger:
    [Google Scholar]
  70. 70. 
    Foucault A, Bousquet O, Le Goffic F. 1992.. Importance of the parameter Vm/Vc in countercurrent chromatography: tentative comparison between instrument designs. . J. Liq. Chromatogr. 15::2691706
    [Google Scholar]
  71. 71. 
    Foucault AP, Bousquet O, Le Goffic F, Cazes J. 1992.. Countercurrent chromatography with a new centrifugal partition chromatographic system. . J. Liq. Chromatogr. 15::272133
    [Google Scholar]
  72. 72. 
    Foucault AP, Frias EC, Bordier CG, Le Goffic F. 1994.. Centrifugal partition chromatography: stability of various biphasic systems and pertinence of the “Stoke's model” to describe the influence of the centrifugal field upon the efficiency. . J. Liq. Chromatogr. 17::117
    [Google Scholar]
  73. 73. 
    Ignatova S, Maryutina T, Spivakov BY. 2001.. Effect of physicochemical properties of two-phase liquid systems on the retention of stationary phase in a CCC column. . J. Liq. Chromatogr. Relat. Technol. 24::165568
    [Google Scholar]
  74. 74. 
    Ignatova S, Sutherland I. 2003.. A fast, effective method of characterizing new phase systems in CCC. . J. Liq. Chromatogr. Relat. Technol. 26::155164
    [Google Scholar]
  75. 75. 
    Adelmann S, Schembecker G. 2011.. Influence of physical properties and operating parameters on hydrodynamics in centrifugal partition chromatography. . J. Chromatogr. A 1218::540113
    [Google Scholar]
  76. 76. 
    Fumat N, Berthod A, Faure K. 2016.. Effect of operating parameters on a centrifugal partition chromatography separation. . J. Chromatogr. A 1474::4758
    [Google Scholar]
  77. 77. 
    Wood PL, Hawes D, Janaway L, Sutherland IA. 2003.. Stationary phase retention in CCC: modelling the J-type centrifuge as a constant pressure drop pump. . J. Liq. Chromatogr. Relat. Technol. 26::137396
    [Google Scholar]
  78. 78. 
    Fromme A, Funke F, Merz J, Schembecker G. 2020.. Correlating physical properties of aqueous-organic solvent systems and stationary phase retention in a centrifugal partition chromatograph in descending mode. . J. Chromatogr. A 1615::460742
    [Google Scholar]
  79. 79. 
    Fromme A, Fischer C, Klump D, Schembecker G. 2020.. Correlating the phase settling behavior of aqueous-organic solvent systems in a centrifugal partition chromatograph. . J. Chromatogr. A 1620::461005
    [Google Scholar]
  80. 80. 
    Fromme A, Fischer C, Keine K, Schembecker G. 2020.. Characterization and correlation of mobile phase dispersion of aqueous-organic solvent systems in centrifugal partition chromatography. . J. Chromatogr. A 1620::460990
    [Google Scholar]
  81. 81. 
    Van Buel M, Van Halsema F, Van der Wielen L, Luyben KCA. 1998.. Flow regimes in centrifugal partition chromatography. . AIChE J. 44::135662
    [Google Scholar]
  82. 82. 
    Marchal L, Legrand J, Foucault A. 2002.. Mass transport and flow regimes in centrifugal partition chromatography. . AIChE J. 48::1692704
    [Google Scholar]
  83. 83. 
    Adelmann S, Schwienheer C, Schembecker G. 2011.. Multiphase flow modeling in centrifugal partition chromatography. . J. Chromatogr. A 1218::6092101
    [Google Scholar]
  84. 84. 
    Marchal L, Intes O, Foucault A, Legrand J, Nuzillard J-M, Renault J-H. 2003.. Rational improvement of centrifugal partition chromatographic settings for the production of 5-n-alkylresorcinols from wheat bran lipid extract. . J. Chromatogr. A 1005::5162
    [Google Scholar]
  85. 85. 
    Morley R, Minceva M. 2020.. Trapping multiple dual mode liquid-liquid chromatography: Preparative separation of nootkatone from a natural product extract. . J. Chromatogr. A 1625::461272
    [Google Scholar]
  86. 86. 
    Peng A, Hewitson P, Ye H, Zu L, Garrard I, et al. 2016.. Sample injection strategy to increase throughput in counter-current chromatography: case study of Honokiol purification. . J. Chromatogr. A 1476::1924
    [Google Scholar]
  87. 87. 
    Cao X, Tian Y, Zhang TY, Ito Y. 1998.. Semi-preparative separation and purification of taxol analogs by high-speed countercurrent chromatography. . Prep. Biochem. Biotechnol. 28::7987
    [Google Scholar]
  88. 88. 
