1932

Abstract

Alongside the rising global water demand, continued stress on current water supplies has sparked interest in using nontraditional source waters for energy, agriculture, industry, and domestic needs. Membrane technologies have emerged as one of the most promising approaches to achieve water security, but implementation of membrane processes for increasingly complex waters remains a challenge. The technical feasibility of membrane processes replacing conventional treatment of alternative water supplies (e.g., wastewater, seawater, and produced water) is considered in the context of typical and emerging water quality goals. This review considers the effectiveness of current technologies (both conventional and membrane based), as well as the potential for recent advancements in membrane research to achieve these water quality goals. We envision the future of water treatment to integrate advanced membranes (e.g., mixed-matrix membranes, block copolymers) into smart treatment trains that achieve several goals, including fit-for-purpose water generation, resource recovery, and energy conservation.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Water Treatment: Are Membranes the Panacea?
Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-111919-091940
2020-06-07
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-111919-091940.html?itemId=/content/journals/10.1146/annurev-chembioeng-111919-091940&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Smalley RE. 2005. Future global energy prosperity: the terawatt challenge. MRS Bull 30:412–17
    [Google Scholar]
  2. 2. 
    Baker RW. 2012. Membrane Technology and Applications Hoboken, NJ: Wiley
    [Google Scholar]
  3. 3. 
    Mukheibir P, Howe C, Gallet D 2014. What's getting in the way of a “one water” approach to water services planning and management?. Water J. Aust. Water Assoc. 41:367–73
    [Google Scholar]
  4. 4. 
    Guerra K, Dahm K, Dundorf S 2011. Oil and gas produced water management and beneficial use in the Western United States Sci. Technol. Rep. No. 157, US Dep. Inter Lakewood, CO:
    [Google Scholar]
  5. 5. 
    Larson A. 2018. Produced water: oil and gas terminology glossary. Fact Sheet, WSEC-2017-FS-013, Water Environ. Fed Alexandria, VA:
    [Google Scholar]
  6. 6. 
    Veil J. 2015. U.S. produced water volumes and management practices in 2012 Doc., Ground Water Prot. Counc Oklahoma City, OK:
    [Google Scholar]
  7. 7. 
    Ahmadun F-R, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ 2009. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 170:2–3530–51
    [Google Scholar]
  8. 8. 
    Neff J, Lee K, DeBlois EM 2011. Produced water: overview of composition, fates, and effects. Produced Water K Lee, J Neff3–54 New York: Springer
    [Google Scholar]
  9. 9. 
    Guest JS, Skerlos SJ, Barnard JL, Beck MB, Daigger GT et al. 2009. A new planning and design paradigm to achieve sustainable resource recovery from wastewater. Environ. Sci. Technol. 43:166126–30
    [Google Scholar]
  10. 10. 
    Berner EK, Berner RA. 1987. The Global Water Cycle: Geochemistry and Environment Englewood Cliffs, NJ: Prentice Hall
    [Google Scholar]
  11. 11. 
    Walker WS. 2010. Improving recovery in reverse osmosis desalination of inland brackish groundwaters via electrodialysis PhD Diss., Univ. Tex Austin:
    [Google Scholar]
  12. 12. 
    Natl. Acad. Counc 1996. Use of Reclaimed Water and Sludge in Food Crop Production Washington, DC: Natl. Acad. Press
    [Google Scholar]
  13. 13. 
    Drever JI. 1997. The Geochemistry of Natural Waters: Surface and Groundwater Environments Englewood Cliffs, NJ: Prentice Hall. , 3rd ed..
    [Google Scholar]
  14. 14. 
    Hem JD. 1985. Study and interpretation of the chemical characteristics of natural water Water-Supply Pap. 2254, US Geol. Surv Alexandria, VA:
    [Google Scholar]
  15. 15. 
    Morel FMM, Hering JG. 1993. Principles and Applications of Aquatic Chemistry Hoboken, NJ: Wiley 588 pp.
    [Google Scholar]
  16. 16. 
    Benjamin MM, Lawler DF. 2013. Water Quality Engineering: Physical/Chemical Treatment Processes Hoboken, NJ: Wiley 878 pp.
    [Google Scholar]
  17. 17. 
    Wijmans JGG, Baker RWW. 1995. The solution-diffusion model: a review. J. Membr. Sci. 107:1–21
    [Google Scholar]
  18. 18. 
