1932

Abstract

Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-102720-015630
2021-06-07
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-102720-015630.html?itemId=/content/journals/10.1146/annurev-chembioeng-102720-015630&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Guo T, Lin M, Huang JX, Zhou CL, Tian WZ et al. 2018. The recent advances of magnetic nanoparticles in medicine. J. Nanomater. 2018.7805147
    [Google Scholar]
  2. 2. 
    Tran N, Webster TJ. 2010. Magnetic nanoparticles: biomedical applications and challenges. J. Mater. Chem. 20:8760–67
    [Google Scholar]
  3. 3. 
    Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM et al. 2012. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv. Mater. 24:3870–77
    [Google Scholar]
  4. 4. 
    Zhou XY, Tay ZW, Chandrasekharan P, Yu EY, Hensley DW et al. 2018. Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking. Curr. Opin. Chem. Biol. 45:131–38
    [Google Scholar]
  5. 5. 
    Rosensweig RE. 2002. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252:370–74
    [Google Scholar]
  6. 6. 
    Etemadi H, Plieger PG. 2020. Magnetic fluid hyperthermia based on magnetic nanoparticles: physical characteristics, historical perspective, clinical trials, technological challenges, and recent advances. Adv. Ther. 3:2000061
    [Google Scholar]
  7. 7. 
    Kozissnik B, Bohorquez AC, Dobson J, Rinaldi C. 2013. Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int. J. Hyperth. 29:706–14
    [Google Scholar]
  8. 8. 
    Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R. 2020. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv. Drug Deliv. Rev. 163–164 65–83
    [Google Scholar]
  9. 9. 
    Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. 2020. Physical triggering strategies for drug delivery. Adv. Drug Deliv. Rev. 158:36–62
    [Google Scholar]
  10. 10. 
    Wang YF, Kohane DS. 2017. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2:17020
    [Google Scholar]
  11. 11. 
    Manuchehrabadi N, Gao Z, Zhang JJ, Ring HL, Shao Q et al. 2017. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci. Transl. Med. 9:eaah4586
    [Google Scholar]
  12. 12. 
    Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL et al. 2017. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int 92:47–66
    [Google Scholar]
  13. 13. 
    Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knuchel R et al. 2019. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 138:302–25
    [Google Scholar]
  14. 14. 
    Savliwala S, Chiu-Lam A, Unni M, Rivera-Rodriguez A, Fuller E et al. 2019. Magnetic nanoparticles. Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications EJ Chung, L Leon, C Rinaldi 195–221 Amsterdam: Elsevier
    [Google Scholar]
  15. 15. 
    Arami H, Khandhar A, Liggitt D, Krishnan KM. 2015. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44:8576–607
    [Google Scholar]
  16. 16. 
    Sahoo B, Devi KS, Dutta S, Maiti TK, Pramanik P, Dhara D. 2014. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J. Colloid Interface Sci. 431:31–41
    [Google Scholar]
  17. 17. 
    Faraji S, Dini G, Zahraei M. 2019. Polyethylene glycol-coated manganese-ferrite nanoparticles as contrast agents for magnetic resonance imaging. J. Magn. Magn. Mater. 475:137–45
    [Google Scholar]
  18. 18. 
    Tomitaka A, Hirukawa A, Yamada T, Morishita S, Takemura Y. 2009. Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells. J. Magn. Magn. Mater. 321:1482–84
    [Google Scholar]
  19. 19. 
    Barrera C, Herrera AP, Bezares N, Fachini E, Olayo-Valles R et al. 2012. Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications. J. Colloid Interface Sci. 377:40–50
    [Google Scholar]
  20. 20. 
    Ditsch A, Laibinis PE, Wang DI, Hatton TA. 2005. Controlled clustering and enhanced stability of polymer-coated magnetic nanoparticles. Langmuir 21:6006–18
    [Google Scholar]
  21. 21. 
    Mefford OT, Vadala ML, Goff JD, Carroll MR, Mejia-Ariza R et al. 2008. Stability of polydimethylsiloxane-magnetite nanoparticle dispersions against flocculation: interparticle interactions of polydisperse materials. Langmuir 24:5060–69
    [Google Scholar]
  22. 22. 
    Zhu N, Ji H, Yu P, Niu J, Farooq MU et al. 2018. Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8:810
    [Google Scholar]
  23. 23. 
