1932

Abstract

The direct capture of CO from ambient air presents a means of decelerating the growth of global atmospheric CO concentrations. Considerations relating to process engineering are the focus of this review and have received significantly less attention than those relating to the design of materials for direct air capture (DAC). We summarize minimum thermodynamic energy requirements, second law efficiencies, major unit operations and associated energy requirements, capital and operating expenses, and potential alternative process designs. We also highlight process designs applied toward more concentrated sources of CO that, if extended to lower concentrations, could help move DAC units closer to more economical continuous operation. Addressing shortcomings highlighted here could aid in the design of improved DAC processes that overcome trade-offs between capture performance and DAC cost.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-102121-065047
2022-06-07
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-102121-065047.html?itemId=/content/journals/10.1146/annurev-chembioeng-102121-065047&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Minx JC, Lamb WF, Callaghan MW, Fuss S, Hilaire J et al. 2018. Negative emissions—part 1: research landscape and synthesis. Environ. Res. Lett. 13:63001–30
    [Google Scholar]
  2. 2.
    Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D et al. 2018. Net-zero emissions energy systems. Science 360:6396eaas9793
    [Google Scholar]
  3. 3.
    Fuss S, Jones CD, Kraxner F, Peters GP, Smith P et al. 2016. Research priorities for negative emissions. Environ. Res. Lett. 11:115006
    [Google Scholar]
  4. 4.
    Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A et al. 2018. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11:51062–176
    [Google Scholar]
  5. 5.
    Koytsoumpa EI, Bergins C, Kakaras E. 2018. The CO2 economy: review of CO2 capture and reuse technologies. J. Supercrit. Fluids. 132:3–16
    [Google Scholar]
  6. 6.
    Williamson P. 2016. Emissions reduction: Scrutinize CO2 removal methods. Nature 530:7589153–55
    [Google Scholar]
  7. 7.
    Lu Y, Stegman A, Cai Y. 2013. Emissions intensity targeting: from China's 12th Five Year Plan to its Copenhagen commitment. Energy Policy 61:1164–77
    [Google Scholar]
  8. 8.
    den Elzen MGJ, van Vuuren DP, van Vliet J. 2010. Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs. Clim. Change 99:1313–20
    [Google Scholar]
  9. 9.
    Nelson T, Simshauser P, Orton F, Kelley S 2012. Delayed carbon policy certainty and electricity prices in Australia: a concise summary of subsequent research. Econ. Pap. 31:1132–35
    [Google Scholar]
  10. 10.
    Natl. Res. Counc 2015. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. Washington, DC: Natl. Acad. Press
    [Google Scholar]
  11. 11.
    Damm DL, Fedorov AG. 2008. Conceptual study of distributed CO2 capture and the sustainable carbon economy. Energy Convers. Manag. 49:61674–83
    [Google Scholar]
  12. 12.
    Davis SJ, Caldeira K, Matthews HD. 2010. Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–33
    [Google Scholar]
  13. 13.
    Santos G. 2017. Road transport and CO2 emissions: What are the challenges?. Transp. Policy. 59:71–74
    [Google Scholar]
  14. 14.
    McQueen N, Gomes KV, McCormick C, Blumanthal K, Pisciotta M, Wilcox J 2021. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog. Energy 3:3032001
    [Google Scholar]
  15. 15.
    Socolow R, Desmond M, Aines R, Blackstock J, Bolland O et al. 2011.. Direct air capture of CO2 with chemicals: a technology assessment for the APS Panel on Public Affairs. Rep., Am. Phys. Soc., College Park, MD
    [Google Scholar]
  16. 16.
    House KZ, Baclig AC, Ranjan M, Van Nierop EA, Wilcox J, Herzog HJ. 2011. Economic and energetic analysis of capturing CO2 from ambient air. PNAS 108:5120428–33
    [Google Scholar]
  17. 17.
    Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW. 2016. Direct capture of CO2 from ambient air. Chem. Rev. 116:1911840–76
    [Google Scholar]
  18. 18.
    Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F et al. 2018. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13:63002
    [Google Scholar]
  19. 19.
    Ishimoto Y, Sugiyama M, Kato E, Moriyama R, Tsuzuki K, Kurosawa A 2017. Putting costs of direct air capture in context Work. Pap. 002, For. Clim. Eng. Assess Washington, DC:
    [Google Scholar]
  20. 20.
    Broehm M, Strefler J, Bauer N. 2015. Techno-economic review of direct air capture systems for large scale mitigation of atmospheric CO2 Work. Pap., Potsdam Inst. Clim. Impact Res., Potsdam, Ger.
    [Google Scholar]
  21. 21.
