Genomewide association studies (GWASs) across psychiatric phenotypes have shown that common genetic variants generally confer risk with small effect sizes (odds ratio < 1.1) that additively contribute to polygenic risk. Summary statistics derived from large discovery GWASs can be used to generate polygenic risk scores (PRS) in independent, target data sets to examine correlates of polygenic disorder liability (e.g., does genetic liability to schizophrenia predict cognition?). The intuitive appeal and generalizability of PRS have led to their widespread use and new insights into mechanisms of polygenic liability. However, when currently applied across traits they account for small amounts of variance (<3%), are relatively uninformative for clinical treatment, and, in isolation, provide no insight into molecular mechanisms. Larger GWASs are needed to increase the precision of PRS, and novel approaches integrating various data sources (e.g., multitrait analysis of GWASs) may improve the utility of current PRS.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aas M, Melle I, Bettella F, Djurovic S, Le Hellard S. et al. 2018. Psychotic patients who used cannabis frequently before illness onset have higher genetic predisposition to schizophrenia than those who did not. Psychol. Med. 48:43–49 [Google Scholar]
  2. Agerbo E, Sullivan PF, Vilhjalmsson BJ, Pedersen CB, Mors O. et al. 2015. Polygenic risk score, parental socioeconomic status, family history of psychiatric disorders, and the risk for schizophrenia: a Danish population-based study and meta-analysis. JAMA Psychiatry 72:635–41 [Google Scholar]
  3. Ahn K, An SS, Shugart YY, Rapoport JL. 2016. Common polygenic variation and risk for childhood-onset schizophrenia. Mol. Psychiatry 21:94–96 [Google Scholar]
  4. Alloza C, Bastin ME, Cox SR, Gibson J, Duff B. et al. 2017. Central and non-central networks, cognition, clinical symptoms, and polygenic risk scores in schizophrenia. Hum. Brain Mapp. 38:5919–30 [Google Scholar]
  5. Anttila V, Bulik-Sullivan B, Finucane HK, Bras J, Duncan L. et al. 2016. Analysis of shared heritability in common disorders of the brain. bioRxiv 048991. https://doi.org/10.1101/048991 [Crossref]
  6. Arloth J, Bogdan R, Weber P, Frishman G, Menke A. et al. 2015. Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders. Neuron 86:1189–202 [Google Scholar]
  7. Barrett JC, Dunham I, Birney E. 2015. Using human genetics to make new medicines. Nat. Rev. Genet. 16:561–62 [Google Scholar]
  8. Bassett AS, Chow EW. 2008. Schizophrenia and 22q11.2 deletion syndrome. Curr. Psychiatry Rep. 10:148–57 [Google Scholar]
  9. Belgard TG, Jankovic I, Lowe JK, Geschwind DH. 2014. Population structure confounds autism genetic classifier. Mol. Psychiatry 19:405–7 [Google Scholar]
  10. Benca CE, Derringer JL, Corley RP, Young SE, Keller MC. et al. 2017. Predicting cognitive executive functioning with polygenic risk scores for psychiatric disorders. Behav. Genet. 47:11–24 [Google Scholar]
  11. Benros ME, Trabjerg BB, Meier S, Mattheisen M, Mortensen PB. et al. 2016. Influence of polygenic risk scores on the association between infections and schizophrenia. Biol. Psychiatry 80:609–16 [Google Scholar]
  12. Bierut LJ, Johnson EO, Saccone NL. 2014. A glimpse into the future—personalized medicine for smoking cessation. Neuropharmacology 76:Pt. B592–99 [Google Scholar]
  13. Bigdeli TB, Ripke S, Peterson RE, Trzaskowski M, Bacanu SA. et al. 2017. Genetic effects influencing risk for major depressive disorder in China and Europe. Transl. Psychiatry 7:e1074 [Google Scholar]
  14. Bogdan R, Nikolova YS, Pizzagalli DA. 2013. Neurogenetics of depression: a focus on reward processing and stress sensitivity. Neurobiol. Dis. 52:12–23 [Google Scholar]
  15. Bogdan R, Salmeron BJ, Carey CE, Agrawal A, Calhoun VD. et al. 2017. Imaging genetics and genomics in psychiatry: a critical review of progress and potential. Biol. Psychiatry 82:165–75 [Google Scholar]
