1932

Abstract

Quorum sensing (QS) is a molecular signaling modality that mediates molecular-based cell–cell communication. Prevalent in nature, QS networks provide bacteria with a method to gather information from the environment and make decisions based on the intel. With its ability to autonomously facilitate both inter- and intraspecies gene regulation, this process can be rewired to enable autonomously actuated, but molecularly programmed, genetic control. On the one hand, novel QS-based genetic circuits endow cells with smart functions that can be used in many fields of engineering, and on the other, repurposed QS circuitry promotes communication and aids in the development of synthetic microbial consortia. Furthermore, engineered QS systems can probe and intervene in interkingdom signaling between bacteria and their hosts. Lastly, QS is demonstrated to establish conversation with abiotic materials, especially by taking advantage of biological and even electronically induced assembly processes; such QS-incorporated biohybrid devices offer innovative ways to program cell behavior and biological function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101519-124728
2020-06-07
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-101519-124728.html?itemId=/content/journals/10.1146/annurev-chembioeng-101519-124728&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nealson KH, Platt T, Hastings JW 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104:313–22
    [Google Scholar]
  2. 2. 
    Whiteley M, Diggle SP, Greenberg EP 2017. Progress in and promise of bacterial quorum sensing research. Nature 551:313–20
    [Google Scholar]
  3. 3. 
    Tomasz A. 1965. Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature 208:155–59
    [Google Scholar]
  4. 4. 
    Engebrecht J, Nealson K, Silverman M 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. . Cell 32:773–81
    [Google Scholar]
  5. 5. 
    Engebrecht J, Silverman M. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. PNAS 81:4154–58
    [Google Scholar]
  6. 6. 
    Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–49
    [Google Scholar]
  7. 7. 
    Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319–46
    [Google Scholar]
  8. 8. 
    DeLisa MP, Wu CF, Wang L, Valdes JJ, Bentley WE 2001. DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J. Bacteriol 183:5239–47
    [Google Scholar]
  9. 9. 
    Manefield M, Turner SL. 2002. Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology 148:3762–64
    [Google Scholar]
  10. 10. 
    Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99
    [Google Scholar]
  11. 11. 
    Davis RM, Muller RY, Haynes KA 2015. Can the natural diversity of quorum-sensing advance synthetic biology?. Front. Bioeng. Biotechnol. 3:30
    [Google Scholar]
  12. 12. 
    Greenberg EP, Hastings JW, Ulitzur S 1979. Induction of luciferase synthase in Beneckea harveyi by other marine bacteria. Arch. Microbiol. 120:87–91
    [Google Scholar]
  13. 13. 
    Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I et al. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–49
    [Google Scholar]
  14. 14. 
    Winans SC. 2002. Bacterial esperanto. Nat. Struct. Biol. 9:83–84
    [Google Scholar]
  15. 15. 
    Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF et al. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15:677–87
    [Google Scholar]
  16. 16. 
    Schauder S, Shokat K, Surette MG, Bassler BL 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41:463–76
    [Google Scholar]
  17. 17. 
    Rezzonico F, Smits TH, Duffy B 2012. Detection of AI-2 receptors in genomes of Enterobacteriaceae suggests a role of type-2 quorum sensing in closed ecosystems. Sensors 12:6645–65
    [Google Scholar]
  18. 18. 
    Quan DN, Bentley WE. 2012. Gene network homology in prokaryotes using a similarity search approach: queries of quorum sensing signal transduction. PLOS Comput. Biol. 8:e1002637
    [Google Scholar]
  19. 19. 
    Li J, Wang L, Hashimoto Y, Tsao CY, Wood TK et al. 2006. A stochastic model of Escherichia coli AI-2 quorum signal circuit reveals alternative synthesis pathways. Mol. Syst. Biol. 2:67
    [Google Scholar]
  20. 20. 
    Wang L, Hashimoto Y, Tsao CY, Valdes JJ, Bentley WE 2005. Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. J. Bacteriol 187:2066–76
    [Google Scholar]
  21. 21. 