    Lutz H. 2015. Ultrafiltration for Bioprocessing Cambridge, UK: Woodhead
    [Google Scholar]
  19. 19. 
    Yasuda H, Lamaze CE, Ikenberry LD 1968. Permeability of solutes through hydrated polymer membranes. Makromol. Chem. 118:19–35
    [Google Scholar]
  20. 20. 
    Petersen RJ. 1993. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 83:181–150
    [Google Scholar]
  21. 21. 
    Alkhudhiri A, Darwish N, Hilal N 2013. Produced water treatment: application of air gap membrane distillation. Desalination 309:46–51
    [Google Scholar]
  22. 22. 
    Shaffer DL, Arias Chavez LH, Ben-Sasson M, Romero-Vargas Castrillón S, Yip NY, Elimelech M 2013. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ. Sci. Technol. 47:179569–83
    [Google Scholar]
  23. 23. 
    McCutcheon JR, McGinnis RL, Elimelech M 2005. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination 174:11–11
    [Google Scholar]
  24. 24. 
    Stone ML, Rae C, Stewart FF, Wilson AD 2013. Switchable polarity solvents as draw solutes for forward osmosis. Desalination 312:124–29
    [Google Scholar]
  25. 25. 
    Reimund KK, McCutcheon JR, Wilson AD 2015. Thermodynamic analysis of energy density in pressure retarded osmosis: the impact of solution volumes and costs. J. Membr. Sci. 487:240–48
    [Google Scholar]
  26. 26. 
    Yip NY, Elimelech M. 2012. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environ. Sci. Technol. 46:95230–39
    [Google Scholar]
  27. 27. 
    Pendergast MTM, Nowosielski-Slepowron MS, Tracy J 2016. Going big with forward osmosis. Desalin. Water Treat. 57:5526529–38
    [Google Scholar]
  28. 28. 
    Sata T. 2004. Ion Exchange Membranes: Preparation, Characterization, Modification and Application London: R. Soc. Chem.
    [Google Scholar]
  29. 29. 
    Strathmann H. 2010. Electrodialysis, a mature technology with a multitude of new applications. Desalination 264:3268–88
    [Google Scholar]
  30. 30. 
    Pinoy L, Ghyselbrecht K, Zhang Y, Van der Bruggen B, Meesschaert B et al. 2011. Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation. J. Membr. Sci. 378:1–2101–10
    [Google Scholar]
  31. 31. 
    Koprivnjak JF, Perdue EM, Pfromm PH 2006. Coupling reverse osmosis with electrodialysis to isolate natural organic matter from fresh waters. Water Res 40:3385–92
    [Google Scholar]
  32. 32. 
    Li W, Krantz WB, Cornelissen ER, Post JW, Verliefde ARD, Tang CY 2013. A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Appl. Energy 104:592–602
    [Google Scholar]
  33. 33. 
    Kingsbury RS, Zhu S, Flotron S, Coronell O 2018. Microstructure determines water and salt permeation in commercial ion-exchange membranes. ACS Appl. Mater. Interfaces 10:39745–56
    [Google Scholar]
  34. 34. 
    Kamcev J, Paul DR, Manning GS, Freeman BD 2017. Accounting for frame of reference and thermodynamic non-idealities when calculating salt diffusion coefficients in ion exchange membranes. J. Membr. Sci. 537:396–406
    [Google Scholar]
  35. 35. 
    Zeman L, Zydney AL. 1996. Microfiltration and Ultrafiltration Applications Boca Raton, FL: CRC
    [Google Scholar]
  36. 36. 
    Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Elimelech M 2010. High performance thin-film composition forward osmosis membrane. Environ. Sci. Technol. 44:103812–18
    [Google Scholar]
  37. 37. 
    Ricceri F, Giagnorio M, Farinelli G, Blandini G, Minelle M et al. 2019. Desalination of produced water by membrane distillation: effect of feed components and of a pre-treatment by fenton oxidation. Nat. Sci. Rep. 9:14964
    [Google Scholar]
  38. 38. 
    Ma B, Xue W, Hu C, Liu H, Qu J, Li L 2019. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem. Eng. J. 359:159–67
    [Google Scholar]
  39. 39. 
    Huang H, Schwab K, Jacangelo JG 2009. Pretreatment for low pressure membranes in water treatment: a review. Environ. Sci. Technol. 43:93011–19
    [Google Scholar]
  40. 40. 