    Ranjan M, Herzog HJ. 2011. Feasibility of air capture. Energy Procedia 4:2869–76
    [Google Scholar]
  22. 22.
    D'Alessandro DM, Smit B, Long JR 2010. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49:356058–82
    [Google Scholar]
  23. 23.
    Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G 2013. Activated carbons and amine-modified materials for carbon dioxide capture—a review. Front. Environ. Sci. Eng. 7:3326–40
    [Google Scholar]
  24. 24.
    Chen C, Kim J, Ahn WS. 2014. CO2 capture by amine-functionalized nanoporous materials: a review. Korean J. Chem. Eng. 31:111919–34
    [Google Scholar]
  25. 25.
    Shi X, Xiao H, Azarabadi H, Song J, Wu X 2019. Sorbents for the direct capture of CO2 from ambient air. Angew. Chem. Int. Ed. 59:182–25
    [Google Scholar]
  26. 26.
    Azarabadi H, Lackner KS. 2019. A sorbent-focused techno-economic analysis of direct air capture. Appl. Energy. 250:959–75
    [Google Scholar]
  27. 27.
    Oschatz M, Antonietti M. 2018. A search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ. Sci. 11:157–70
    [Google Scholar]
  28. 28.
    Jahandar Lashaki M, Khiavi S, Sayari A 2019. Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle. Chem. Soc. Rev. 48:123320–405
    [Google Scholar]
  29. 29.
    Khraisheh M, Mukherjee S, Kumar A, Al Momani F, Walker G, Zaworotko MJ 2020. An overview on trace CO2 removal by advanced physisorbent materials. J. Environ. Manag. 255:109874
    [Google Scholar]
  30. 30.
    Brandani S. 2012. Carbon dioxide capture from air: a simple analysis. Energy Environ. 2:319–28
    [Google Scholar]
  31. 31.
    Zeman F. 2007. Energy and material balance of CO2 capture from ambient air. Environ. Sci. Technol. 41:217558–63
    [Google Scholar]
  32. 32.
    Zeman FS. 2003. An investigation into the feasibility of capturing carbon dioxide directly from the atmosphere. Presented at the 2nd Annual Conference on Carbon Sequestration, Alexandria, VA, May 6
  33. 33.
    Wilcox J, Psarras PC, Liguori S. 2017. Assessment of reasonable opportunities for direct air capture. Environ. Res. Lett. 12:6065001
    [Google Scholar]
  34. 34.
    Elfving J, Kauppinen J, Jegoroff M, Ruuskanen V, Järvinen L, Sainio T 2021. Experimental comparison of regeneration methods for CO2 concentration from air using amine-based adsorbent. Chem. Eng. J. 404:126337
    [Google Scholar]
  35. 35.
    Brilman W, Garcia Alba L, Veneman R 2013. Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation. Biomass Bioenergy 53:39–47
    [Google Scholar]
  36. 36.
    Kläring HP, Hauschild C, Heißner A, Bar-Yosef B. 2007. Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agric. For. Meteorol. 143:34208–16
    [Google Scholar]
  37. 37.
    Ruthven DM. 2014. CO2 capture: value functions, separative work and process economics. Chem. Eng. Sci. 114:128–33
    [Google Scholar]
  38. 38.
    Ruthven DM, Farooq S, Brandani S 2015. Work of separation in CO2 capture: applicability of the value function. Chem. Eng. Sci. 126:604–7
    [Google Scholar]
  39. 39.
    Zhao R, Liu L, Zhao L, Deng S, Li S et al. 2019. Thermodynamic exploration of temperature vacuum swing adsorption for direct air capture of carbon dioxide in buildings. Energy Convers. Manag. 183:418–26
    [Google Scholar]
  40. 40.
    Jiang L, Roskilly AP, Wang RZ. 2018. Performance exploration of temperature swing adsorption technology for carbon dioxide capture. Energy Convers. Manag. 165:396–404
    [Google Scholar]
  41. 41.
    Lively RP, Realff MJ. 2016. On thermodynamic separation efficiency: adsorption processes. AIChE J. 62:103699–705
    [Google Scholar]
  42. 42.
    Elfving J, Bajamundi C, Kauppinen J, Sainio T 2017. Modelling of equilibrium working capacity of PSA, TSA and TVSA processes for CO2 adsorption under direct air capture conditions. J. CO2 Util. 22:270–77
    [Google Scholar]
  43. 43.
    Stuckert NR, Yang RT. 2011. CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15. Environ. Sci. Technol. 45:2310257–64
    [Google Scholar]
  44. 44.
    Elfving J, Bajamundi C, Kauppinen J. 2017. Characterization and performance of direct air capture sorbent. Energy Procedia 114:6087–101
    [Google Scholar]
  45. 45.