  16. Bowden J, Davey Smith G, Burgess S. 2015. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44:512–25 [Google Scholar]
  17. Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–86 [Google Scholar]
  18. Breen G, Li Q, Roth BL, O'Donnell P, Didriksen M. et al. 2016. Translating genome-wide association findings into new therapeutics for psychiatry. Nat. Neurosci. 19:1392–96 [Google Scholar]
  19. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J. et al. 2015. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47:291–95 [Google Scholar]
  20. Carey CE, Agrawal A, Bucholz KK, Hartz SM, Lynskey MT. et al. 2016.a Associations between polygenic risk for psychiatric disorders and substance involvement. Front. Genet. 7:149 [Google Scholar]
  21. Carey CE, Knodt AR, Conley ED, Hariri AR, Bogdan R. 2016.b Reward-related ventral striatum activity links polygenic risk for attention-deficit/hyperactivity disorder to problematic alcohol use in young adulthood. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2:180–87 [Google Scholar]
  22. Caspi A, McClay J, Moffitt TE, Mill J, Martin J. et al. 2002. Role of genotype in the cycle of violence in maltreated children. Science 297:851–54 [Google Scholar]
  23. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW. et al. 2003. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–89 [Google Scholar]
  24. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4:7 [Google Scholar]
  25. Charney AW, Ruderfer DM, Stahl EA, Moran JL, Chambert K. et al. 2017. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl. Psychiatry 7:e993 [Google Scholar]
  26. Chatterjee N, Shi J, Garcia-Closas M. 2016. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet. 17:392–406 [Google Scholar]
  27. Chen CY, Han J, Hunter DJ, Kraft P, Price AL. 2015. Explicit modeling of ancestry improves polygenic risk scores and BLUP prediction. Genet. Epidemiol. 39:427–38 [Google Scholar]
  28. Chen LS, Baker TB, Piper ME, Breslau N, Cannon DS. et al. 2012. Interplay of genetic risk factors (CHRNA5-CHRNA3-CHRNB4) and cessation treatments in smoking cessation success. Am. J. Psychiatry 169:735–42 [Google Scholar]
  29. Chung Y, Cannon TD. 2015. Brain imaging during the transition from psychosis prodrome to schizophrenia. J. Nerv. Ment. Dis. 203:336–41 [Google Scholar]
  30. Coleman JRI, Lester KJ, Keers R, Munafo MR, Breen G, Eley TC. 2017. Genome-wide association study of facial emotion recognition in children and association with polygenic risk for mental health disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 174:701–11 [Google Scholar]
  31. Colodro-Conde L, Couvy-Duchesne B, Zhu G, Coventry WL, Byrne EM. et al. 2017. A direct test of the diathesis–stress model for depression. Mol. Psychiatry. In press. https://doi.org/10.1038/mp.2017.130 [Crossref]
  32. Cong L, Ran FA, Cox D, Lin S, Barretto R. et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23 [Google Scholar]
  33. CONVERGE Consort 2015. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523:588–91 [Google Scholar]
  34. Coram MA, Fang H, Candille SI, Assimes TL, Tang H. 2017. Leveraging multi-ethnic evidence for risk assessment of quantitative traits in minority populations. Am. J. Hum. Genet. 101:218–26 [Google Scholar]
  35. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC. et al. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–23 [Google Scholar]
  36. Cornelis MC, Nugent NR, Amstadter AB, Koenen KC. 2010. Genetics of post-traumatic stress disorder: review and recommendations for genome-wide association studies. Curr. Psychiatry Rep. 12:313–26 [Google Scholar]
  37. Costas J, Carrera N, Alonso P, Gurriaran X, Segalas C. et al. 2016. Exon-focused genome-wide association study of obsessive-compulsive disorder and shared polygenic risk with schizophrenia. Transl. Psychiatry 6:e768 [Google Scholar]
  38. Craddock N, Owen MJ. 1996. Modern molecular genetic approaches to psychiatric disease. Br. Med. Bull. 52:434–52 [Google Scholar]