    Wang L, Li J, March JC, Valdes JJ, Bentley WE 2005. luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J. Bacteriol. 187:8350–60
    [Google Scholar]
  22. 22. 
    Xavier KB, Bassler BL. 2005. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol 187:238–48
    [Google Scholar]
  23. 23. 
    Quan DN, Tsao CY, Wu HC, Bentley WE 2016. Quorum sensing desynchronization leads to bimodality and patterned behaviors. PLOS Comput. Biol. 12:e1004781
    [Google Scholar]
  24. 24. 
    Rezzonico F, Duffy B. 2008. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol 8:154
    [Google Scholar]
  25. 25. 
    Li J, Attila C, Wang L, Wood TK, Valdes JJ, Bentley WE 2007. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J. Bacteriol. 189:6011–20
    [Google Scholar]
  26. 26. 
    González Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK 2006. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J. Bacteriol. 188:305–16
    [Google Scholar]
  27. 27. 
    DeLisa MP, Valdes JJ, Bentley WE 2001. Quorum sensing via AI-2 communicates the “metabolic burden” associated with heterologous protein production in Escherichia coli. Biotechnol. Bioeng 75:439–50
    [Google Scholar]
  28. 28. 
    Bansal T, Jesudhasan P, Pillai S, Wood TK, Jayaraman A 2008. Temporal regulation of enterohemorrhagic Escherichia coli virulence mediated by autoinducer-2. Appl. Microbiol. Biotechnol. 78:811–19
    [Google Scholar]
  29. 29. 
    Englert DL, Jayaraman A, Manson MD 2009. Microfluidic techniques for the analysis of bacterial chemotaxis. Methods Mol. Biol. 571:1–23
    [Google Scholar]
  30. 30. 
    Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C et al. 2011. Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein. J. Bacteriol. 193:768–73
    [Google Scholar]
  31. 31. 
    Neumann S, Hansen CH, Wingreen NS, Sourjik V 2010. Differences in signaling by directly and indirectly binding ligands in bacterial chemotaxis. EMBO J 29:3484–95
    [Google Scholar]
  32. 32. 
    Laganenka L, Colin R, Sourjik V 2016. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat. . Commun 7:12984
    [Google Scholar]
  33. 33. 
    Bailey JE. 1991. Toward a science of metabolic engineering. Science 252:1668–75
    [Google Scholar]
  34. 34. 
    Yokobayashi Y, Weiss R, Arnold FH 2002. Directed evolution of a genetic circuit. PNAS 99:16587–91
    [Google Scholar]
  35. 35. 
    Chen W, Kallio PT, Bailey JE 1993. Construction and characterization of a novel cross-regulation system for regulating cloned gene expression in Escherichia coli. . Gene 130:15–22
    [Google Scholar]
  36. 36. 
    You L, Cox RS 3rd, Weiss R, Arnold FH 2004. Programmed population control by cell-cell communication and regulated killing. Nature 428:868–71
    [Google Scholar]
  37. 37. 
    Danino T, Mondragón-Palomino O, Tsimring L, Hasty J 2010. A synchronized quorum of genetic clocks. Nature 463:326–30
    [Google Scholar]
  38. 38. 
    Tsao CY, Hooshangi S, Wu HC, Valdes JJ, Bentley WE 2010. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulation of E. coli. Metab. Eng 12:291–97
    [Google Scholar]
  39. 39. 
    Zargar A, Quan DN, Bentley WE 2016. Enhancing intercellular coordination: rewiring quorum sensing networks for increased protein expression through autonomous induction. ACS Synth. Biol. 5:923–28
    [Google Scholar]
  40. 40. 
    Wan X, Ho TYH, Wang B 2019. Engineering prokaryote synthetic biology biosensors. Handbook of Cell Biosensors G Thouand Cham, Switz.: Springer
    [Google Scholar]
  41. 41. 
    van der Meer JR, Belkin S 2010. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat. Rev. Microbiol. 8:511–22
    [Google Scholar]
  42. 42. 
    Steindler L, Venturi V. 2007. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol. Lett. 266:1–9
    [Google Scholar]
  43. 43. 