    Wurzbacher JA, Gebald C, Steinfeld A. 2011. Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel. Energy Environ. Sci. 4:93584–92
    [Google Scholar]
  46. 46.
    Sinha A, Darunte LA, Jones CW, Realff MJ, Kawajiri Y. 2017. Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents. Ind. Eng. Chem. Res. 56:3750–64
    [Google Scholar]
  47. 47.
    Pang SH, Lee LC, Sakwa-Novak MA, Lively RP, Jones CW. 2017. Design of aminopolymer structure to enhance performance and stability of CO2 sorbents: poly(propylenimine) vs poly(ethylenimine). J. Am. Chem. Soc. 139:103627–30
    [Google Scholar]
  48. 48.
    Wang T, Lackner KS, Wright AB. 2013. Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis. Phys. Chem. Chem. Phys. 15:2504–14
    [Google Scholar]
  49. 49.
    Keith DW, Ha-Duong M, Stolaroff JK. 2006. Climate strategy with CO2 capture from the air. Clim. Change 74:17–45
    [Google Scholar]
  50. 50.
    Holmes G, Keith DW. 2012. An air-liquid contactor for large-scale capture of CO2 from air. Philos. Trans. R. Soc. A 3701974:4380–403
    [Google Scholar]
  51. 51.
    Stolaroff JK, Keith DW, Lowry GV. 2008. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ. Sci. Technol. 42:82728–35
    [Google Scholar]
  52. 52.
    Keith DW, Holmes G, St. Angelo D, Heidel K 2018. A process for capturing CO2 from the atmosphere. Joule 2:81573–94
    [Google Scholar]
  53. 53.
    Zeman F. 2014. Reducing the cost of Ca-based direct air capture of CO2. Environ. Sci. Technol. 48:1911730–35
    [Google Scholar]
  54. 54.
    Baciocchi R, Storti G, Mazzotti M. 2006. Process design and energy requirements for the capture of carbon dioxide from air. Chem. Eng. Process. Process Intensif. 45:121047–58
    [Google Scholar]
  55. 55.
    Wilson SMW, Tezel FH. 2020. Direct dry air capture of CO2 using VTSA with faujasite zeolites. Ind. Eng. Chem. Res. 59:188783–94
    [Google Scholar]
  56. 56.
    van der Giesen C, Meinrenken CJ, Kleijn R, Sprecher B, Lackner KS, Kramer GJ. 2017. A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO2 versus MEA-based postcombustion capture. Environ. Sci. Technol. 51:21024–34
    [Google Scholar]
  57. 57.
    Kulkarni AR, Sholl DS. 2012. Analysis of equilibrium-based TSA processes for direct capture of CO2 from air. Ind. Eng. Chem. Res. 51:258631–45
    [Google Scholar]
  58. 58.
    Sinha A, Realff MJ. 2019. A parametric study of the techno-economics of direct CO2 air capture systems using solid adsorbents. AIChE J. 65:7e16607
    [Google Scholar]
  59. 59.
    Natl. Acad. Sci. Eng. Med 2019. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda Washington, DC: Natl. Acad. Press
    [Google Scholar]
  60. 60.
    McDonald TM, Mason JA, Kong X, Bloch ED, Gygi D et al. 2015. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519:303–8
    [Google Scholar]
  61. 61.
    McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR 2012. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134:167056–65
    [Google Scholar]
  62. 62.
    Simon AJ, Kaahaaina NB, Friedmann SJ, Aines RD. 2011. Systems analysis and cost estimates for large scale capture of carbon dioxide from air. Energy Procedia 4:2893–900
    [Google Scholar]
  63. 63.
    Nikulshina V, Hirsch D, Mazzotti M, Steinfeld A 2006. CO2 capture from air and co-production of H2 via the Ca(OH)2-CaCO3 cycle using concentrated solar power-Thermodynamic analysis. Energy 31:121715–25
    [Google Scholar]
  64. 64.
    Lackner KS. 2009. Capture of carbon dioxide from ambient air. Eur. Phys. J. Spec. Top. 176:193–106
    [Google Scholar]
  65. 65.
    Lackner KS, Azarabadi H. 2021. Buying down the cost of direct air capture. Ind. Eng. Chem. Res. 60:228196–208
    [Google Scholar]
  66. 66.
    DeSantis D, Mason JA, James BD, Houchins C, Long JR, Veenstra M. 2017. Techno-economic analysis of metal−organic frameworks for hydrogen and natural gas storage. Energy Fuels. 31:22024–32
    [Google Scholar]
  67. 67.
    Rosu C, Pang SH, Sujan AR, Sakwa-Novak MA, Ping EW, Jones CW 2020. Effect of extended aging and oxidation on linear poly(propylenimine)-mesoporous silica composites for CO2 capture from simulated air and flue gas streams. ACS Appl. Mater. Interfaces 12:3438085–97
    [Google Scholar]
  68. 68.