  39. Cross-Disord. Group Psychiatr. Genom. Consort 2013. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–79 [Google Scholar]
  40. Daetwyler HD, Villanueva B, Woolliams JA. 2008. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLOS ONE 3:e3395 [Google Scholar]
  41. Davey Smith G, Hemani G. 2014. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23:R89–98 [Google Scholar]
  42. Deary V, Hagenaars SP, Harris SE, Hill WD, Davies G. et al. 2018. Genetic contributions to self-reported tiredness. Mol. Psychiatry. 23:609–20 Corrigendum; 2018. Mol. Psychiatry23:78990 [Google Scholar]
  43. DeMichele-Sweet MAA, Weamer EA, Klei L, Vrana DT, Hollingshead DJ. et al. 2017. Genetic risk for schizophrenia and psychosis in Alzheimer disease. Mol. Psychiatry In press. https://doi.org/10.1038/mp.2017.81 [Crossref]
  44. Docherty AR, Moscati A, Peterson R, Edwards AC, Adkins DE. et al. 2016. SNP-based heritability estimates of the personality dimensions and polygenic prediction of both neuroticism and major depression: findings from CONVERGE. Transl. Psychiatry 6:e926 [Google Scholar]
  45. Dudbridge F. 2013. Power and predictive accuracy of polygenic risk scores. PLOS Genet 9:e1003348 [Google Scholar]
  46. Dudbridge F. 2016. Polygenic epidemiology. Genet. Epidemiol. 40:268–72 [Google Scholar]
  47. Duncan LE, Keller MC. 2011. A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am. J. Psychiatry 168:1041–49 [Google Scholar]
  48. Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM, Amstadter AB. et al. 2018. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry 23:66673 [Google Scholar]
  49. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM. et al. 2001. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. PNAS 98:6917–22 [Google Scholar]
  50. Erk S, Mohnke S, Ripke S, Lett TA, Veer IM. et al. 2017. Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains. Transl. Psychiatry 7:e997 [Google Scholar]
  51. Euesden J, Breen G, Farmer A, Mcguffin P, Lewis CM. 2015.a The relationship between schizophrenia and rheumatoid arthritis revisited: genetic and epidemiological analyses. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168B:81–88 [Google Scholar]
  52. Euesden J, Lewis CM, O'Reilly PF. 2015.b PRSice: Polygenic Risk Score software. Bioinformatics 31:1466–68 [Google Scholar]
  53. Faul F, Erdfelder E, Lang AG, Buchner A. 2007. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39:175–91 [Google Scholar]
  54. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM. et al. 2008. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 40:1056–58 [Google Scholar]
  55. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y. et al. 2015. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47:1228–35 [Google Scholar]
  56. Frank J, Lang M, Witt SH, Strohmaier J, Rujescu D. et al. 2015. Identification of increased genetic risk scores for schizophrenia in treatment-resistant patients. Mol. Psychiatry 20:913 [Google Scholar]
  57. Franke B, Stein JL, Ripke S, Anttila V, Hibar DP. et al. 2016. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nat. Neurosci. 19:420–31 [Google Scholar]
  58. French L, Gray C, Leonard G, Perron M, Pike GB. et al. 2015. Early cannabis use, polygenic risk score for schizophrenia and brain maturation in adolescence. JAMA Psychiatry 72:1002–11 [Google Scholar]
  59. Friedrich MJ. 2017. Depression is the leading cause of disability around the world. JAMA 317:1517 [Google Scholar]
  60. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH. et al. 2016. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19:1442–53 [Google Scholar]
  61. Gaali S, Kirschner A, Cuboni S, Hartmann J, Kozany C. et al. 2015. Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat. Chem. Biol. 11:33–37 [Google Scholar]
  62. Gage SH, Jones HJ, Burgess S, Bowden J, Davey Smith G. et al. 2017. Assessing causality in associations between cannabis use and schizophrenia risk: a two-sample Mendelian randomization study. Psychol. Med. 47:971–80 [Google Scholar]