    Bassler BL, Wright M, Silverman MR 1994. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13:273–86
    [Google Scholar]
  44. 44. 
    Saurav K, Costantino V, Venturi V, Steindler L 2017. Quorum sensing inhibitors from the sea discovered using bacterial N-acyl-homoserine lactone-based biosensors. Mar. Drugs 15:53
    [Google Scholar]
  45. 45. 
    Gamby S, Roy V, Guo M, Smith JA, Wang J et al. 2012. Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues. ACS Chem. Biol. 7:1023–30
    [Google Scholar]
  46. 46. 
    Roy V, Adams BL, Bentley WE 2011. Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microb. Technol. 49:113–23
    [Google Scholar]
  47. 47. 
    Roy V, Meyer MT, Smith JA, Gamby S, Sintim HO et al. 2013. AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl. Microbiol. Biotechnol. 97:2627–38
    [Google Scholar]
  48. 48. 
    Zhang C, Parrello D, Brown PJB, Wall JD, Hu Z 2018. A novel whole-cell biosensor of Pseudomonas aeruginosa to monitor the expression of quorum sensing genes. Appl. Microbiol. Biotechnol. 102:6023–38
    [Google Scholar]
  49. 49. 
    Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H et al. 2011. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol. Syst. Biol. 7:521
    [Google Scholar]
  50. 50. 
    Fletcher MP, Diggle SP, Camara M, Williams P 2007. Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nat. Protoc. 2:1254–62
    [Google Scholar]
  51. 51. 
    Ripp S, Jegier P, Birmele M, Johnson CM, Daumer KA et al. 2006. Linking bacteriophage infection to quorum sensing signalling and bioluminescent bioreporter monitoring for direct detection of bacterial agents. J. Appl. Microbiol. 100:488–99
    [Google Scholar]
  52. 52. 
    Stephens K, Zargar A, Emamian M, Abutaleb N, Choi E et al. 2019. Engineering Escherichia coli for enhanced sensitivity to the autoinducer-2 quorum sensing signal. Biotechnol. Prog. 2019:e2881
    [Google Scholar]
  53. 53. 
    Hsu CY, Chen BK, Hu RH, Chen BS 2016. Systematic design of a quorum sensing-based biosensor for enhanced detection of metal ion in Escherichia coli. IEEE Trans. Biomed. . Circuits Syst 10:593–601
    [Google Scholar]
  54. 54. 
    Cai S, Shen Y, Zou Y, Sun P, Wei W et al. 2018. Engineering highly sensitive whole-cell mercury biosensors based on positive feedback loops from quorum-sensing systems. Analyst 143:630–34
    [Google Scholar]
  55. 55. 
    Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A 2002. Regulation of noise in the expression of a single gene. Nat. Genet. 31:69–73
    [Google Scholar]
  56. 56. 
    Elowitz MB, Levine AJ, Siggia ED, Swain PS 2002. Stochastic gene expression in a single cell. Science 297:1183–86
    [Google Scholar]
  57. 57. 
    Servinsky MD, Terrell JL, Tsao CY, Wu HC, Quan DN et al. 2016. Directed assembly of a bacterial quorum. ISME J 10:158–69
    [Google Scholar]
  58. 58. 
    Busch W. 1868. Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl. Klin. Wochenschr. 5:137–39
    [Google Scholar]
  59. 59. 
    Coley WB. 1991. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. Clin. Orthop. Relat. Res. Jan 262:3–11
    [Google Scholar]
  60. 60. 
    Gupta S, Bram EE, Weiss R 2013. Genetically programmable pathogen sense and destroy. ACS Synth. Biol. 2:715–23
    [Google Scholar]
  61. 61. 
    Hwang IY, Tan MH, Koh E, Ho CL, Poh CL, Chang MW 2014. Reprogramming microbes to be pathogen-seeking killers. ACS Synth. Biol. 3:228–37
    [Google Scholar]
  62. 62. 
    Borrero J, Chen Y, Dunny GM, Kaznessis YN 2015. Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth. Biol. 4:299–306
    [Google Scholar]
  63. 63. 