    LeChevallier MW, Au K-K 2004. Water Treatment and Pathogen Control: Process Efficiency in Achieving Safe Drinking Water Geneva/London: World Health Organ./IWA
    [Google Scholar]
  41. 41. 
    Am. Water Works Assoc. Subcomm. Period. Publ. Membr. Proc. Comm 2008. Microfiltration and ultrafiltration membranes for drinking water. J. Am. Water Works Assoc 100:1284–97
    [Google Scholar]
  42. 42. 
    Judd SJ. 2016. The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chem. Eng. J. 305:37–45
    [Google Scholar]
  43. 43. 
    Judd SJ. 2017. Membrane technology costs and me. Water Res 122:1–9
    [Google Scholar]
  44. 44. 
    World Health Organ 2017. Potable reuse: guidance for producing safe drinking-water Guid., World Health Organ Geneva:
    [Google Scholar]
  45. 45. 
    Environ. Prot. Agency Drink. Water Unit 2006. Surface water treatment rule (SWTR) fact sheet Fact Sheet, Environ. Prot. Agency Washington, DC:
    [Google Scholar]
  46. 46. 
    Sedlak DL, von Gunten U 2011. The chlorine dilemma. Science 331:601342–43
    [Google Scholar]
  47. 47. 
    WateReuse Res. Found 2015. Framework for Direct Potable Reuse Alexandria, VA: WateReuse
    [Google Scholar]
  48. 48. 
    Wang H, Lu L, Chen X, Bian Y, Ren ZJ 2019. Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States. Water Res 164:114942
    [Google Scholar]
  49. 49. 
    Booker AE, Borton MA, Daly RA, Welch SA, Nicora CD et al. 2017. Sulfide generation by dominant Halanaerobium microorganisms in hydraulically fractured shales. mSphere 2:4e00257–17
    [Google Scholar]
  50. 50. 
    Geise GM, Lee HS, Miller DJ, Freeman BD, McGrath JE, Paul DR 2010. Water purification by membranes: the role of polymer science. J. Polym. Sci. B 48:1685–718
    [Google Scholar]
  51. 51. 
    Peinemann K, Nunes SP, Giorno L 2010. Membrane Technology: Membranes for Food Applications Hoboken, NJ: Wiley
    [Google Scholar]
  52. 52. 
    van Reis R, Zydney A 2007. Bioprocess membrane technology. J. Membr. Sci. 297:1–216–50
    [Google Scholar]
  53. 53. 
    Visvanathan C, Ben Aim R, Parameshwaran K 2000. Membrane separation bioreactors for wastewater treatment. Crit. Rev. Environ. Sci. Technol. 30:11–48
    [Google Scholar]
  54. 54. 
    Lin H, Chen J, Wang F, Ding L, Hong H 2011. Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment. Desalination 280:1–3120–26
    [Google Scholar]
  55. 55. 
    Zhang K, Farahbakhsh K. 2007. Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse. Water Res 41:122816–24
    [Google Scholar]
  56. 56. 
    Le TH, Ng C, Tran NH, Chen H, Gin KYH 2018. Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Res 145:498–508
    [Google Scholar]
  57. 57. 
    Hering JG, Waite TD, Luthy RG, Drewes JE, Sedlak DL 2013. A changing framework for urban water systems. Environ. Sci. Technol. 47:1910721–26
    [Google Scholar]
  58. 58. 
    Glater J, Hong S-k, Elimelech M 1994. The search for a chlorine-resistant reverse osmosis membrane. Desalination 95:3325–45
    [Google Scholar]
  59. 59. 
    Mukherjee M, De S. 2018. Antibacterial polymeric membranes: a short review. Environ. Sci. Water Res. Technol. 4:81078–104
    [Google Scholar]
  60. 60. 
    Qadir D, Mukhtar H, Keong LK 2017. Mixed matrix membranes for water purification applications. Sep. Purif. Rev. 46:162–80
    [Google Scholar]
  61. 61. 
    Zhu J, Hou J, Zhang Y, Tian M, He T et al. 2018. Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J. Membr. Sci. 550:173–97
    [Google Scholar]
  62. 62. 
    Shi Y, Huang J, Zeng G, Cheng W, Hu J 2019. Photocatalytic membrane in water purification: Is it stepping closer to be driven by visible light?. J. Membr. Sci. 584:364–92
    [Google Scholar]
  63. 63. 