  63. Gale CR, Hagenaars SP, Davies G, Hill WD, Liewald DC. et al. 2016. Pleiotropy between neuroticism and physical and mental health: findings from 108 038 men and women in UK Biobank. Transl. Psychiatry 6:e791 [Google Scholar]
  64. Gao J, Davis LK, Hart AB, Sanchez-Roige S, Han L, Cacioppo JT. et al. 2017. Genome-wide association study of loneliness demonstrates a role for common variation. Neuropsychopharmacology 42:811–21 [Google Scholar]
  65. Garcia-Gonzalez J, Tansey KE, Hauser J, Henigsberg N, Maier W. et al. 2017. Pharmacogenetics of antidepressant response: a polygenic approach. Prog. Neuropsychopharmacol. Biol. Psychiatry 75:128–34 [Google Scholar]
  66. Gelernter J, Kranzler HR, Sherva R, Almasy L, Koesterer R. et al. 2014. Genome-wide association study of alcohol dependence: significant findings in African- and European-Americans including novel risk loci. Mol. Psychiatry 19:41–49 [Google Scholar]
  67. Germine L, Robinson EB, Smoller JW, Calkins ME, Moore TM. et al. 2016. Association between polygenic risk for schizophrenia, neurocognition and social cognition across development. Transl. Psychiatry 6:e924 [Google Scholar]
  68. Gibert JM, Blanco J, Dolezal M, Nolte V, Peronnet F, Schlotterer C. 2017. Strong epistatic and additive effects of linked candidate SNPs for Drosophila pigmentation have implications for analysis of genome-wide association studies results. Genome Biol 18:126 [Google Scholar]
  69. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB. et al. 2002. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci. 5:1242–47 [Google Scholar]
  70. Goes FS, McGrath J, Avramopoulos D, Wolyniec P, Pirooznia M. et al. 2015. Genome-wide association study of schizophrenia in Ashkenazi Jews. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168:649–59 [Google Scholar]
  71. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T. et al. 2003. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch. Gen. Psychiatry 60:889–96 [Google Scholar]
  72. Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A. et al. 2015. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72:305–15 [Google Scholar]
  73. Green JG, McLaughlin KA, Berglund PA, Gruber MJ, Sampson NA. et al. 2010. Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. Arch. Gen. Psychiatry 67:113–23 [Google Scholar]
  74. GTEx Consort 2013 GTEx Consort. 2013. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45:580–85 [Google Scholar]
  75. Gusev A, Lee SH, Trynka G, Finucane H, Vilhjalmsson BJ. et al. 2014. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95:535–52 [Google Scholar]
  76. Hagenaars SP, Harris SE, Davies G, Hill WD, Liewald DC. et al. 2016. Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia. Mol. Psychiatry 21:1624–32 [Google Scholar]
  77. Hall MH, Chen CY, Cohen BM, Spencer KM, Levy DL. et al. 2015. Genomewide association analyses of electrophysiological endophenotypes for schizophrenia and psychotic bipolar disorders: a preliminary report. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168B:151–61 [Google Scholar]
  78. Hall W, Degenhardt L. 2008. Cannabis use and the risk of developing a psychotic disorder. World Psychiatry 7:68–71 [Google Scholar]
  79. Hardy J, Trabzuni D, Ryten M. 2009. Whole genome expression as a quantitative trait. Biochem. Soc. Trans. 37:1276–77 [Google Scholar]
  80. Hariri AR. 2009. The neurobiology of individual differences in complex behavioral traits. Annu. Rev. Neurosci. 32:225–47 [Google Scholar]
  81. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F. et al. 2002. Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400–3 [Google Scholar]
  82. Harris SE, Hagenaars SP, Davies G, David Hill W, Liewald DC. et al. 2016. Molecular genetic contributions to self-rated health. Int. J. Epidemiol. 46:994–1009 [Google Scholar]