    Jeon J-S, Park CL, Syed AS, Kim Y-M, Cho IJ, Kim CY. 2016.. Preparative separation of sesamin and sesamolin from defatted sesame meal via centrifugal partition chromatography with consecutive sample injection. . J. Chromatogr. B 1011::10813
    [Google Scholar]
  89. 89. 
    Zhou JY, Fang QC, Lee YW. 1990.. The application of high-speed countercurrent chromatography to the semipreparative separation of vincamine and vincine. . Phytochem. Anal. 1::7476
    [Google Scholar]
  90. 90. 
    Tong S, Guan Y-X, Yan J, Zheng B, Zhao L. 2011.. Enantiomeric separation of (R, S)-naproxen by recycling high speed counter-current chromatography with hydroxypropyl-β-cyclodextrin as chiral selector. . J. Chromatogr. A 1218::543440
    [Google Scholar]
  91. 91. 
    Xie J, Deng J, Tan F, Su J. 2010.. Separation and purification of echinacoside from Penstemon barbatus (Can.) Roth by recycling high-speed counter-current chromatography. . J. Chromatogr. B 878::266568
    [Google Scholar]
  92. 92. 
    Yang F, Quan J, Zhang TY, Ito Y. 1998.. Multidimensional counter-current chromatographic system and its application. . J. Chromatogr. A 803::298301
    [Google Scholar]
  93. 93. 
    Müller M, Murić M, Glanz L, Vette W. 2019.. Improving the resolution of overlapping peaks by heartcut two-dimensional countercurrent chromatography with the same solvent system in both dimensions. . J. Chromatogr. A 1596::14251
    [Google Scholar]
  94. 94. 
    Li S, He S, Zhong S, Duan X, Ye H, et al. 2011.. Elution–extrusion counter-current chromatography separation of five bioactive compounds from Dendrobium chrysototxum Lindl. . J. Chromatogr. A 1218::312428
    [Google Scholar]
  95. 95. 
    Berthod A, Hassoun M, Ruiz-Angel MJ. 2006.. Band broadening inside the chromatographic column: the interest of a liquid stationary phase. . In Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, United States, March 26–30, 2006: ANYL-285. Washington, DC:: Am. Chem. Soc.
    [Google Scholar]
  96. 96. 
    Lu Y, Liu R, Berthod A, Pan Y. 2008.. Rapid screening of bioactive components from Zingiber cassumunar using elution-extrusion counter-current chromatography. . J. Chromatogr. A 1181::3344
    [Google Scholar]
  97. 97. 
    Berthod A, Hassoun M, Harris G. 2005.. Using the liquid nature of the stationary phase: the elution-extrusion method. . J. Liq. Chromatogr. Relat. Technol. 28::185166
    [Google Scholar]
  98. 98. 
    Bradow J, Riley F, Philippe L, Yan Q, Schuff B, Harris GH. 2015.. Automated solvent system screening for the preparative countercurrent chromatography of pharmaceutical discovery compounds. . J. Sep. Sci. 38::398391
    [Google Scholar]
  99. 99. 
    Menges RA, Menges TS, Bertrand GL, Armstrong DW, Spino LA. 1992.. Extraction of nonionic surfactants from waste water using centrifugal partition chromatography. . J. Liq. Chromatogr. 15::290925
    [Google Scholar]
  100. 100. 
    Marchal L, Mojaat-Guemir M, Foucault A, Pruvost J. 2013.. Centrifugal partition extraction of β-carotene from Dunaliella salina for efficient and biocompatible recovery of metabolites. . Bioresour. Technol. 134::396400
    [Google Scholar]
  101. 101. 
    Bauer A, Minceva M. 2019.. Direct extraction of astaxanthin from the microalgae Haematococcus pluvialis using liquid-liquid chromatography. . RSC Adv. 9::2277989
    [Google Scholar]
  102. 102. 
    Agnely M, Thiebaut D. 1997.. Dual-mode high-speed counter-current chromatography: retention, resolution and examples. . J. Chromatogr. A 790::1730
    [Google Scholar]
  103. 103. 
    Delannay E, Toribio A, Boudesocque L, Nuzillard JM, Zèches-Hanrot M, et al. 2006.. Multiple dual-mode centrifugal partition chromatography, a semi-continuous development mode for routine laboratory-scale purifications. . J. Chromatogr. A 1127::4551
    [Google Scholar]
  104. 104. 
    Hewitson P, Ignatova S, Sutherland I. 2011.. Intermittent counter-current extraction—effect of the key operating parameters on selectivity and throughput. . J. Chromatogr. A 1218::607278
    [Google Scholar]
  105. 105. 