    Wu Y, Lu Z, Li Y, Yang J, Zhang X 2020. Surface modification of iron oxide-based magnetic nanoparticles for cerebral theranostics: application and prospection. Nanomaterials 10:1441
    [Google Scholar]
  24. 24. 
    Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B et al. 2013. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–48
    [Google Scholar]
  25. 25. 
    Conde J, Dias JT, Grazu V, Moros M, Baptista PV, de la Fuente JM. 2014. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2:48
    [Google Scholar]
  26. 26. 
    Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. 2018. Surface modifications of nanoparticles for stability in biological fluids. Materials 11:1154
    [Google Scholar]
  27. 27. 
    Park SJ. 2020. Protein-nanoparticle interaction: corona formation and conformational changes in proteins on nanoparticles. Int. J. Nanomed. 15:5783–802
    [Google Scholar]
  28. 28. 
    Stepien G, Moros M, Pérez-Hernández M, Monge M, Gutiérrez L et al. 2018. Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in vivo. ACS Appl. Mater. Interfaces 10:4548–60
    [Google Scholar]
  29. 29. 
    Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE. 2019. Overcoming hurdles in nanoparticle clinical translation: the influence of experimental design and surface modification. Int. J. Mol. Sci. 20:6056
    [Google Scholar]
  30. 30. 
    Spaldin NA. 2010. Magnetic Materials: Fundamentals and Applications Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  31. 31. 
    Maldonado-Camargo L, Torres-Díaz I, Chiu-Lam A, Hernández M, Rinaldi C. 2016. Estimating the contribution of Brownian and Néel relaxation in a magnetic fluid through dynamic magnetic susceptibility measurements. J. Magn. Magn. Mater. 412:223–33
    [Google Scholar]
  32. 32. 
    Yadollahpour A, Hosseini SA, Rashidi S, Farhadi F. 2016. Applications of magnetic nanoparticles as contrast agents in MRI: recent advances and clinical challenges. Int. J. Pharm. Res. Allied Sci. 5:251–57
    [Google Scholar]
  33. 33. 
    Wang YX. 2015. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J. Gastroenterol. 21:13400–2
    [Google Scholar]
  34. 34. 
    Estelrich J, Sánchez-Martín MJ, Busquets MA 2015. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomed. 10:1727–41
    [Google Scholar]
  35. 35. 
    Gleich B, Weizenecker R. 2005. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–17
    [Google Scholar]
  36. 36. 
    Graeser M, Thieben F, Szwargulski P, Werner F, Gdaniec N et al. 2019. Human-sized magnetic particle imaging for brain applications. Nat. Commun. 10:1936
    [Google Scholar]
  37. 37. 
    Saritas EU, Goodwill PW, Croft LR, Konkle JJ, Lu K et al. 2013. Magnetic particle imaging (MPI) for NMR and MRI researchers. J. Magn. Reson. 229:116–26
    [Google Scholar]
  38. 38. 
    Bulte JW, Walczak P, Gleich B, Weizenecker J, Markov DE et al. 2011. MPI cell tracking: What can we learn from MRI?. Proc. SPIE Int. Soc. Opt. Eng 7965:79650z
    [Google Scholar]
  39. 39. 
    Bauer LM, Situ SF, Griswold MA, Samia AC. 2015. Magnetic particle imaging tracers: state-of-the-art and future directions. J. Phys. Chem. Lett. 6:2509–17
    [Google Scholar]
  40. 40. 
    Goodwill PW, Lu K, Zheng B, Conolly SM. 2012. An x-space magnetic particle imaging scanner. Rev. Sci. Instrum. 83:033708
    [Google Scholar]
  41. 41. 
    Goodwill PW, Conolly SM. 2011. Multidimensional x-space magnetic particle imaging. IEEE Trans. Med. Imaging 30:1581–90
    [Google Scholar]
  42. 42. 
    Them K. 2017. On magnetic dipole-dipole interactions of nanoparticles in magnetic particle imaging. Phys. Med. Biol. 62:5623–39
    [Google Scholar]
  43. 43. 
    Weizenecker J. 2018. The Fokker-Planck equation for coupled Brown-Neel-rotation. Phys. Med. Biol. 63:035004
    [Google Scholar]
  44. 44. 
