1932

Abstract

There is considerable interest in the development of hybrid organic–inorganic materials because of the potential for harvesting the unique capabilities that each system has to offer. Proteins are an especially attractive organic component owing to the high amount of chemical information encoded in their amino acid sequence, their amenability to molecular and computational (re)design, and the many structures and functions they specify. Genetic installation of solid-binding peptides (SBPs) within protein frameworks affords control over the position and orientation of adhesive and morphogenetic segments, and a path toward predictive synthesis and assembly of functional materials and devices, all while harnessing the built-in properties of the host scaffold. Here, we review the current understanding of the mechanisms through which SBPs bind to technologically relevant interfaces, with an emphasis on the variables that influence the process, and highlight the last decade of progress in the use of solid-binding proteins for hybrid and hierarchical materials synthesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-102020-015923
2021-06-07
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-102020-015923.html?itemId=/content/journals/10.1146/annurev-chembioeng-102020-015923&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Wang C-Y, Jiao K, Yan J-F, Wan M-C, Wan Q-Q et al. 2020. Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Prog. Mater. Sci. 116:100712
    [Google Scholar]
  2. 2. 
    Liu X, Zhang F, Jing X, Pan M, Liu P et al. 2018. Complex silica composite nanomaterials templated with DNA origami. Nature 559:593–98
    [Google Scholar]
  3. 3. 
    Ramakrishnan S, Ijäs H, Linko V, Keller A. 2018. Structural stability of DNA origami nanostructures under application-specific conditions. Comput. Struct. Biotechnol. J. 16:342–49
    [Google Scholar]
  4. 4. 
    Jin H, Qiu H, Sakamoto Y, Shu P, Terasaki O, Che S 2008. Mesoporous silicas by self-assembly of lipid molecules: ribbon, hollow sphere, and chiral materials. Chemistry 14:6413–20
    [Google Scholar]
  5. 5. 
    Gruner SM, Cullis PR, Hope MJ, Tilcock CPS. 1985. Lipid polymorphism: the molecular basis of nonbilayer phases. Annu. Rev. Biophys 14:211–38
    [Google Scholar]
  6. 6. 
    Battigelli A. 2019. Design and preparation of organic nanomaterials using self-assembled peptoids. Biopolymers 110:e23265
    [Google Scholar]
  7. 7. 
    Jun JM, Altoe MVP, Aloni S, Zuckermann RN. 2015. Peptoid nanosheets as soluble, two-dimensional templates for calcium carbonate mineralization. Chem. Commun. 51:10218–21
    [Google Scholar]
  8. 8. 
    Robertson EJ, Battigelli A, Proulx C, Mannige RV, Haxton TK et al. 2016. Design, synthesis, assembly, and engineering of peptoid nanosheets. Acc. Chem. Res. 49:379–89
    [Google Scholar]
  9. 9. 
    Liu CC, Schultz PG. 2010. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79:413–44
    [Google Scholar]
  10. 10. 
    Baker D. 2019. What has de novo protein design taught us about protein folding and biophysics?. Protein Sci 28:678–83
    [Google Scholar]
  11. 11. 
    Torculas M, Medina J, Xue W, Hu X. 2016. Protein-based bioelectronics. ACS Biomater. Sci. Eng. 2:1211–23
    [Google Scholar]
  12. 12. 
    Brokesh AM, Gaharwar AK. 2020. Inorganic biomaterials for regenerative medicine. ACS Appl. Mater. Interfaces 12:5319–44
    [Google Scholar]
  13. 13. 
    Zeymer C, Hilvert D. 2018. Directed evolution of protein catalysts. Annu. Rev. Biochem. 87:131–57
    [Google Scholar]
  14. 14. 
    Dickerson MB, Sandhage KH, Naik RR. 2008. Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 108:4935–78
    [Google Scholar]
  15. 15. 
    Brown S. 1997. Metal-recognition by repeating polypeptides. Nat. Biotechnol. 15:269–72
    [Google Scholar]
  16. 16. 
    Rehm BHA 2013. Bionanotechnology: Biological Self-Assembly and Its Applications Poole, UK: Caister Acad.
    [Google Scholar]
  17. 17. 
    Newton MS, Cabezas-Perusse Y, Tong CL, Seelig B. 2020. In vitro selection of peptides and proteins—advantages of mRNA display. ACS Synth. Biol. 9:181–90
    [Google Scholar]
  18. 18. 