  83. Harrisberger F, Smieskova R, Vogler C, Egli T, Schmidt A. et al. 2016. Impact of polygenic schizophrenia-related risk and hippocampal volumes on the onset of psychosis. Transl. Psychiatry 6:e868 [Google Scholar]
  84. Hartz SM, Horton AC, Oehlert M, Carey CE, Agrawal A. et al. 2017. Association between substance use disorder and polygenic liability to schizophrenia. Biol. Psychiatry 82:709–15 [Google Scholar]
  85. Hatzimanolis A, Bhatnagar P, Moes A, Wang R, Roussos P. et al. 2015. Common genetic variation and schizophrenia polygenic risk influence neurocognitive performance in young adulthood. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168B:392–401 [Google Scholar]
  86. Hemani G, Shakhbazov K, Westra HJ, Esko T, Henders AK. et al. 2014. Detection and replication of epistasis influencing transcription in humans. Nature 508:249–53 [Google Scholar]
  87. Hemani G, Zheng J, Wade KH, Laurin C, Elsworth B. et al. 2016. MR-Base: a platform for systematic causal inference across the phenome using billions of genetic associations. bioRxiv 078972. https://doi.org/10.1101/078972 [Crossref]
  88. Hettige NC, Cole CB, Khalid S, de Luca V. 2016. Polygenic risk score prediction of antipsychotic dosage in schizophrenia. Schizophr. Res. 170:265–70 [Google Scholar]
  89. Hill WD, Marioni RE, Maghzian O, Ritchie SJ, Hagenaars SP. 2018. A combined analysis of genetically correlated traits identifies 107 loci and a role for neurogenesis and myelination in intelligence. Mol. Psychiatry In press. https://doi.org./10.1038/s41380-017-0001-5
  90. Hill WG, Goddard ME, Visscher PM. 2008. Data and theory point to mainly additive genetic variance for complex traits. PLOS Genet 4:e1000008 [Google Scholar]
  91. Hirschhorn JN, Gennari L. 2008. Bona fide genetic associations with bone mineral density. N. Engl. J. Med. 358:2403–5 [Google Scholar]
  92. Holmes MV, Lange LA, Palmer T, Lanktree MB, North KE. et al. 2014. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am. J. Hum. Genet. 94:198–208 [Google Scholar]
  93. Hubbard L, Tansey KE, Rai D, Jones P, Ripke S. et al. 2016. Evidence of common genetic overlap between schizophrenia and cognition. Schizophr. Bull. 42:832–42 [Google Scholar]
  94. Hugh-Jones D, Verweij KJH, Pourcain BS, Abdellaoui A. 2016. Assortative mating on educational attainment leads to genetic spousal resemblance for polygenic scores. Intelligence 59:103–8 [Google Scholar]
  95. Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA. et al. 2016. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 48:1031–36 [Google Scholar]
  96. Int. Schizophr. Consort 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–52 [Google Scholar]
  97. Jansen PR, Polderman TJC, Bolhuis K, van der Ende J, Jaddoe VWV. et al. 2018. Polygenic scores for schizophrenia and educational attainment are associated with behavioural problems in early childhood in the general population. J. Child Psychol. Psychiatry 59:39–47 [Google Scholar]
  98. Jones HJ, Stergiakouli E, Tansey KE, Hubbard L, Heron J. et al. 2016. Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. JAMA Psychiatry 73:221–28 [Google Scholar]
  99. Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR. et al. 2015. Schizophrenia. Nat. Rev. Dis. Prim. 1:15067 [Google Scholar]
  100. Kendler KS. 2013. What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Mol. Psychiatry 18:1058–66 [Google Scholar]
  101. Kendler KS. 2015. A joint history of the nature of genetic variation and the nature of schizophrenia. Mol. Psychiatry 20:77–83 [Google Scholar]
  102. Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T. et al. 2010. SIRT1 gene is associated with major depressive disorder in the Japanese population. J. Affect. Disord. 126:167–73 [Google Scholar]
  103. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC. et al. 2013. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat. Neurosci. 16:33–41 [Google Scholar]
  104. Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M. et al. 2014. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 10:643–60 [Google Scholar]