    Ren S, Boo C, Guo N, Wang S, Elimelech M, Wang Y 2018. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent. Environ. Sci. Technol. 52:158666–73
    [Google Scholar]
  64. 64. 
    Li D, Yan Y, Wang H 2016. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog. Polym. Sci. 61:104–55
    [Google Scholar]
  65. 65. 
    Matilainen A, Gjessing ET, Lahtinen T, Hed L, Bhatnagar A, Sillanpää M 2011. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83:111431–42
    [Google Scholar]
  66. 66. 
    Li XF, Mitch WA. 2018. Drinking water disinfection byproducts (DBPs) and human health effects: multidisciplinary challenges and opportunities. Environ. Sci. Technol. 52:41681–89
    [Google Scholar]
  67. 67. 
    Hua G, Reckhow DA, Kim J 2006. Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination. Environ. Sci. Technol. 40:93050–56
    [Google Scholar]
  68. 68. 
    Rattier M, Reungoat J, Keller J, Gernjak W 2014. Removal of micropollutants during tertiary waste-water treatment by biofiltration: role of nitrifiers and removal mechanisms. Water Res 54:89–99
    [Google Scholar]
  69. 69. 
    Yi XS, Yu SL, Shi WX, Sun N, Jin LM et al. 2011. The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized TiO2/Al2O3. Desalination 281:1179–84
    [Google Scholar]
  70. 70. 
    Arias Espana VA, Mallavarapu M, Naidu R 2015. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): a critical review with an emphasis on field testing. Environ. Technol. Innov. 4:168–81
    [Google Scholar]
  71. 71. 
    Horst J, McDonough J, Ross I, Dickson M, Miles J et al. 2018. Water treatment technologies for PFAS: the next generation. Groundw. Monit. Remediat. 38:213–23
    [Google Scholar]
  72. 72. 
    Stackelberg PE, Gibs J, Furlong ET, Meyer MT, Zaugg SD, Lippincott RL 2007. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 377:255–72
    [Google Scholar]
  73. 73. 
    Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G et al. 2017. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297–317
    [Google Scholar]
  74. 74. 
    Edzwald JK, Tobiason JE. 1999. Enhanced coagulation: US requirements and a broader view. Water Sci. Technol. 40:963–70
    [Google Scholar]
  75. 75. 
    US Environ. Prot. Agency 1999. Enhanced Coagulation and Enhanced Precipitative Softening Guidance Manual Washington, DC: US Environ. Prot. Agency
    [Google Scholar]
  76. 76. 
    Verrelli DI, Dixon DR, Scales PJ 2009. Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatment. Colloids Surfaces A 348:1–314–23
    [Google Scholar]
  77. 77. 
    Schafran CC, Kelkar UC. 1999. Enhanced coagulation can load residuals concerns. Opflow 25:12–14
    [Google Scholar]
  78. 78. 
    Lamsal R, Walsh ME, Gagnon GA 2011. Comparison of advanced oxidation processes for the removal of natural organic matter. Water Res 45:103263–69
    [Google Scholar]
  79. 79. 
    Jacangelo JG, DeMarco J, Owen DM, Randtke SJ 1995. Selected processes for removing NOM: an overview. J. Am. Water Work. Assoc. 87:164–77
    [Google Scholar]
  80. 80. 
    Fettig J. 1999. Characterisation of NOM by adsorption parameters and effective diffusivities. Environ. Int. 25:2–3335–46
    [Google Scholar]
  81. 81. 
    Hongve D, Baann J, Becher G, Beckmann O 1999. Experiences from operation and regeneration of an anionic exchange for natural organic matter (NOM) removal. Water Sci. Technol. 40:9215–21
    [Google Scholar]
  82. 82. 
    Bolto B, Dixon D, Eldridge R, King S, Linge K 2002. Removal of natural organic matter by ion exchange. Water Res 36:205057–65
    [Google Scholar]
  83. 83. 
    Madaeni SS, Mansourpanah Y. 2006. Screening membranes for COD removal from dilute wastewater. Desalination 197:23–32
    [Google Scholar]
  84. 84. 
    Deowan SA, Galiano F, Hoinkis J, Johnson D, Altinkaya SA et al. 2016. Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. J. Membr. Sci. 510:524–32
    [Google Scholar]
  85. 85. 
    Kwon S, Sullivan EJ, Katz LE, Bowman RS, Kinney KA 2011. Laboratory and field evaluation of a pretreatment system for removing organics from produced water. Water Environ. Res. 83:9843–54
    [Google Scholar]
  86. 86. 