    Zhao Z, Garraud N, Arnold DP, Rinaldi C. 2020. Effects of particle diameter and magnetocrystalline anisotropy on magnetic relaxation and magnetic particle imaging performance of magnetic nanoparticles. Phys. Med. Biol. 65:025014
    [Google Scholar]
  45. 45. 
    Goodwill PW, Conolly SM. 2010. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans. Med. Imaging 29:1851–59
    [Google Scholar]
  46. 46. 
    Croft LR, Goodwill PW, Conolly SM. 2012. Relaxation in x-space magnetic particle imaging. IEEE Trans. Med. Imaging 31:2335–42
    [Google Scholar]
  47. 47. 
    Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. 2009. Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54:L1–L10
    [Google Scholar]
  48. 48. 
    Andreucci M, Faga T, Serra R, De Sarro G, Michael A 2017. Update on the renal toxicity of iodinated contrast drugs used in clinical medicine. Drug Healthc. Patient Saf. 9:25–37
    [Google Scholar]
  49. 49. 
    Kaul MG, Salamon J, Knopp T, Ittrich H, Adam G et al. 2018. Magnetic particle imaging for in vivo blood flow velocity measurements in mice. Phys. Med. Biol. 63:064001
    [Google Scholar]
  50. 50. 
    Yu EY, Chandrasekharan P, Berzon R, Tay ZW, Zhou XY et al. 2017. Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model. ACS Nano 11:12067–76
    [Google Scholar]
  51. 51. 
    Talebloo N, Gudi M, Robertson N, Wang P. 2020. Magnetic particle imaging: current applications in biomedical research. J. Magn. Reson. Imaging 51:1659–68
    [Google Scholar]
  52. 52. 
    Mangarova DB, Brangsch J, Mohtashamdolatshahi A, Kosch O, Paysen H et al. 2020. Ex vivo magnetic particle imaging of vascular inflammation in abdominal aortic aneurysm in a murine model. Sci. Rep. 10:12410
    [Google Scholar]
  53. 53. 
    Bakenecker AC, Ahlborg M, Debbeler C, Kaethner C, Buzug TM, Ludtke-Buzug K. 2018. Magnetic particle imaging in vascular medicine. Innov. Surg. Sci. 3:179–92
    [Google Scholar]
  54. 54. 
    Salamon J, Hofmann M, Jung C, Kaul MG, Werner F et al. 2016. Magnetic particle/magnetic resonance imaging: in-vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach. PLOS ONE 11:e01456899
    [Google Scholar]
  55. 55. 
    Elbuluk A, Einhorn TA, Iorio R. 2017. A comprehensive review of stem-cell therapy. JBJS Rev 5:e15
    [Google Scholar]
  56. 56. 
    Guedan S, Ruella M, June CH 2019. Emerging cellular therapies for cancer. Annu. Rev. Immunol. 37:145–71
    [Google Scholar]
  57. 57. 
    Mayer AT, Gambhir SS. 2018. The immunoimaging toolbox. J. Nucl. Med. 59:1174–82
    [Google Scholar]
  58. 58. 
    Ou YC, Wen X, Bardhan R. 2020. Cancer immunoimaging with smart nanoparticles. Trends Biotechnol 38:388–403
    [Google Scholar]
  59. 59. 
    Willadsen M, Chaise M, Yarovoy I, Zhang AQ, Parashurama N. 2018. Engineering molecular imaging strategies for regenerative medicine. Bioeng. Transl. Med. 3:232–55
    [Google Scholar]
  60. 60. 
    Ni JS, Li Y, Yue W, Liu B, Li K. 2020. Nanoparticle-based cell trackers for biomedical applications. Theranostics 10:1923–47
    [Google Scholar]
  61. 61. 
    Bulte JWM, Walczak P, Janowski M, Krishnan KM, Arami H et al. 2015. Quantitative “hot-spot” imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging. Tomography 1:91–97
    [Google Scholar]
  62. 62. 
    Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY et al. 2017. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46:4218–44
    [Google Scholar]
  63. 63. 