    Plückthun A 2012. Ribosome display: a perspective. Ribosome Display and Related Technologies: Methods and Protocols JA Douthwaite, RH Jackson 3–28 New York: Springer
    [Google Scholar]
  19. 19. 
    Smith GP, Petrenko VA. 1997. Phage display. Chem. Rev. 97:391–410
    [Google Scholar]
  20. 20. 
    Fang Y, Poulsen N, Dickerson MB, Cai Y, Jones SE et al. 2008. Identification of peptides capable of inducing the formation of titania but not silica via a subtractive bacteriophage display approach. J. Mater. Chem. 18:3871–75
    [Google Scholar]
  21. 21. 
    Juds C, Schmidt J, Weller MG, Lange T, Beck U et al. 2020. Combining phage display and next-generation sequencing for materials sciences: a case study on probing polypropylene surfaces. J. Am. Chem. Soc. 142:10624–28
    [Google Scholar]
  22. 22. 
    Bansal R, Care A, Lord MS, Walsh TR, Sunna A. 2019. Experimental and theoretical tools to elucidate the binding mechanisms of solid-binding peptides. Nat. Biotechnol. 52:9–18
    [Google Scholar]
  23. 23. 
    Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J et al. 2015. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9:11509–39
    [Google Scholar]
  24. 24. 
    So CR, Hayamizu Y, Yazici H, Gresswell C, Khatayevich D et al. 2012. Controlling self-assembly of engineered peptides on graphite by rational mutation. ACS Nano 6:1648–56
    [Google Scholar]
  25. 25. 
    Katoch J, Kim SN, Kuang Z, Farmer BL, Naik RR et al. 2012. Structure of a peptide adsorbed on graphene and graphite. Nano Lett 12:2342–46
    [Google Scholar]
  26. 26. 
    Hughes ZE, Walsh TR. 2015. What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces. J. Mater. Chem. B 3:3211–21
    [Google Scholar]
  27. 27. 
    Zou X, Wei S, Jasensky J, Xiao M, Wang Q et al. 2017. Molecular interactions between graphene and biological molecules. J. Am. Chem. Soc. 139:1928–36
    [Google Scholar]
  28. 28. 
    Wei S, Zou X, Tian J, Huang H, Guo W, Chen Z 2019. Control of protein conformation and orientation on graphene. J. Am. Chem. Soc. 141:20335–43
    [Google Scholar]
  29. 29. 
    Brljak N, Parab AD, Rao R, Slocik JM, Naik RR et al. 2020. Material composition and peptide sequence affects biomolecule affinity to and selectivity for h-boron nitride and graphene. Chem. Commun. 56:8834–37
    [Google Scholar]
  30. 30. 
    Chen J, Zhu E, Liu J, Zhang S, Lin Z et al. 2018. Building two-dimensional materials one row at a time: avoiding the nucleation barrier. Science 362:1135–39
    [Google Scholar]
  31. 31. 
    Hnilova M, Oren EE, Seker UOS, Wilson BR, Collino S et al. 2008. Effect of molecular conformations on the adsorption behavior of gold-binding peptides. Langmuir 24:12440–45
    [Google Scholar]
  32. 32. 
    Seker UOS, Wilson B, Kulp JL, Evans JS, Tamerler C, Sarikaya M. 2014. Thermodynamics of engineered gold binding peptides: establishing the structure–activity relationships. Biomacromolecules 15:2369–77
    [Google Scholar]
  33. 33. 
    Verde AV, Acres JM, Maranas JK. 2009. Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations. Biomacromolecules 10:2118–28
    [Google Scholar]
  34. 34. 
    Kacar T, Zin MT, So C, Wilson B, Ma H et al. 2009. Directed self-immobilization of alkaline phosphatase on micro-patterned substrates via genetically fused metal-binding peptide. Biotechnol. Bioeng. 103:696–705
    [Google Scholar]
  35. 35. 
    Wright LB, Palafox-Hernandez JP, Rodger PM, Corni S, Walsh TR. 2015. Facet selectivity in gold binding peptides: exploiting interfacial water structure. Chem. Sci. 6:5204–14
    [Google Scholar]
  36. 36. 
    Pacardo DB, Sethi M, Jones SE, Naik RR, Knecht MR. 2009. Biomimetic synthesis of Pd nanocatalysts for the Stille coupling reaction. ACS Nano 3:1288–96
    [Google Scholar]
  37. 37. 