    Seibert F, Poenie M. 2013. Non-dispersive process for insoluble oil recovery from aqueous slurries. US Patent No. 8486267 B2
    [Google Scholar]
  87. 87. 
    Tirmizi NP, Raghuraman B, Wiencek J 1996. Demulsification of water/oil/solid emulsions by hollow-fiber membranes. AIChE J 42:51263–76
    [Google Scholar]
  88. 88. 
    Chang H, Li T, Liu B, Vidic RD, Elimelech M, Crittenden JC 2019. Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: a review. Desalination 455:34–57
    [Google Scholar]
  89. 89. 
    Pendashteh AR, Abdullah LC, Fakhru'l-Razi A, Madaeni SS, Zainal Abidin Z, Biak DRA 2012. Evaluation of membrane bioreactor for hypersaline oily wastewater treatment. Process Saf. Environ. Prot. 90:45–55
    [Google Scholar]
  90. 90. 
    Fakhru'l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ 2009. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 170:2–3530–51
    [Google Scholar]
  91. 91. 
    Kim S, Chu KH, Al-Hamadani YAJ, Park CM, Jang M et al. 2018. Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chem. Eng. J. 335:896–914
    [Google Scholar]
  92. 92. 
    Rahman MF, Peldszus S, Anderson WB 2014. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res 50:318–40
    [Google Scholar]
  93. 93. 
    Glover CM, Quiñones O, Dickenson ERV 2018. Removal of perfluoroalkyl and polyfluoroalkyl substances in potable reuse systems. Water Res 144:454–61
    [Google Scholar]
  94. 94. 
    Sirés I, Cabot PL, Centellas F, Garrido JA, Rodríguez RM et al. 2006. Electrochemical degradation of clofibric acid in water by anodic oxidation: comparative study with platinum and boron-doped diamond electrodes. Electrochim. Acta 52:175–85
    [Google Scholar]
  95. 95. 
    Madsen HT, Søgaard EG. 2014. Applicability and modelling of nanofiltration and reverse osmosis for remediation of groundwater polluted with pesticides and pesticide transformation products. Sep. Purif. Technol. 125:111–19
    [Google Scholar]
  96. 96. 
    Dolar D, Gros M, Rodriguez-Mozaz S, Moreno J, Comas J et al. 2012. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. J. Hazard. Mater. 239–40:64–69
    [Google Scholar]
  97. 97. 
    Sui Q, Huang J, Deng S, Chen W, Yu G 2011. Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes. Environ. Sci. Technol. 45:83341–48
    [Google Scholar]
  98. 98. 
    Zander AK, Semmens MJ, Narbaitz RM 1989. Removing VOCs by membrane stripping. J. Am. Water Works Assoc. 81:1176–81
    [Google Scholar]
  99. 99. 
    Metsämuuronen S, Sillanpää M, Bhatnagar A, Mänttäri M 2014. Natural organic matter removal from drinking water by membrane technology. Sep. Purif. Rev. 43:11–61
    [Google Scholar]
  100. 100. 
    Cho J, Amy G, Pellegrino J 2000. Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane. J. Membr. Sci. 164:1–289–110
    [Google Scholar]
  101. 101. 
    Siddiqui M, Amy G, Ryan J, Odem W 2000. Membranes for the control of natural organic matter from surface waters. Water Res 34:133355–70
    [Google Scholar]
  102. 102. 
    Hong S, Elimelech M. 1997. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membr. Sci. 132:2159–81
    [Google Scholar]
  103. 103. 
    Katz LE, Lawler DF, Kum S 2018. Combined electrodialysis and pressure membrane systems and methods for processing water samples. US Patent No. 20180056242A1
    [Google Scholar]
  104. 104. 
    Wang Z, Wan Y, Xie P, Zhou A, Ding J et al. 2019. Ultraviolet/persulfate (UV/PS) pretreatment of typical natural organic matter (NOM): variation of characteristics and control of membrane fouling. Chemosphere 214:136–47
    [Google Scholar]
  105. 105. 
    Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N 2015. Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–54
    [Google Scholar]
  106. 106. 
    Wang T, Zhao C, Li P, Li Y, Wang J 2015. Fabrication of novel poly(m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water. J. Membr. Sci. 477:74–85
    [Google Scholar]
  107. 107. 