    Ferguson RM, Khandhar AP, Krishnan KM. 2012. Tracer design for magnetic particle imaging (invited). J. Appl. Phys. 111:07B318
    [Google Scholar]
  64. 64. 
    von der Haar K, Lavrentieva A, Stahl F, Scheper T, Blume C. 2015. Lost signature: progress and failures in in vivo tracking of implanted stem cells. Appl. Microbiol. Biotechnol. 99:9907–22
    [Google Scholar]
  65. 65. 
    Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK et al. 2003. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–87
    [Google Scholar]
  66. 66. 
    Suzuka H, Mimura A, Inaoka Y, Murase K. 2019. Magnetic nanoparticles in macrophages and cancer cells exhibit different signal behavior on magnetic particle imaging. J. Nanosci. Nanotechnol. 19:6857–65
    [Google Scholar]
  67. 67. 
    Makela AV, Gaudet JM, Schott MA, Sehl OC, Contag CH, Foster PJ. 2020. Magnetic particle imaging of macrophages associated with cancer: filling the voids left by iron-based magnetic resonance imaging. Mol. Imaging Biol. 22:958–68
    [Google Scholar]
  68. 68. 
    Wang P, Goodwill PW, Pandit P, Gaudet J, Ross A et al. 2018. Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models. Quant. Imaging Med. Surg. 8:114–22
    [Google Scholar]
  69. 69. 
    Rivera-Rodriguez A, Hoang-Minh LB, Chiu-Lam A, Sarna N, Marrero-Morales L et al. 2021. Tracking adoptive T cell therapy using magnetic particle imaging. Nanotheranostics 5:4431–44
    [Google Scholar]
  70. 70. 
    Zheng B, Vazin T, Goodwill PW, Conway A, Verma A et al. 2015. Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci. Rep. 5:14055
    [Google Scholar]
  71. 71. 
    Them K, Salamon J, Szwargulski P, Sequeira S, Kaul MG et al. 2016. Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging. Phys. Med. Biol. 61:3279–90
    [Google Scholar]
  72. 72. 
    Waiczies S, Niendorf T, Lombardi G. 2017. Labeling of cell therapies: How can we get it right?. Oncoimmunology 6:e1345403
    [Google Scholar]
  73. 73. 
    Frangioni JV. 2008. New technologies for human cancer imaging. J. Clin. Oncol. 26:4012–21
    [Google Scholar]
  74. 74. 
    Wu LC, Zhang Y, Steinberg G, Qu H, Huang S et al. 2019. A review of magnetic particle imaging and perspectives on neuroimaging. AJNR Am. J. Neuroradiol. 40:206–12
    [Google Scholar]
  75. 75. 
    Yu EY, Bishop M, Zheng B, Ferguson RM, Khandhar AP et al. 2017. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett 17:1648–54
    [Google Scholar]
  76. 76. 
    Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J et al. 2016. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1:16014
    [Google Scholar]
  77. 77. 
    Keselman P, Yu EY, Zhou XY, Goodwill PW, Chandrasekharan P et al. 2017. Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging. Phys. Med. Biol. 62:3440–53
    [Google Scholar]
  78. 78. 
    Arami H, Teeman E, Troksa A, Bradshaw H, Saatchi K et al. 2017. Tomographic magnetic particle imaging of cancer targeted nanoparticles. Nanoscale 9:18723–30
    [Google Scholar]
  79. 79. 
    Jung KO, Jo H, Yu JH, Gambhir SS, Pratx G 2018. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials 177:139–48
    [Google Scholar]
  80. 80. 
    Ludewig P, Gdaniec N, Sedlacik J, Forkert ND, Szwargulski P et al. 2017. Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano 11:10480–88
    [Google Scholar]
  81. 81. 
    Tay ZW, Chandrasekharan P, Zhou XY, Yu E, Zheng B, Conolly S 2018. In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring. Theranostics 8:3676–87
    [Google Scholar]
  82. 82. 
    Mason EE, Cooley CZ, Cauley SF, Griswold MA, Conolly SM, Wald LL. 2017. Design analysis of an MPI human functional brain scanner. Int. J. Magn. Part. Imaging 3:1703008
    [Google Scholar]
  83. 83. 
    Cooley CZ, Mandeville JB, Mason EE, Mandeville ET, Wald LL. 2018. Rodent cerebral blood volume (CBV) changes during hypercapnia observed using magnetic particle imaging (MPI) detection. Neuroimage 178:713–20
    [Google Scholar]
  84. 84. 