    Choi W, Min K, Kim C, Ko YS, Jeon JW et al. 2016. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nat. Commun. 7:12640
    [Google Scholar]
  69. 69.
    Jeon S, Min J, Kim SH, Lee KB 2020. Introduction of cross-linking agents to enhance the performance and chemical stability of polyethyleneimine-impregnated CO2 adsorbents: effect of different alkyl chain lengths. Chem. Eng. J. 398:15125531
    [Google Scholar]
  70. 70.
    Min K, Choi W, Kim C, Choi M 2018. Oxidation-stable amine-containing adsorbents for carbon dioxide capture. Nat. Commun. 9:726:
    [Google Scholar]
  71. 71.
    Fasihi M, Efimova O, Breyer C. 2019. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 224:957–80
    [Google Scholar]
  72. 72.
    Sadiq MM, Batten MP, Mulet X, Freeman C, Konstas K et al. 2020. A pilot-scale demonstration of mobile direct air capture using metal-organic frameworks. Adv. Sustain. Syst. 4:122000101
    [Google Scholar]
  73. 73.
    Drechsler C, Agar DW. 2019. Simulation and optimization of a novel moving belt adsorber concept for the direct air capture of carbon dioxide. Comput. Chem. Eng. 126:520–34
    [Google Scholar]
  74. 74.
    Gupta T, Ghosh R. 2015. Rotating bed adsorber system for carbon dioxide capture from flue gas. Int. J. Greenh. Gas Control 32:172–88
    [Google Scholar]
  75. 75.
    Gao J, Hoshino Y, Inoue G. 2020. Honeycomb-carbon-fiber-supported amine-containing nanogel particles for CO2 capture using a rotating column TVSA. Chem. Eng. J. 383:123123
    [Google Scholar]
  76. 76.
    Cheng X, Zhang X, Zhang M, Sun P, Wang Z, Ma C 2017. A simulated rotary reactor for NOx reduction by carbon monoxide over Fe/ZSM-5 catalysts. Chem. Eng. J. 307:24–40
    [Google Scholar]
  77. 77.
    Zhao Z, Iloeje CO, Chen T, Ghoniem AF 2014. Design of a rotary reactor for chemical-looping combustion. Part 1: fundamentals and design methodology. Fuel 121:327–43
    [Google Scholar]
  78. 78.
    Zhang XJ, Dai YJ, Wang RZ. 2003. A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier. Appl. Therm. Eng. 23:8989–1003
    [Google Scholar]
  79. 79.
    Jung W, Park S, Lee KS, Jeon JD, Lee HK 2020. Rapid thermal swing adsorption process in multi-beds scale with sensible heat recovery for continuous energy-efficient CO2 capture. Chem. Eng. J. 392:123656
    [Google Scholar]
  80. 80.
    Roy S, Mohanty CR, Meikap BC. 2009. Multistage fluidized bed reactor performance characterization for adsorption of carbon dioxide. Ind. Eng. Chem. Res. 48:2310718–27
    [Google Scholar]
  81. 81.
    Pröll T, Schöny G, Sprachmann G, Hofbauer H. 2016. Introduction and evaluation of a double loop staged fluidized bed system for post-combustion CO2 capture using solid sorbents in a continuous temperature swing adsorption process. Chem. Eng. Sci. 141:166–74
    [Google Scholar]
  82. 82.
    Zanco SE, Mazzotti M, Gazzani M, Romano MC, Martínez I. 2018. Modeling of circulating fluidized beds systems for post-combustion CO2 capture via temperature swing adsorption. AIChE J. 64:51744–59
    [Google Scholar]
  83. 83.
    Zaabout A, Romano MC, Cloete S, Giuffrida A, Morud Jet al 2017. Thermodynamic assessment of the swing adsorption reactor cluster (SARC) concept for post-combustion CO2 capture. Int. J. Greenh. Gas Control 60:74–92
    [Google Scholar]
  84. 84.
    Dhoke C, Zaabout A, Cloete S, Seo H, Park Yet al 2019. The swing adsorption reactor cluster (SARC) for post combustion CO2 capture: experimental proof-of-principle. Chem. Eng. J. 377:120145
    [Google Scholar]
  85. 85.
    Dhoke C, Cloete S, Krishnamurthy S, Seo H, Luz Iet al 2020. Sorbents screening for post-combustion CO2 capture via combined temperature and pressure swing adsorption. Chem. Eng. J. 380:122201
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-102121-065047
Loading
/content/journals/10.1146/annurev-chembioeng-102121-065047
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error