  105. Krapohl E, Euesden J, Zabaneh D, Pingault JB, Rimfeld K. et al. 2016. Phenome-wide analysis of genome-wide polygenic scores. Mol. Psychiatry 21:1188–93 [Google Scholar]
  106. Kuningas M, Putters M, Westendorp RG, Slagboom PE, van Heemst D. 2007. SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study. J. Gerontol. A Biol. Sci. Med. Sci. 62:960–65 [Google Scholar]
  107. Lahey BB, Applegate B, Hakes JK, Zald DH, Hariri AR, Rathouz PJ. 2012. Is there a general factor of prevalent psychopathology during adulthood. J. Abnorm. Psychol. 121:971–77 [Google Scholar]
  108. Lancaster TM, Ihssen N, Brindley LM, Tansey KE, Mantripragada K. et al. 2016.a Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals. Hum. Brain Mapp. 37:491–500 [Google Scholar]
  109. Lancaster TM, Linden DE, Tansey KE, Banaschewski T, Bokde AL. et al. 2016.b Polygenic risk of psychosis and ventral striatal activation during reward processing in healthy adolescents. JAMA Psychiatry 73:852–61 [Google Scholar]
  110. Laursen TM, Trabjerg BB, Mors O, Borglum AD, Hougaard DM. et al. 2017. Association of the polygenic risk score for schizophrenia with mortality and suicidal behavior—a Danish population-based study. Schizophr. Res. 184:122–27 [Google Scholar]
  111. Lee SH, Byrne EM, Hultman CM, Kahler A, Vinkhuyzen AA. et al. 2015. New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. Int. J. Epidemiol. 44:1706–21 [Google Scholar]
  112. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD. et al. 1996. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–31 [Google Scholar]
  113. Levine ME, Crimmins EM, Prescott CA, Phillips D, Arpawong TE, Lee J. 2014. A polygenic risk score associated with measures of depressive symptoms among older adults. Biodemography Soc. Biol. 60:199–211 [Google Scholar]
  114. Li J, Yoshikawa A, Brennan MD, Ramsey TL, Meltzer HY. 2018. Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes. Schizophr. Res. 192:194–204 [Google Scholar]
  115. Libert S, Pointer K, Bell EL, Das A, Cohen DE. et al. 2011. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147:1459–72 [Google Scholar]
  116. Liebers DT, Pirooznia M, Seiffudin F, Musliner KL, Zandi PP, Goes FS. 2016. Polygenic risk of schizophrenia and cognition in a population-based survey of older adults. Schizophr. Bull. 42:984–91 [Google Scholar]
  117. Liu B, Zhang X, Cui Y, Qin W, Tao Y. et al. 2017. Polygenic risk for schizophrenia influences cortical gyrification in 2 independent general populations. Schizophr. Bull. 43:673–80 [Google Scholar]
  118. Liu M, Malone SM, Vaidyanathan U, Keller MC, Abecasis G. et al. 2017. Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci. Psychol. Med. 47:1116–25 [Google Scholar]
  119. Major Depressive Disord. Working Group Psychiatr. GWAS Consort 2013. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 18:497–511 [Google Scholar]
  120. Mak TSH, Kwan JS, Campbell DD, Sham PC. 2016. Local true discovery rate weighted polygenic scores using GWAS summary data. Behav. Genet. 46:573–82 [Google Scholar]
  121. Mak TSH, Porsch RM, Choi SW, Zhou X, Sham PC. 2017. Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol. 41:469–80 [Google Scholar]
  122. Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D. et al. 2001. Advancing paternal age and the risk of schizophrenia. Arch. Gen. Psychiatry 58:361–67 [Google Scholar]
  123. Maranville JC, Cox NJ. 2016. Pharmacogenomic variants have larger effect sizes than genetic variants associated with other dichotomous complex traits. Pharmacogenomics J 16:388–92 [Google Scholar]
  124. Marquez-Luna C, Loh P-R. South Asian Type 2 Diabetes Consort., SIGMA Type 2 Diabetes Consort., Price AL. 2016. Multi-ethnic polygenic risk scores improve risk prediction in diverse populations. Genet. Epidemiol 41:811–23 [Google Scholar]