    Orendorff R, Peck AJ, Zheng B, Shirazi SN, Ferguson RM et al. 2017. First in vivo traumatic brain injury imaging via magnetic particle imaging. Phys. Med. Biol. 62:3501–9
    [Google Scholar]
  85. 85. 
    Zhou XY, Jeffris KE, Yu EY, Zheng B, Goodwill PW et al. 2017. First in vivo magnetic particle imaging of lung perfusion in rats. Phys. Med. Biol. 62:3510–22
    [Google Scholar]
  86. 86. 
    Nishimoto K, Mimura A, Aoki M, Banura N, Murase K. 2015. Application of magnetic particle imaging to pulmonary imaging using nebulized magnetic nanoparticles. Open J. Med. Imaging 5:49
    [Google Scholar]
  87. 87. 
    MacRitchie N, Frleta-Gilchrist M, Sugiyama A, Lawton T, McInnes IB, Maffia P. 2020. Molecular imaging of inflammation—current and emerging technologies for diagnosis and treatment. Pharmacol. Ther. 211:107550
    [Google Scholar]
  88. 88. 
    Hergt R, Dutz S, Zeisberger M. 2010. Validity limits of the Neel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology 21:015706
    [Google Scholar]
  89. 89. 
    Abu-Bakr AF, Zubarev AY. 2020. On the theory of magnetic hyperthermia: clusterization of nanoparticles. Philos. Trans. A Math. Phys. Eng. Sci. 378:20190251
    [Google Scholar]
  90. 90. 
    Carrey J, Mehdaoui B, Respaud M. 2011. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys 109:083921
    [Google Scholar]
  91. 91. 
    Zhao ZY, Rinaldi C. 2018. Magnetization dynamics and energy dissipation of interacting magnetic nanoparticles in alternating magnetic fields with and without a static bias field. J. Phys. Chem. C 122:21018–30
    [Google Scholar]
  92. 92. 
    Tan RP, Carrey J, Respaud M. 2014. Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power. Phys. Rev. B 90:214421
    [Google Scholar]
  93. 93. 
    Chatterjee DK, Diagaradjane P, Krishnan S. 2011. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2:1001–14
    [Google Scholar]
  94. 94. 
    Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ. 2016. Hyperthermia: How can it be used?. Oman Med. J. 31:89–97
    [Google Scholar]
  95. 95. 
    Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. 1957. Selective inductive heating of lymph nodes. Ann. Surg. 146:596–606
    [Google Scholar]
  96. 96. 
    Périgo EA, Hemery G, Sandre O, Ortega D, Garaio E et al. 2015. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2:041302
    [Google Scholar]
  97. 97. 
    Latorre M, Rinaldi C. 2009. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. P. R. Health Sci. J. 28:227–38
    [Google Scholar]
  98. 98. 
    Asín L, Stepien G, Moros M, Fratila RM, de la Fuente JM. 2018. Magnetic nanoparticles for cancer treatment using magnetic hyperthermia. Clinical Applications of Magnetic Nanoparticles NTK Thanh 305–17 Boca Raton, FL: CRC Press
    [Google Scholar]
  99. 99. 
    Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N et al. 2006. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J. Neurooncol. 78:7–14
    [Google Scholar]
  100. 100. 
    Jordan A, Scholz R, Wust P, Schirra H, Schiestel T et al. 1999. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater. 194:185–96
    [Google Scholar]
  101. 101. 
    Rivera-Rodriguez A, Chiu-Lam A, Morozov VM, Ishov AM, Rinaldi C. 2018. Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells. Int. J. Nanomed. 13:4771–79
    [Google Scholar]
  102. 102. 
    Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P et al. 2011. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 103:317–24
    [Google Scholar]
  103. 103. 
    Tong S, Zhu H, Bao G 2019. Magnetic iron oxide nanoparticles for disease detection and therapy. Mater. Today 31:86–99
    [Google Scholar]
  104. 104. 
    Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. 2007. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39
    [Google Scholar]
  105. 105. 
    Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C. 2013. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7:5091–101
    [Google Scholar]
  106. 106. 
    Liu X, Zhang Y, Wang Y, Zhu W, Li G et al. 2020. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 10:3793–815
    [Google Scholar]
  107. 107. 