    Hughes ZE, Nguyen MA, Li Y, Swihart MT, Walsh TR, Knecht MR. 2017. Elucidating the influence of materials-binding peptide sequence on Au surface interactions and colloidal stability of Au nanoparticles. Nanoscale 9:421–32
    [Google Scholar]
  38. 38. 
    Nergiz SZ, Slocik JM, Naik RR, Singamaneni S. 2013. Surface defect sites facilitate fibrillation: an insight into adsorption of gold-binding peptides on Au(111). PCCP 15:11629–33
    [Google Scholar]
  39. 39. 
    Palafox-Hernandez JP, Tang Z, Hughes ZE, Li Y, Swihart MT et al. 2014. Comparative study of materials-binding peptide interactions with gold and silver surfaces and nanostructures: a thermodynamic basis for biological selectivity of inorganic materials. Chem. Mater. 26:4960–69
    [Google Scholar]
  40. 40. 
    Poblete H, Agarwal A, Thomas SS, Bohne C, Ravichandran R et al. 2016. New insights into peptide–silver nanoparticle interaction: deciphering the role of cysteine and lysine in the peptide sequence. Langmuir 32:265–73
    [Google Scholar]
  41. 41. 
    Aliaga AE, Ahumada H, Sepúlveda K, Gomez-Jeria JS, Garrido C et al. 2011. SERS, molecular dynamics and molecular orbital studies of the MRKDV peptide on silver and membrane surfaces. J. Phys. Chem. C 115:3982–89
    [Google Scholar]
  42. 42. 
    Patwardhan SV, Emami FS, Berry RJ, Jones SE, Naik RR et al. 2012. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. J. Am. Chem. Soc. 134:6244–56
    [Google Scholar]
  43. 43. 
    Puddu V, Perry CC. 2012. Peptide adsorption on silica nanoparticles: evidence of hydrophobic interactions. ACS Nano 6:6356–63
    [Google Scholar]
  44. 44. 
    Puddu V, Perry CC. 2014. Interactions at the silica–peptide interface: the influence of particle size and surface functionality. Langmuir 30:227–33
    [Google Scholar]
  45. 45. 
    Sola-Rabada A, Michaelis M, Oliver DJ, Roe MJ, Colombi Ciacchi L et al. 2018. Interactions at the silica–peptide interface: influence of the extent of functionalization on the conformational ensemble. Langmuir 34:8255–63
    [Google Scholar]
  46. 46. 
    Hellner B, Lee SB, Subramaniam A, Subramanian VR, Baneyx F. 2019. Modeling the cooperative adsorption of solid-binding proteins on silica: molecular insights from surface plasmon resonance measurements. Langmuir 35:5013–20
    [Google Scholar]
  47. 47. 
    Hellner B, Alamdari S, Pyles H, Zhang S, Prakash A et al. 2020. Sequence–structure–binding relationships reveal adhesion behavior of the Car9 solid-binding peptide: an integrated experimental and simulation study. J. Am. Chem. Soc. 142:2355–63
    [Google Scholar]
  48. 48. 
    Chen H, Su X, Neoh K-G, Choe W-S. 2009. Context-dependent adsorption behavior of cyclic and linear peptides on metal oxide surfaces. Langmuir 25:1588–93
    [Google Scholar]
  49. 49. 
    Sultan AM, Westcott ZC, Hughes ZE, Palafox-Hernandez JP, Giesa T et al. 2016. Aqueous peptide–TiO2 interfaces: isoenergetic binding via either entropically or enthalpically driven mechanisms. ACS Appl. Mater. Interfaces 8:18620–30
    [Google Scholar]
  50. 50. 
    Sano K-I, Shiba K. 2003. A hexapeptide motif that electrostatically binds to the surface of titanium. J. Am. Chem. Soc. 125:14234–35
    [Google Scholar]
  51. 51. 
    Suzuki Y, Shindo H, Asakura T. 2016. Structure and dynamic properties of a Ti-binding peptide bound to TiO2 nanoparticles as accessed by 1H NMR spectroscopy. J. Phys. Chem. B 120:4600–7
    [Google Scholar]
  52. 52. 
    Skelton AA, Liang T, Walsh TR. 2009. Interplay of sequence, conformation, and binding at the peptide−titania interface as mediated by water. ACS Appl. Mater. Interfaces 1:1482–91
    [Google Scholar]
  53. 53. 