  125. Martin J, Tilling K, Hubbard L, Stergiakouli E, Thapar A. et al. 2016. Association of genetic risk for schizophrenia with nonparticipation over time in a population-based cohort study. Am. J. Epidemiol. 183:1149–58 [Google Scholar]
  126. McLaughlin RL, Schijven D, van Rheenen W, van Eijk KR, O'Brien M. et al. 2017. Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nat. Commun. 8:14774 [Google Scholar]
  127. Meier SM, Agerbo E, Maier R, Pedersen CB, Lang M. et al. 2016. High loading of polygenic risk in cases with chronic schizophrenia. Mol. Psychiatry 21:969–74 [Google Scholar]
  128. Menke A, Arloth J, Putz B, Weber P, Klengel T. et al. 2012. Dexamethasone stimulated gene expression in peripheral blood is a sensitive marker for glucocorticoid receptor resistance in depressed patients. Neuropsychopharmacology 37:1455–64 [Google Scholar]
  129. Merikangas KR, Risch N. 2003. Genomic priorities and public health. Science 302:599–601 [Google Scholar]
  130. Meyers JL, Zhang J, Wang JC, Su J, Kuo SI. et al. 2017. An endophenotype approach to the genetics of alcohol dependence: a genome wide association study of fast β EEG in families of African ancestry. Mol. Psychiatry 22:1767–75 [Google Scholar]
  131. Mitra I, Lavillaureix A, Yeh E, Traglia M, Tsang K. et al. 2017. Reverse pathway genetic approach identifies epistasis in autism spectrum disorders. PLOS Genet 13:e1006516 [Google Scholar]
  132. Muller N, Weidinger E, Leitner B, Schwarz MJ. 2015. The role of inflammation in schizophrenia. Front. Neurosci. 9:372 [Google Scholar]
  133. Mullins N, Ingason A, Porter H, Euesden J, Gillett A. et al. 2017. Reproductive fitness and genetic risk of psychiatric disorders in the general population. Nat. Commun. 8:15833 [Google Scholar]
  134. Mullins N, Power RA, Fisher HL, Hanscombe KB, Euesden J. et al. 2016. Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. Psychol. Med. 46:759–70 [Google Scholar]
  135. Musliner KL, Seifuddin F, Judy JA, Pirooznia M, Goes FS, Zandi PP. 2015. Polygenic risk, stressful life events and depressive symptoms in older adults: a polygenic score analysis. Psychol. Med. 45:1709–20 [Google Scholar]
  136. Neilson E, Bois C, Gibson J, Duff B, Watson A. et al. 2017. Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness. Schizophr. Res. 184:128–36 [Google Scholar]
  137. Nelson EC, Agrawal A, Heath AC, Bogdan R, Sherva R. et al. 2016. Evidence of CNIH3 involvement in opioid dependence. Mol. Psychiatry 21:608–14 [Google Scholar]
  138. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P. et al. 2015. The support of human genetic evidence for approved drug indications. Nat. Genet. 47:856–60 [Google Scholar]
  139. Nivard MG, Gage SH, Hottenga JJ, van Beijsterveldt CE, Abdellaoui A. et al. 2017. Genetic overlap between schizophrenia and developmental psychopathology: longitudinal and multivariate polygenic risk prediction of common psychiatric traits during development. Schizophr. Bull. 43:1197–207 [Google Scholar]
  140. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH. et al. 2016. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533:539–42 [Google Scholar]
  141. Padmanabhan JL, Nanda P, Tandon N, Mothi SS, Bolo N. et al. 2016. Polygenic risk for type 2 diabetes mellitus among individuals with psychosis and their relatives. J. Psychiatr. Res. 77:52–58 [Google Scholar]
  142. Paksarian D, Trabjerg BB, Merikangas KR, Mors O, Borglum AD. et al. 2018. The role of genetic liability in the association of urbanicity at birth and during upbringing with schizophrenia in Denmark. Psychol. Med. 48:305–14 [Google Scholar]
  143. Papiol S, Popovic D, Keeser D, Hasan A, Schneider-Axmann T. et al. 2017. Polygenic risk has an impact on the structural plasticity of hippocampal subfields during aerobic exercise combined with cognitive remediation in multi-episode schizophrenia. Transl. Psychiatry 7:e1159 [Google Scholar]
  144. Paré G, Mao S, Deng WQ. 2017. A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci. Rep. 7:12665 [Google Scholar]