    Hewitson P, Ignatova S, Ye H, Chen L, Sutherland I. 2009.. Intermittent counter-current extraction as an alternative approach to purification of Chinese herbal medicine. . J. Chromatogr. A 1216::418792
    [Google Scholar]
  106. 106. 
    Morley R, Minceva M. 2019.. Operating mode selection for the separation of intermediately-eluting components with countercurrent and centrifugal partition chromatography. . J. Chromatogr. A 1594::14048
    [Google Scholar]
  107. 107. 
    Couillard F, Foucault A, Durand A. 2005.. Method and device for separating constituents of a liquid charge by means of liquid-liquid centrifuge chromatography. WO Patent 2005/011835
    [Google Scholar]
  108. 108. 
    Völkl J, Arlt W, Minceva M. 2013.. Theoretical study of sequential centrifugal partition chromatography. . AIChE J. 59::24149
    [Google Scholar]
  109. 109. 
    Martin A, Synge RM. 1941.. A new form of chromatogram employing two liquid phases: a theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. . Biochem. J. 35::135868
    [Google Scholar]
  110. 110. 
    Craig LC. 1944.. Identification of small amounts of organic compounds by distribution studies II. Separation by counter-current distribution. . J. Biol. Chem. 155::51934
    [Google Scholar]
  111. 111. 
    Hopmann E, Minceva M. 2012.. Separation of a binary mixture by sequential centrifugal partition chromatography. . J. Chromatogr. A 1229::14047
    [Google Scholar]
  112. 112. 
    Kostanian AE. 2002.. Modelling counter-current chromatography: a chemical engineering perspective. . J. Chromatogr. A 973::3946
    [Google Scholar]
  113. 113. 
    Kostanyan AE, Belova VV, Kholkin AI. 2007.. Modelling counter-current and dual counter-current chromatography using longitudinal mixing cell and eluting counter-current distribution models. . J. Chromatogr. A 1151::14247
    [Google Scholar]
  114. 114. 
    Schwienheer C, Krause J, Schembecker G, Merz J. 2017.. Modelling centrifugal partition chromatography separation behavior to characterize influencing hydrodynamic effects on separation efficiency. . J. Chromatogr. A 1492::2740
    [Google Scholar]
  115. 115. 
    Van Buel M, Van der Wielen L, Luyben KCA. 1997.. Effluent concentration profiles in centrifugal partition chromatography. . AIChE J. 43::693702
    [Google Scholar]
  116. 116. 
    Chollet S, Marchal L, Jeremy M, Renault JH, Legrand J, Foucault A. 2015.. Methodology for optimally sized centrifugal partition chromatography columns. . J. Chromatogr. A 1388::17483
    [Google Scholar]
  117. 117. 
    Goll J, Audo G, Minceva M. 2015.. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume. . J. Chromatogr. A 1406::12935
    [Google Scholar]
  118. 118. 
    Goll J, Minceva M. 2017.. Continuous fractionation of multicomponent mixtures with sequential centrifugal partition chromatography. . AIChE J. 63::165973
    [Google Scholar]
  119. 119. 
    Kostanyan AE. 2016.. Modeling of preparative closed-loop recycling liquid-liquid chromatography with specified duration of sample loading. . J. Chromatogr. A 1471::94101
    [Google Scholar]
  120. 120. 
    Guiochon G, Felinger A, Shirazi DG, Katti AM. 2006.. Fundamentals of Preparative and Nonlinear Chromatography. Amsterdam:: Academic
    [Google Scholar]
  121. 121. 
    Nicoud R-M. 2015.. Chromatographic Processes. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  122. 122. 
    Guiochon G, Lin B. 2003.. Modeling for Preparative Chromatography. Amsterdam:: Academic
    [Google Scholar]
  123. 123. 
    Wang F, Ito Y, Wei Y. 2015.. Recent progress on countercurrent chromatography modeling. . J. Liq. Chromatogr. Relat. Technol. 38::41521
    [Google Scholar]
  124. 124. 
    Berthod A, Friesen JB, Inui T, Pauli GF. 2007.. Elution–extrusion countercurrent chromatography:theory and concepts in metabolic analysis. . Anal. Chem. 79::337182
    [Google Scholar]
  125. 125. 
    Roehrer S, Minceva M. 2019.. Characterization of a centrifugal partition chromatographic column with spherical cell design. . Chem. Eng. Res. Des. 143::18089
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101420-033548
Loading
/content/journals/10.1146/annurev-chembioeng-101420-033548
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error