    Wu C, Skelton AA, Chen M, Vlček L, Cummings PT. 2012. Modeling the interaction between integrin-binding peptide (RGD) and rutile surface: the effect of cation mediation on Asp adsorption. Langmuir 28:2799–811
    [Google Scholar]
  54. 54. 
    Lee D, Redfern O, Orengo C. 2007. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8:995–1005
    [Google Scholar]
  55. 55. 
    Childers MC, Daggett V. 2017. Insights from molecular dynamics simulations for computational protein design. Mol. Syst. Des. Eng. 2:9–33
    [Google Scholar]
  56. 56. 
    Matsuurua K. 2014. Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Adv 4:2942–53
    [Google Scholar]
  57. 57. 
    Huang P-S, Boyken SE, Baker D. 2016. The coming of age of de novo protein design. Nature 537:320–27
    [Google Scholar]
  58. 58. 
    Gainza-Cirauqui P, Correia BE. 2018. Computational protein design—the next generation tool to expand synthetic biology applications. Curr. Opin. Biotechnol. 52:145–52
    [Google Scholar]
  59. 59. 
    Coyle BL, Zhou W, Baneyx F 2013. Protein-aided mineralization of inorganic nanostructures. Bionanotechnology: Biological Self-Assembly and Its Applications BHA Rehm 63–84 Poole, UK: Caister Acad.
    [Google Scholar]
  60. 60. 
    Tompa P. 2012. Intrinsically disordered proteins: a 10-year recap. Trends Biochem. Sci. 37:509–16
    [Google Scholar]
  61. 61. 
    Huang H-C, Nanda A, Rege K. 2012. Investigation of phase separation behavior and formation of plasmonic nanocomposites from polypeptide-gold nanorod nanoassemblies. Langmuir 28:6645–55
    [Google Scholar]
  62. 62. 
    Han W, MacEwan SR, Chilkoti A, López GP. 2015. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles. Nanoscale 7:12038–44
    [Google Scholar]
  63. 63. 
    Li L, Li NK, Tu Q, Im O, Mo C-K et al. 2018. Functional modification of silica through enhanced adsorption of elastin-like polypeptide block copolymers. Biomacromolecules 19:298–306
    [Google Scholar]
  64. 64. 
    Teulé F, Cooper AR, Furin WA, Bittencourt D, Rech EL et al. 2009. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat. Protoc. 4:341–55
    [Google Scholar]
  65. 65. 
    Plowright R, Dinjaski N, Zhou S, Belton DJ, Kaplan DL, Perry CC. 2016. Influence of silk–silica fusion protein design on silica condensation in vitro and cellular calcification. RSC Adv 6:21776–88
    [Google Scholar]
  66. 66. 
    Currie HA, Deschaume O, Naik RR, Perry CC, Kaplan DL. 2011. Genetically engineered chimeric silk-silver binding proteins. Adv. Funct. Mater. 21:2889–95
    [Google Scholar]
  67. 67. 
    Henderson CJ, Pumford E, Seevaratnam DJ, Daly R, Hall EAH. 2019. Gene to diagnostic: self immobilizing protein for silica microparticle biosensor, modelled with sarcosine oxidase. Biomaterials 193:58–70
    [Google Scholar]
  68. 68. 
    Yang M, Choi BG, Park TJ, Heo NS, Hong WH, Lee SY. 2011. Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application. Nanoscale 3:2950–56
    [Google Scholar]
  69. 69. 
    Savile CK, Lalonde JJ. 2011. Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr. Opin. Biotechnol. 22:818–23
    [Google Scholar]
  70. 70. 
    Kim S, Joo KI, Jo BH, Cha HJ. 2020. Stability-controllable self-immobilization of carbonic anhydrase fused with a silica-binding tag onto diatom biosilica for enzymatic CO2 capture and utilization. ACS Appl. Mater. Interfaces 12:27055–63
    [Google Scholar]
  71. 71. 
    Kim JK, Abdelhamid MAA, Pack SP. 2019. Direct immobilization and recovery of recombinant proteins from cell lysates by using EctP1-peptide as a short fusion tag for silica and titania supports. Int. J. Biol. Macromol. 135:969–77
    [Google Scholar]
  72. 72. 
    Butz ZJ, Borgognoni K, Nemeth R, Nilsson ZN, Ackerson CJ. 2020. Metalloid reductase activity modified by a fused Se0 binding peptide. ACS Chem. Biol. 15:1987–95
    [Google Scholar]
  73. 73. 