    Datta NR, Ordonez SG, Gaipl US, Paulides MM, Crezee H et al. 2015. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat. Rev. 41:742–53
    [Google Scholar]
  108. 108. 
    Kobayashi T, Kakimi K, Nakayama E, Jimbow K. 2014. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine 9:1715–26
    [Google Scholar]
  109. 109. 
    Pan J, Hu P, Guo Y, Hao J, Ni D et al. 2020. Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano 14:1033–44
    [Google Scholar]
  110. 110. 
    Toraya-Brown S, Sheen MR, Zhang P, Chen L, Baird JR et al. 2014. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors. Nanomedicine 10:1273–85
    [Google Scholar]
  111. 111. 
    Pandya PH, Murray ME, Pollok KE, Renbarger JL. 2016. The immune system in cancer pathogenesis: potential therapeutic approaches. J. Immunol. Res. 2016.4273943
    [Google Scholar]
  112. 112. 
    Tsung K, Norton JA. 2016. In situ vaccine, immunological memory and cancer cure. Hum. Vaccin. Immunother. 12:117–19
    [Google Scholar]
  113. 113. 
    Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. 1998. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn. J. Cancer Res. 89:775–82
    [Google Scholar]
  114. 114. 
    Suzuki M, Shinkai M, Honda H, Kobayashi T. 2003. Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes. Melanoma Res 13:129–35
    [Google Scholar]
  115. 115. 
    Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhavalikar R et al. 2018. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano 12:3699–713
    [Google Scholar]
  116. 116. 
    Hensley D, Tay ZW, Dhavalikar R, Zheng B, Goodwill P et al. 2017. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys. Med. Biol. 62:3483–500
    [Google Scholar]
  117. 117. 
    Dhavalikar R, Rinaldi C. 2016. Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients. J. Magn. Magn. Mater. 419:267–73
    [Google Scholar]
  118. 118. 
    Chandrasekharan P, Tay ZW, Hensley D, Zhou XYY, Fung BKL et al. 2020. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Theranostics 10:2965–81
    [Google Scholar]
  119. 119. 
    Wells J, Paysen H, Kosch O, Trahms L, Wiekhorst F. 2018. Temperature dependence in magnetic particle imaging. AIP Adv 8:056703
    [Google Scholar]
  120. 120. 
    Weaver JB, Rauwerdink AM, Hansen EW. 2009. Magnetic nanoparticle temperature estimation. Med. Phys. 36:1822–29
    [Google Scholar]
  121. 121. 
    Perreard IM, Reeves DB, Zhang X, Kuehlert E, Forauer ER, Weaver JB. 2014. Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times. Phys. Med. Biol. 59:1109–19
    [Google Scholar]
  122. 122. 
    Pantke D, Holle N, Mogarkar A, Straub M, Schulz V. 2019. Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach. Med. Phys. 46:4077–86
    [Google Scholar]
  123. 123. 
    Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. 2018. Magnetic drug delivery: where the field is going. Front. Chem. 6:619
    [Google Scholar]
  124. 124. 
    Bonini M, Berti D, Baglioni P. 2013. Nanostructures for magnetically triggered release of drugs and biomolecules. Curr. Opin. Colloid Interface Sci. 18:459–67
    [Google Scholar]
  125. 125. 
    Bi H, Ma S, Li Q, Han X 2016. Magnetically triggered drug release from biocompatible microcapsules for potential cancer therapeutics. J. Mater. Chem. B 4:3269–77
    [Google Scholar]
  126. 126. 
    Liu JF, Jang B, Issadore D, Tsourkas A. 2019. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. WIREs Nanomed. Nanobiotechnol. 11:e1571
    [Google Scholar]
  127. 127. 
    Guo YX, Zhang Y, Ma JY, Li Q, Li Y et al. 2018. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J. Control. Release 272:145–58
    [Google Scholar]
  128. 128. 
    Fuller EG, Sun H, Dhavalikar RD, Unni M, Scheutz GM et al. 2019. Externally triggered heat and drug release from magnetically controlled nanocarriers. ACS Appl. Polym. Mater. 1:211–20
    [Google Scholar]
  129. 129. 
    Niemeyer CM. 2010. Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew. Chem. Int. Ed. 49:1200–16
    [Google Scholar]
  130. 130. 