    Khorshidi B, Hosseini SA, Ma G, McGregor M, Sadrzadeh M 2019. Novel nanocomposite polyethersulfone-antimony tin oxide membrane with enhanced thermal, electrical and antifouling properties. Polymer 163:48–56
    [Google Scholar]
  108. 108. 
    Li YS, Yan L, Xiang CB, Hong LJ 2006. Treatment of oily wastewater by organic-inorganic composite tubular ultrafiltration (UF) membranes. Desalination 196:76–83
    [Google Scholar]
  109. 109. 
    Gwenzi W, Mangori L, Danha C, Chaukura N, Dunjana N, Sanganyado E 2018. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 636:299–313
    [Google Scholar]
  110. 110. 
    Acharya HR, Henderson C, Matis H, Kommepalli H, Moore B, Wang H 2011. Cost effective recovery of low-TDS frac flowback water for re-use Rep. DE-FE0000784, Dep. Energy Washington, DC:
    [Google Scholar]
  111. 111. 
    Anvari A, Kekre KM, Azimi Yancheshme A, Yao Y, Ronen A 2019. Membrane distillation of high salinity water by induction heated thermally conducting membranes. J. Membr. Sci. 589:117253
    [Google Scholar]
  112. 112. 
    Clifford D, Subramonian S, Sorg TJ 1986. Removing dissolved inorganic contaminants from water. Environ. Sci. Technol. 20:111072–80
    [Google Scholar]
  113. 113. 
    Gäfvert T, Ellmark C, Holm E 2002. Removal of radionuclides at a waterworks. J. Environ. Radioact. 63:2105–15
    [Google Scholar]
  114. 114. 
    Nicomel NR, Leus K, Folens K, Van Der Voort P, Du Laing G 2015. Technologies for arsenic removal from water: current status and future perspectives. Int. J. Environ. Res. Public Health 13:11–24
    [Google Scholar]
  115. 115. 
    Bi Y, Zhang H, Ellis BR, Hayes KF 2016. Removal of radium from synthetic shale gas brines by ion exchange resin. Environ. Eng. Sci. 33:10791–98
    [Google Scholar]
  116. 116. 
    Semiat R. 2008. Energy issues in desalination processes. Environ. Sci. Technol. 42:228193–201
    [Google Scholar]
  117. 117. 
    White House 2015. Water resource challenges and opportunities for water technology innovation Doc., White House Washington, DC:
    [Google Scholar]
  118. 118. 
    Kelaher BP, Clark GF, Johnston EL, Coleman MA 2019. Effect of desalination discharge on the abundance and diversity of reef fishes. Environ. Sci. Technol. 54:2735–44
    [Google Scholar]
  119. 119. 
    Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P 2009. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res 43:92317–48
    [Google Scholar]
  120. 120. 
    Tong T, Elimelech M. 2016. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50:136846–55
    [Google Scholar]
  121. 121. 
    Sardari K, Fyfe P, Lincicome D, Wickramasinghe SR 2018. Combined electrocoagulation and membrane distillation for treating high salinity produced waters. J. Membr. Sci. 564:82–96
    [Google Scholar]
  122. 122. 
    Bourcier WL, Wolery TJ, Wolfe T, Haussmann C, Buscheck TA, Aines RD 2011. A preliminary cost and engineering estimate for desalinating produced formation water associated with carbon dioxide capture and storage. Int. J. Greenh. Gas Control 5:51319–28
    [Google Scholar]
  123. 123. 
    Koyuncu I, Sengur R, Turken T, Guclu S, Pasaoglu ME 2015. Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications A Basile, A Cassano, NK Rastogi 83–128 Ser. Energy Cambridge, UK: Woodhead
    [Google Scholar]
  124. 124. 
    Montaña M, Camacho A, Serrano I, Devesa R, Matia L, Vallés I 2013. Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal. J. Environ. Radioact. 125:86–92
    [Google Scholar]
  125. 125. 
    Combernoux N, Schrive L, Labed V, Wyart Y, Carretier E, Moulin P 2017. Treatment of radioactive liquid effluents by reverse osmosis membranes: from lab-scale to pilot-scale. Water Res 123:311–20
    [Google Scholar]
  126. 126. 
    Alkhadra MA, Conforti KM, Gao T, Tian H, Bazant MZ 2020. Continuous separation of radionuclides from contaminated water by shock electrodialysis. Environ. Sci. Technol. 54:1527–36
    [Google Scholar]
  127. 127. 