    Care A, Petroll K, Gibson ESY, Bergquist PL, Sunna A. 2017. Solid-binding peptides for immobilisation of thermostable enzymes to hydrolyse biomass polysaccharides. Biotechnol. Biofuels 10:29
    [Google Scholar]
  74. 74. 
    McMillan RA, Paavola CD, Howard J, Chan SL, Zaluzec NJ, Trent JD. 2002. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nat. Mater. 1:247–52
    [Google Scholar]
  75. 75. 
    Ishii D, Kinbara K, Ishida Y, Ishii N, Okochi M et al. 2003. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423:628–32
    [Google Scholar]
  76. 76. 
    Ardini M, Giansanti F, Di Leandro L, Pitari G, Cimini A et al. 2014. Metal-induced self-assembly of peroxiredoxin as a tool for sorting ultrasmall gold nanoparticles into one-dimensional clusters. Nanoscale 6:8052–61
    [Google Scholar]
  77. 77. 
    Ardini M, Golia G, Passaretti P, Cimini A, Pitari G et al. 2016. Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring. Nanoscale 8:6739–53
    [Google Scholar]
  78. 78. 
    Domigan LJ, Ashmead H, Dimartino S, Malmstrom J, Pearce FG et al. 2017. Formation of supramolecular protein structures on gold surfaces. Biointerphases 12:04E405
    [Google Scholar]
  79. 79. 
    Schreiber A, Huber MC, Cölfen H, Schiller SM. 2015. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures. Nat. Commun. 6:6705
    [Google Scholar]
  80. 80. 
    Heyman A, Medalsy I, BetOr O, Dgany O, Gottlieb M et al. 2009. Protein scaffold engineering towards tunable surface attachment. Angew. Chem. 48:9290–94
    [Google Scholar]
  81. 81. 
    Bachar O, Meirovich MM, Kurzion R, Yehezkeli O. 2020. In vivo and in vitro protein mediated synthesis of palladium nanoparticles for hydrogenation reactions. Chem. Commun. 56:11211–14
    [Google Scholar]
  82. 82. 
    Massover WH. 1993. Ultrastructure of ferritin and apoferritin: a review. Micron 24:389–437
    [Google Scholar]
  83. 83. 
    Zheng B, Yamashita I, Uenuma M, Iwahori K, Kobayashi M, Uraoka Y. 2009. Site-directed delivery of ferritin-encapsulated gold nanoparticles. Nanotechnology 21:045305
    [Google Scholar]
  84. 84. 
    Nguyen TKM, Ki MR, Lee CS, Pack SP. 2019. Nanosized and tunable design of biosilica particles using novel silica-forming peptide-modified chimeric ferritin templates. J. Ind. Eng. Chem. 73:198–204
    [Google Scholar]
  85. 85. 
    Wang Y, Chen H, Zang J, Zhang X, Zhao G. 2019. Re-designing ferritin nanocages for mercuric ion detection. Analyst 144:5890–97
    [Google Scholar]
  86. 86. 
    Pieters BJGE, van Eldijk MB, Nolte RJM, Mecinović J. 2016. Natural supramolecular protein assemblies. Chem. Soc. Rev. 45:24–39
    [Google Scholar]
  87. 87. 
    Zimmer M. 2002. Green fluorescent protein (GFP):applications, structure, and related photophysical behavior. Chem. Rev. 102:759–82
    [Google Scholar]
  88. 88. 
    Pédelacq J-D, Cabantous S, Tran T, Terwilliger TC, Waldo GS. 2006. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24:79–88
    [Google Scholar]
  89. 89. 
    Zhang G, Gurtu V, Kain SR. 1996. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem. Biophys. Res. Commun. 227:707–11
    [Google Scholar]
  90. 90. 
    Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. 2010. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90:1103–63
    [Google Scholar]
  91. 91. 
    Soundrarajan N, Cho H-s, Ahn B, Choi M, Thong LM et al. 2016. Green fluorescent protein as a scaffold for high efficiency production of functional bacteriotoxic proteins in Escherichia coli. Sci. Rep. 6:20661
    [Google Scholar]
  92. 92. 
    Hnilova M, Liu X, Yuca E, Jia C, Wilson B et al. 2012. Multifunctional protein-enabled patterning on arrayed ferroelectric materials. ACS Appl. Mater. Interfaces 4:1865–71
    [Google Scholar]
  93. 93. 