    Banchelli M, Nappini S, Montis C, Bonini M, Canton P et al. 2014. Magnetic nanoparticle clusters as actuators of ssDNA release. Phys. Chem. Chem. Phys. 16:10023–31
    [Google Scholar]
  131. 131. 
    N'Guyen TTT, Duong HTT, Basuki J, Montembault V, Pascual S et al. 2013. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew. Chem. Int. Ed. 52:14152–56
    [Google Scholar]
  132. 132. 
    Riedinger A, Guardia P, Curcio A, Garcia MA, Cingolani R et al. 2013. Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. Nano Lett 13:2399–406
    [Google Scholar]
  133. 133. 
    Amstad E, Kohlbrecher J, Muller E, Schweizer T, Textor M, Reimhult E. 2011. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 11:1664–70
    [Google Scholar]
  134. 134. 
    Oliveira H, Pérez-Andrés E, Thevenot J, Sandre O, Berra E, Lecommandoux S. 2013. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Control. Release 169:165–70
    [Google Scholar]
  135. 135. 
    Fuller EG, Scheutz GM, Jimenez A, Lewis P, Savliwala S et al. 2019. Theranostic nanocarriers combining high drug loading and magnetic particle imaging. Int. J. Pharm. 572:118796
    [Google Scholar]
  136. 136. 
    Zhu X, Li J, Peng P, Hosseini Nassab N, Smith BR. 2019. Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite. Nano Lett 19:6725–33
    [Google Scholar]
  137. 137. 
    WHO-ONT 2016. Organ donation and transplantation activities Glob. Obs. Donation Transpl. http://www.transplant-observatory.org/
    [Google Scholar]
  138. 138. 
    Lanese N. 2019. How long can organs stay outside the body before being transplanted?. Live Science Dec. 28. https://www.livescience.com/how-long-can-donated-organs-last-before-transplant.html
    [Google Scholar]
  139. 139. 
    Health Resour. Sci. Adm 2019. The deceased donation process https://www.organdonor.gov/about/process/deceased-donation.html
    [Google Scholar]
  140. 140. 
    Fahy GM, Wowk B 2015. Principles of cryopreservation by vitrification. Cryopreservation and Freeze-Drying Protocols WF Wolkers, H Oldenhof 21–82 New York: Springer
    [Google Scholar]
  141. 141. 
    Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE et al. 2017. The promise of organ and tissue preservation to transform medicine. Nat. Biotechnol. 35:530–42
    [Google Scholar]
  142. 142. 
    Zhou C-J, Wang D-H, Niu X-X, Kong X-W, Li Y-J et al. 2016. High survival of mouse oocytes using an optimized vitrification protocol. Sci. Rep. 6:19465
    [Google Scholar]
  143. 143. 
    Rall WF, Fahy GM. 1985. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature 313:573–75
    [Google Scholar]
  144. 144. 
    Eisenberg DP, Bischof JC, Rabin Y. 2015. Thermomechanical stress in cryopreservation via vitrification with nanoparticle heating as a stress-moderating effect. J. Biomech. Eng. 138:011010
    [Google Scholar]
  145. 145. 
    Bischof JC, Diller KR. 2018. From nanowarming to thermoregulation: new multiscale applications of bioheat transfer. Annu. Rev. Biomed. Eng. 20:301–27
    [Google Scholar]
  146. 146. 
    Gao Z, Ring HL, Sharma A, Namsrai B, Tran N et al. 2020. Preparation of scalable silica-coated iron oxide nanoparticles for nanowarming. Adv. Sci. 7:1901624
    [Google Scholar]
  147. 147. 
    Sharma A, Bischof JC, Finger EB. 2019. Liver cryopreservation for regenerative medicine applications. Regen. Eng. Transl. Med 7:57–65
    [Google Scholar]
  148. 148. 
    Ring HL, Gao Z, Sharma A, Han ZH, Lee C et al. 2020. Imaging the distribution of iron oxide nanoparticles in hypothermic perfused tissues. Magn. Reson. Med. 83:1750–59
    [Google Scholar]
  149. 149. 
    Chiu-Lam A, Staples E, Pepine CJ, Rinaldi C. 2021. Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions. Sci. Adv. 7:eabe3005
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-102720-015630
Loading
/content/journals/10.1146/annurev-chembioeng-102720-015630
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error