    Oh JI, Urase T, Kitawaki H, Rahman MM, Rhahman MH, Yamamoto K 2000. Modeling of arsenic rejection considering affinity and steric hindrance effect in nanofiltration membranes. Water Sci. Technol. 42:3–4173–80
    [Google Scholar]
  128. 128. 
    Teychene B, Collet G, Gallard H, Croue JP 2013. A comparative study of boron and arsenic (III) rejection from brackish water by reverse osmosis membranes. Desalination 310:109–14
    [Google Scholar]
  129. 129. 
    Woods WG. 1994. An introduction to boron: history, sources, uses, and chemistry. Environ. Health Perspect. 102:Suppl. 75–11
    [Google Scholar]
  130. 130. 
    Bernstein R, Freger V. 2011. Toward improved boron removal in RO by membrane modification: feasibility and challenges. Environ. Sci. Technol. 45:3613–20
    [Google Scholar]
  131. 131. 
    Sagiv A, Semiat R. 2004. Analysis of parameters affecting boron permeation through reverse osmosis membranes. J. Membr. Sci. 243:1–279–87
    [Google Scholar]
  132. 132. 
    Garb Y. 2008. Desalination in Israel: status, prospects, and contexts Paper no. 732 presented at the Water Wisdom Conference, Amman Jordan: April
    [Google Scholar]
  133. 133. 
    Robeson LM. 1991. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62:2165–85
    [Google Scholar]
  134. 134. 
    Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB et al. 2006. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:57761034–38
    [Google Scholar]
  135. 135. 
    Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W 2007. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z. PNAS 104:5220719–24
    [Google Scholar]
  136. 136. 
    Zhang H, Hou J, Hu Y, Wang P, Ou R et al. 2018. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 4:2eaq0066
    [Google Scholar]
  137. 137. 
    Ali Z, Al Sunbul Y, Pacheco F, Ogieglo W, Wang Y et al. 2019. Defect-free highly selective polyamide thin-film composite membranes for desalination and boron removal. J. Membr. Sci. 578:85–94
    [Google Scholar]
  138. 138. 
    Jung B, Kim CY, Jiao S, Rao U, Dudchenko AV et al. 2020. Enhancing boron rejection on electrically conducting reverse osmosis membranes through local electrochemical pH modification. Desalination 476:114212
    [Google Scholar]
  139. 139. 
    Kamcev J, Taylor MK, Shin D-M, Jarenwattananon NN, Colwell KA, Long JR 2019. Functionalized porous aromatic frameworks as high-performance adsorbents for the rapid removal of boric acid from water. Adv. Mater. 31:1808027
    [Google Scholar]
  140. 140. 
    Meng J, Cao J, Xu R, Wang Z, Sun R 2016. Hyperbranched grafting enabling simultaneous enhancement of the boric acid uptake and the adsorption rate of a complexing membrane. J. Mater. Chem. A 4:3011656–65
    [Google Scholar]
  141. 141. 
    Zhang Y, Vallin JR, Sahoo JK, Gao F, Boudouris BW et al. 2018. High-affinity detection and capture of heavy metal contaminants using block polymer composite membranes. ACS Cent. Sci. 4:1697–707
    [Google Scholar]
  142. 142. 
    Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD 2017. Surface modification of water purification membranes. Angew. Chem. Int. Ed. 56:174662–711
    [Google Scholar]
  143. 143. 
    Gao W, Liang H, Ma J, Han M, Chen Z-l et al. 2011. Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination 272:1–31–8
    [Google Scholar]
  144. 144. 
    Xiao K, Liang S, Wang X, Chen C, Huang X 2019. Current state and challenges of full-scale membrane bioreactor applications: a critical review. Bioresour. Technol. 271:473–81
    [Google Scholar]
  145. 145. 
    Qasim M, Badrelzaman M, Darwish NN, Darwish NA, Hilal N 2019. Reverse osmosis desalination: a state-of-the-art review. Desalination 459:59–104
    [Google Scholar]
  146. 146. 
    Miller DJ, Huang X, Li H, Kasemset S, Lee A et al. 2013. Fouling-resistance membranes for the treatment of flowback water from hydraulic shale fracturing: a pilot study. J. Membr. Sci. 437:265–75
    [Google Scholar]
  147. 147. 