    Coyle BL, Rolandi M, Baneyx F. 2013. Carbon-binding designer proteins that discriminate between sp2- and sp3-hybridized carbon surfaces. Langmuir 29:4839–46
    [Google Scholar]
  94. 94. 
    Dunakey SJG, Coyle BL, Thomas A, Xu M, Swift BJF, Baneyx F. 2019. Selective labeling and decoration of the ends and sidewalls of single-walled carbon nanotubes using mono- and bispecific solid-binding fluorescent proteins. Bioconj. Chem. 30:959–65
    [Google Scholar]
  95. 95. 
    Coyle BL, Baneyx F. 2014. A cleavable silica-binding affinity tag for rapid and inexpensive protein purification. Biotechnol. Bioeng. 111:2019–26
    [Google Scholar]
  96. 96. 
    Xu M, Bailey MJ, Look J, Baneyx F. 2020. Affinity purification of Car9-tagged proteins on silica-derivatized spin columns and 96-well plates. Protein Expr. Purif. 170:105608
    [Google Scholar]
  97. 97. 
    Coyle BL, Baneyx F. 2016. Direct and reversible immobilization and microcontact printing of functional proteins on glass using a genetically appended silica-binding tag. Chem. Commun. 52:7001–4
    [Google Scholar]
  98. 98. 
    Yang W, Hellner B, Baneyx F. 2016. Self-immobilization of Car9 fusion proteins within high surface area silica sol–gels and dynamic control of protein release. Bioconj. Chem. 27:2450–59
    [Google Scholar]
  99. 99. 
    Olmez TT, Yuca E, Eyupoglu E, Catalak HB, Sahin O, Seker UOS. 2018. Autonomous synthesis of fluorescent silica biodots using engineered fusion proteins. ACS Omega 3:585–94
    [Google Scholar]
  100. 100. 
    Hellner B, Stegmann AE, Pushpavanam K, Bailey MJ, Baneyx F. 2020. Phase control of nanocrystalline inclusions in bioprecipitated titania with a panel of mutant silica-binding proteins. Langmuir 36:8503–10
    [Google Scholar]
  101. 101. 
    Swift BJF, Shadish JA, DeForest CA, Baneyx F. 2017. Streamlined synthesis and assembly of a hybrid sensing architecture with solid binding proteins and click chemistry. J. Am. Chem. Soc. 139:3958–61
    [Google Scholar]
  102. 102. 
    Alberts B, Johnson A, Lewis J, Walter P, Raff M, Roberts K. 2002. Molecular Biology of the Cell Abingdon, UK: Routledge, 4th ed.. Int. student ed .
    [Google Scholar]
  103. 103. 
    Hemmatian Z, Keene S, Josberger E, Miyake T, Arboleda C et al. 2016. Electronic control of H+ current in a bioprotonic device with Gramicidin A and Alamethicin. Nat. Commun. 7:12981
    [Google Scholar]
  104. 104. 
    Lodish HF. 2008. Molecular Cell Biology New York: W.H. Freeman & Co, 6th ed..
    [Google Scholar]
  105. 105. 
    Shen Y-X, Saboe PO, Sines IT, Erbakan M, Kumar M. 2014. Biomimetic membranes: a review. J. Membr. Sci. 454:359–81
    [Google Scholar]
  106. 106. 
    Liu J, Mantell J, Jones MR. 2020. Minding the gap between plant and bacterial photosynthesis within a self-assembling biohybrid photosystem. ACS Nano 14:4536–49
    [Google Scholar]
  107. 107. 
    Gundlach K, Werwie M, Wiegand S, Paulsen H. 2009. Filling the “green gap” of the major light-harvesting chlorophyll a/b complex by covalent attachment of Rhodamine Red. Biochim. Biophys. Acta Bioenerg. 1787:1499–504
    [Google Scholar]
  108. 108. 
    Werwie M, Xu X, Haase M, Basché T, Paulsen H. 2012. Bio serves nano: biological light-harvesting complex as energy donor for semiconductor quantum dots. Langmuir 28:5810–18
    [Google Scholar]
  109. 109. 
    Nagata M, Amano M, Joke T, Fujii K, Okuda A et al. 2012. Immobilization and photocurrent activity of a light-harvesting antenna complex II, LHCII, isolated from a plant on electrodes. ACS Macro Lett 1:296–99
    [Google Scholar]
  110. 110. 