    Hwang IY, Koh E, Wong A, March JC, Bentley WE et al. 2017. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8:15028
    [Google Scholar]
  64. 64. 
    Riangrungroj P, Polizzi KM. 2019. BeQuIK (Biosensor Engineered Quorum Induced Killing): designer bacteria for destroying recalcitrant biofilms. Microb. Biotechnol. 13:311–14
    [Google Scholar]
  65. 65. 
    Hoiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T et al. 2015. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect. 21:Suppl. 1S1–25
    [Google Scholar]
  66. 66. 
    Muyldermans S. 2013. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82:775–97
    [Google Scholar]
  67. 67. 
    Pawelek JM, Low KB, Bermudes D 1997. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57:4537–44
    [Google Scholar]
  68. 68. 
    Ruder WC, Lu T, Collins JJ 2011. Synthetic biology moving into the clinic. Science 333:1248–52
    [Google Scholar]
  69. 69. 
    Weber W, Fussenegger M. 2011. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 13:21–35
    [Google Scholar]
  70. 70. 
    Kasinskas RW, Forbes NS. 2006. Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol. Bioeng. 94:710–21
    [Google Scholar]
  71. 71. 
    Ganai S, Arenas RB, Sauer JP, Bentley B, Forbes NS 2011. In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis. Cancer Gene Ther 18:457–66
    [Google Scholar]
  72. 72. 
    Ganai S, Arenas RB, Forbes NS 2009. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br. J. Cancer 101:1683–91
    [Google Scholar]
  73. 73. 
    Loeffler M, Le'Negrate G, Krajewska M, Reed JC 2008. IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Ther 15:787–94
    [Google Scholar]
  74. 74. 
    Swofford CA, Van Dessel N, Forbes NS 2015. Quorum-sensing Salmonella selectively trigger protein expression within tumors. PNAS 112:3457–62
    [Google Scholar]
  75. 75. 
    Davila ML, Riviere I, Wang X, Bartido S, Park J et al. 2014. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6:224ra25
    [Google Scholar]
  76. 76. 
    Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B 2001. Combination bacteriolytic therapy for the treatment of experimental tumors. PNAS 98:15155–60
    [Google Scholar]
  77. 77. 
    Prindle A, Samayoa P, Razinkov I, Danino T, Tsimring LS, Hasty J 2011. A sensing array of radically coupled genetic “biopixels.”. Nature 481:39–44
    [Google Scholar]
  78. 78. 
    Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J et al. 2016. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536:81–85
    [Google Scholar]
  79. 79. 
    Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T 2019. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25:1057–63
    [Google Scholar]
  80. 80. 
    Wu HC, Tsao CY, Quan DN, Cheng Y, Servinsky MD et al. 2013. Autonomous bacterial localization and gene expression based on nearby cell receptor density. Mol. Syst. Biol. 9:636
    [Google Scholar]
  81. 81. 
    Soma Y, Hanai T. 2015. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab. Eng. 30:7–15
    [Google Scholar]
  82. 82. 
    Kim EM, Woo HM, Tian T, Yilmaz S, Javidpour P et al. 2017. Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli. Metab. Eng 44:325–36
    [Google Scholar]
  83. 83. 
    Williams TC, Averesch NJH, Winter G, Plan MR, Vickers CE et al. 2015. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab. Eng 29:124–34
    [Google Scholar]
  84. 84. 
    Minogue TD, Wehland-von Trebra M, Bernhard F, von Bodman SB 2002. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii spp. stewartii: evidence for a repressor function. Mol. Microbiol. 44:1625–35
    [Google Scholar]
  85. 85. 
    Gupta A, Brockman Reizman IM, Reisch CR, Prather KL 2017. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat. Biotechnol. 35:273–79
    [Google Scholar]
  86. 86. 
    Doong SJ, Gupta A, Prather KLJ 2018. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. . PNAS 115:2964–69
    [Google Scholar]
  87. 87. 
    Cui S, Lv X, Wu Y, Li J, Du G et al. 2019. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synth. Biol 8:81826–37
    [Google Scholar]
  88. 88. 