    Wang Z, Ma J, Tang CY, Kimura K, Wang Q, Han X 2014. Membrane cleaning in membrane bioreactors: a review. J. Membr. Sci. 468:276–307
    [Google Scholar]
  148. 148. 
    Dickhout JM, Moreno J, Biesheuvel PM, Boels L, Lammertink RGH, de Vos WM 2017. Produced water treatment by membranes: a review from a colloidal perspective. J. Colloid Interface Sci. 487:523–34
    [Google Scholar]
  149. 149. 
    She Q, Wang R, Fane AG, Tang CY 2016. Membrane fouling in osmotically driven membrane processes: a review. J. Membr. Sci. 499:201–33
    [Google Scholar]
  150. 150. 
    Tong T, Wallace AF, Zhao S, Wang Z 2019. Mineral scaling in membrane desalination: mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. J. Membr. Sci. 579:52–69
    [Google Scholar]
  151. 151. 
    Zhang Y, Fu Q. 2018. Algal fouling of microfiltration and ultrafiltration membranes and control strategies: a review. Sep. Purif. Technol. 203:193–208
    [Google Scholar]
  152. 152. 
    Jiang S, Li Y, Ladewig BP 2017. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 595:567–83
    [Google Scholar]
  153. 153. 
    Liu C, Lee J, Ma J, Elimelech M 2017. Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer. Environ. Sci. Technol. 51:42161–69
    [Google Scholar]
  154. 154. 
    Cruz-Silva R, Takizawa Y, Nakaruk A, Katouda M 2019. New insights in the natural organic matter fouling mechanism of polyamide and nanocomposite multiwalled carbon nanotubes-polyamide membranes. Environ. Sci. Technol. 53:6255–63
    [Google Scholar]
  155. 155. 
    Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD 2017. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356:63431138–48
    [Google Scholar]
  156. 156. 
    Geise GM, Park HB, Sagle AC, Freeman BD, McGrath JE 2011. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369:1–2130–38
    [Google Scholar]
  157. 157. 
    Mehta A, Zydney AL. 2005. Permeability and selectivity analysis for ultrafiltration membranes. J. Membr. Sci. 249:1–2245–49
    [Google Scholar]
  158. 158. 
    Peinemann KV, Abetz V, Simon PFW 2007. Asymmetric superstructure formed in a block copolymer via phase separation. Nat. Mater. 6:12992–96
    [Google Scholar]
  159. 159. 
    Yu H, Qiu X, Moreno N, Ma Z, Calo VM et al. 2015. Self-assembled asymmetric block copolymer membranes: bridging the gap from ultra- to nanofiltration. Angew. Chem. Int. Ed. 54:4713937–41
    [Google Scholar]
  160. 160. 
    Tang C, Wang Z, Petrinić I, Fane AG, Hélix-Nielsen C 2015. Biomimetic aquaporin membranes coming of age. Desalination 368:89–105
    [Google Scholar]
  161. 161. 
    Song W, Joshi H, Chowdhury R, Najem JS, Shen Y et al. 2019. Artificial water channels enable fast and selective water permeation through water-wire networks. Nat. Nanotechnol. 15:73–79
    [Google Scholar]
  162. 162. 
    Lüdtke K, Peinemann KV, Kasche V, Behling RD 1998. Nitrate removal of drinking water by means of catalytically active membranes. J. Membr. Sci. 151:13–11
    [Google Scholar]
  163. 163. 
    Kleine J, Peinemann KV, Schuster C, Warnecke HJ 2002. Multifunctional system for treatment of wastewaters from adhesive-producing industries: separation of solids and oxidation of dissolved pollutants using doted microfiltration membranes. Chem. Eng. Sci. 57:91661–64
    [Google Scholar]
  164. 164. 
    van der Vaart R, Petrova I, Lebedeva V, Volkov V, Kochubey D, Tereshchenko G 2006. In-situ application of catalytic phase to commercial membrane contactor for removal of dissolved oxygen from water. Desalination 199:1–3424–25
    [Google Scholar]
  165. 165. 
    Lorhemen OT, Hamza RA, Tay JH 2016. Membrane bioreactor (Mbr) technology for wastewater treatment and reclamation: membrane fouling. Membranes 6:213–16
    [Google Scholar]
  166. 166. 
    Zhang Y, Shen Y. 2017. Wastewater irrigation: past, present, and future. WIREs Water 6:3e1234
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-111919-091940
Loading
/content/journals/10.1146/annurev-chembioeng-111919-091940
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error