    Roeder S, Hobe S, Paulsen H. 2014. Silica entrapment for significantly stabilized, energy-conducting light-harvesting complex (LHCII). Langmuir 30:14234–40
    [Google Scholar]
  111. 111. 
    Patwardhan SV, Holt SA, Kelly SM, Kreiner M, Perry CC, van der Walle CF. 2010. Silica condensation by a silicatein α homologue involves surface-induced transition to a stable structural intermediate forming a saturated monolayer. Biomacromolecules 11:3126–35
    [Google Scholar]
  112. 112. 
    Huang S-CJ, Artyukhin AB, Misra N, Martinez JA, Stroeve PA et al. 2010. Carbon nanotube transistor controlled by a biological ion pump gate. Nano Lett 10:1812–16
    [Google Scholar]
  113. 113. 
    Soto-Rodríguez J, Hemmatian Z, Josberger EE, Rolandi M, Baneyx F. 2016. A palladium-binding deltarhodopsin for light-activated conversion of protonic to electronic currents. Adv. Mater. 28:6581–85
    [Google Scholar]
  114. 114. 
    Misra N, Martinez JA, Huang S-CJ, Wang Y, Stroeve P et al. 2009. Bioelectronic silicon nanowire devices using functional membrane proteins. PNAS 106:13780–84
    [Google Scholar]
  115. 115. 
    Tunuguntla RH, Bangar MA, Kim K, Stroeve P, Grigoropoulos C et al. 2015. Bioelectronic light-gated transistors with biologically tunable performance. Adv. Mater. 27:831–36
    [Google Scholar]
  116. 116. 
    Soto-Rodríguez J, Hemmatian Z, Black J, Rolandi M, Baneyx F. 2019. Two-channel bioprotonic photodetector. ACS Appl. Bio Mater. 2:930–35
    [Google Scholar]
  117. 117. 
    Pyles H, Zhang S, De Yoreo JJ, Baker D. 2019. Controlling protein assembly on inorganic crystals through designed protein interfaces. Nature 571:251–56
    [Google Scholar]
  118. 118. 
    Shen H, Fallas JA, Lynch E, Sheffler W, Parry B et al. 2018. De novo design of self-assembling helical protein filaments. Science 362:705–9
    [Google Scholar]
  119. 119. 
    Matthaei JF, DiMaio F, Richards JJ, Pozzo LD, Baker D, Baneyx F. 2015. Designing two-dimensional protein arrays through fusion of multimers and interface mutations. Nano Lett 15:5235–39
    [Google Scholar]
  120. 120. 
    Gonen S, DiMaio F, Gonen T, Baker D. 2015. Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. Science 348:1365–68
    [Google Scholar]
  121. 121. 
    Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D et al. 2016. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389–94
    [Google Scholar]
  122. 122. 
    Hsia Y, Bale JB, Gonen S, Shi D, Sheffler W et al. 2016. Design of a hyperstable 60-subunit protein dodecahedron. Nature 535:136–39
    [Google Scholar]
  123. 123. 
    Wallace AK, Chanut N, Voigt CA. 2020. Silica nanostructures produced using diatom peptides with designed post-translational modifications. Adv. Funct. Mater. 30:2000849
    [Google Scholar]
  124. 124. 
    Nakouzi E, Steinbock O. 2016. Self-organization in precipitation reactions far from the equilibrium. Sci. Adv. 2:e1601144
    [Google Scholar]
  125. 125. 
    Sampath J, Alamdari S, Pfaendtner J. 2020. Closing the gap between modeling and experiments in the self-assembly of biomolecules at interfaces and in solution. Chem. Mater. 32:8043–59
    [Google Scholar]
  126. 126. 
    Basith S, Manavalan B, Hwan Shin T, Lee G 2020. Machine intelligence in peptide therapeutics: a next-generation tool for rapid disease screening. Med. Res. Rev. 40:1276–314
    [Google Scholar]
  127. 127. 
    Vinogradov AA, Gates ZP, Zhang C, Quartararo AJ, Halloran KH, Pentelute BL. 2017. Library design-facilitated high-throughput sequencing of synthetic peptide libraries. ACS Comb. Sci. 19:694–701
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-102020-015923
Loading
/content/journals/10.1146/annurev-chembioeng-102020-015923
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error