    Shen YP, Fong LS, Yan ZB, Liu JZ 2019. Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in Escherichia coli. Biotechnol. Biofuels 12:94
    [Google Scholar]
  89. 89. 
    West SA, Griffin AS, Gardner A, Diggle SP 2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4:597–607
    [Google Scholar]
  90. 90. 
    Darch SE, West SA, Winzer K, Diggle SP 2012. Density-dependent fitness benefits in quorum-sensing bacterial populations. PNAS 109:8259–63
    [Google Scholar]
  91. 91. 
    De Vadder F, Grasset E, Mannerås Holm L, Karsenty G, Macpherson AJ et al. 2018. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. PNAS 115:6458–63
    [Google Scholar]
  92. 92. 
    Clemente JC, Ursell LK, Parfrey LW, Knight R 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–70
    [Google Scholar]
  93. 93. 
    Tsoi R, Dai Z, You L 2019. Emerging strategies for engineering microbial communities. Biotechnol. Adv. 37:6107372
    [Google Scholar]
  94. 94. 
    Zargar A, Payne GF, Bentley WE 2015. A “bioproduction breadboard”: programming, assembling, and actuating cellular networks. Curr. Opin. Biotechnol. 36:154–60
    [Google Scholar]
  95. 95. 
    Brenner K, Karig DK, Weiss R, Arnold FH 2007. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. PNAS 104:17300–4
    [Google Scholar]
  96. 96. 
    Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M et al. 2008. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4:187
    [Google Scholar]
  97. 97. 
    McCardell RD, Huang S, Green LN, Murray RM 2017. Control of bacterial population density with population feedback and molecular sequestration. bioRxiv 225045. https://doi.org/10.1101/225045
    [Crossref] [Google Scholar]
  98. 98. 
    Wu F, Lopatkin AJ, Needs DA, Lee CT, Mukherjee S, You L 2019. A unifying framework for interpreting and predicting mutualistic systems. Nat. Commun. 10:242
    [Google Scholar]
  99. 99. 
    Wang E-X, Liu Y, Ma Q, Dong X-T, Ding M-Z, Yuan Y-J 2019. Synthetic cell–cell communication in a three-species consortium for one-step vitamin C fermentation. Biotechnol. Lett. 41:951–61
    [Google Scholar]
  100. 100. 
    Hu B, Du J, Zou RY, Yuan YJ 2010. An environment-sensitive synthetic microbial ecosystem. PLOS ONE 5:e10619
    [Google Scholar]
  101. 101. 
    Chen Y, Kim JK, Hirning AJ, Josic K, Bennett MR 2015. Emergent genetic oscillations in a synthetic microbial consortium. Science 349:986–89
    [Google Scholar]
  102. 102. 
    Stephens K, Pozo M, Tsao C-Y, Hauk P, Bentley WE 2019. Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nat. Commun. 10:4129
    [Google Scholar]
  103. 103. 
    Terrell JL, Wu HC, Tsao CY, Barber NB, Servinsky MD et al. 2015. Nano-guided cell networks as conveyors of molecular communication. Nat. Commun. 6:8500
    [Google Scholar]
  104. 104. 
    Scott SR, Hasty J. 2016. Quorum sensing communication modules for microbial consortia. ACS Synth. Biol. 5:969–77
    [Google Scholar]
  105. 105. 
    Kylilis N, Tuza ZA, Stan GB, Polizzi KM 2018. Tools for engineering coordinated system behavior in synthetic microbial consortia. Nat. Commun. 9:2677
    [Google Scholar]
  106. 106. 
    Marchand N, Collins CH. 2013. Peptide-based communication system enables Escherichia coli to Bacillus megaterium interspecies signaling. Biotechnol. Bioeng. 110:3003–12
    [Google Scholar]
  107. 107. 
    Stump SM, Johnson EC, Klausmeier CA 2018. Local interactions and self-organized spatial patterns stabilize microbial cross-feeding against cheaters. J. R. Soc. Interface 15:140 https://doi.org/10.1098/rsif.2017.0822
    [Crossref] [Google Scholar]
  108. 108. 
    Travisano M, Velicer GJ. 2004. Strategies of microbial cheater control. Trends Microbiol 12:72–78
    [Google Scholar]
  109. 109. 
    Diggle SP, Griffin AS, Campbell GS, West SA 2007. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–14
    [Google Scholar]
  110. 110. 
    Sandoz KM, Mitzimberg SM, Schuster M 2007. Social cheating in Pseudomonas aeruginosa quorum sensing. PNAS 104:15876–81
    [Google Scholar]
  111. 111. 
    Wang M, Schaefer AL, Dandekar AA, Greenberg EP 2015. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. PNAS 112:2187–91
    [Google Scholar]
  112. 112. 
    Majerczyk C, Schneider E, Greenberg EP 2016. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants. eLife 5:e14712
    [Google Scholar]
  113. 113. 
    Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ 2005. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310:670–74
    [Google Scholar]
  114. 114. 
    Roy V, Smith JA, Wang J, Stewart JE, Bentley WE, Sintim HO 2010. Synthetic analogs tailor native AI-2 signaling across bacterial species. J. Am. Chem. Soc. 132:11141–50
    [Google Scholar]
  115. 115. 
    Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB 2015. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep 10:1861–71
    [Google Scholar]
  116. 116. 
    Hsiao A, Ahmed AM, Subramanian S, Griffin NW, Drewry LL et al. 2014. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515:423–26
    [Google Scholar]
  117. 117. 
    Kim S, Kerns SJ, Ziesack M, Bry L, Gerber GK et al. 2018. Quorum sensing can be repurposed to promote information transfer between bacteria in the mammalian gut. ACS Synth. Biol. 7:2270–81
    [Google Scholar]
  118. 118. 
    Hughes DT, Terekhova DA, Liou L, Hovde CJ, Sahl JW et al. 2010. Chemical sensing in mammalian host-bacterial commensal associations. PNAS 107:9831–36
    [Google Scholar]
  119. 119. 
    González JF, Venturi V. 2013. A novel widespread interkingdom signaling circuit. Trends Plant Sci 18:167–74
    [Google Scholar]
  120. 120. 
    Zargar A, Quan DN, Carter KK, Guo M, Sintim HO et al. 2015. Bacterial secretions of nonpathogenic Escherichia coli elicit inflammatory pathways: a closer investigation of interkingdom signaling. mBio 6:e00025
    [Google Scholar]
  121. 121. 
    Silpe JE, Bassler BL. 2019. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176:268–80.e13
    [Google Scholar]
  122. 122. 
    Fernandes R, Bentley WE. 2009. AI-2 biosynthesis module in a magnetic nanofactory alters bacterial response via localized synthesis and delivery. Biotechnol. Bioeng. 102:390–99
    [Google Scholar]
  123. 123. 
    Fernandes R, Roy V, Wu HC, Bentley WE 2010. Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. Nat. Nanotechnol. 5:213–17
    [Google Scholar]
  124. 124. 
    Hebert CG, Gupta A, Fernandes R, Tsao CY, Valdes JJ, Bentley WE 2010. Biological nanofactories target and activate epithelial cell surfaces for modulating bacterial quorum sensing and interspecies signaling. ACS Nano 4:6923–31
    [Google Scholar]
  125. 125. 
    Wu HC, Quan DN, Tsao CY, Liu Y, Terrell JL et al. 2017. Conferring biological activity to native spider silk: a biofunctionalized protein-based microfiber. Biotechnol. Bioeng. 114:83–95
    [Google Scholar]
  126. 126. 
    Lentini R, Martin NY, Forlin M, Belmonte L, Fontana J et al. 2017. Two-way chemical communication between artificial and natural cells. ACS Cent. Sci. 3:117–23
    [Google Scholar]
  127. 127. 
    Gordonov T, Kim E, Cheng Y, Ben-Yoav H, Ghodssi R et al. 2014. Electronic modulation of biochemical signal generation. Nat. Nanotechnol. 9:605–10
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101519-124728
Loading
/content/journals/10.1146/annurev-chembioeng-101519-124728
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error