  145. Perlis RH, Fijal B, Dharia S, Heinloth AN, Houston JP. 2010. Failure to replicate genetic associations with antidepressant treatment response in duloxetine-treated patients. Biol. Psychiatry 67:1110–13 [Google Scholar]
  146. Peyrot WJ, Milaneschi Y, Abdellaoui A, Sullivan PF, Hottenga JJ. et al. 2014. Effect of polygenic risk scores on depression in childhood trauma. Br. J. Psychiatry 205:113–19 [Google Scholar]
  147. Plenge RM, Scolnick EM, Altshuler D. 2013. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12:581–94 [Google Scholar]
  148. Plomin R, Defries JC, Knopik VS, Neiderhiser JM. 2013. Behavioral Genetics: A Primer New York: Worth
  149. Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A. et al. 2015. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47:702–9 [Google Scholar]
  150. Polimanti R, Chen CY, Ursano RJ, Heeringa SG, Jain S. et al. 2017. Cross-phenotype polygenic risk score analysis of persistent post-concussive symptoms in U.S. army soldiers with deployment-acquired traumatic brain injury. J. Neurotrauma 34:781–89 [Google Scholar]
  151. Polimanti R, Kaufman J, Zhao H, Kranzler HR, Ursano RJ. et al. 2018. A genome-wide gene-by-trauma interaction study of alcohol misuse in two independent cohorts identifies PRKG1 as a risk locus. Mol. Psychiatry 23:154–60 [Google Scholar]
  152. Posthuma D, Polderman TJ. 2013. What have we learned from recent twin studies about the etiology of neurodevelopmental disorders. Curr. Opin. Neurol. 26:111–21 [Google Scholar]
  153. Power RA, Steinberg S, Bjornsdottir G, Rietveld CA, Abdellaoui A. et al. 2015. Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nat. Neurosci. 18:953–55 [Google Scholar]
  154. Power RA, Verweij KJ, Zuhair M, Montgomery GW, Henders AK. et al. 2014. Genetic predisposition to schizophrenia associated with increased use of cannabis. Mol. Psychiatry 19:1201–4 [Google Scholar]
  155. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA. et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559–75 [Google Scholar]
  156. Ramachandraih CT, Subramanyam N, Bar KJ, Baker G, Yeragani VK. 2011. Antidepressants: from MAOIs to SSRIs and more. Indian J. Psychiatry 53:180–82 [Google Scholar]
  157. Ranlund S, Calafato S, Thygesen JH, Lin K, Cahn W. et al. 2017. A polygenic risk score analysis of psychosis endophenotypes across brain functional, structural, and cognitive domains. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177:21–34 [Google Scholar]
  158. Reginsson GW, Ingason A, Euesden J, Bjornsdottir G, Olafsson S. et al. 2018. Polygenic risk scores for schizophrenia and bipolar disorder associate with addiction. Addict. Biol. 23:485–92 [Google Scholar]
  159. Reus LM, Shen X, Gibson J, Wigmore E, Ligthart L. et al. 2017. Association of polygenic risk for major psychiatric illness with subcortical volumes and white matter integrity in UK Biobank. Sci. Rep. 7:42140 [Google Scholar]
  160. Rietveld CA, Medland SE, Derringer J, Yang J, Esko T. et al. 2013. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340:1467–71 [Google Scholar]
  161. Riglin L, Collishaw S, Richards A, Thapar AK, Maughan B. et al. 2017. Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. Lancet Psychiatry 4:57–62 [Google Scholar]
  162. Robinson EB, Howrigan D, Yang J, Ripke S, Anttila V. et al. 2014. Response to ‘Predicting the diagnosis of autism spectrum disorder using gene pathway analysis.’ Mol. Psychiatry 19:859–61 [Google Scholar]
  163. Roussos P, Giakoumaki SG, Zouraraki C, Fullard JF, Karagiorga VE. et al. 2016. The relationship of common risk variants and polygenic risk for schizophrenia to sensorimotor gating. Biol. Psychiatry 79:988–96 [Google Scholar]
  164. Ruderfer DM, Charney AW, Readhead B, Kidd BA, Kahler AK. et al. 2016. Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. Lancet Psychiatry 3:350–57 [Google Scholar]
  165. Rüdin E. 1916. Studien über Vererbung und entstehung geistiger Störungen, I: Zur vererbung und neuentstehung der Dementia praecox [Studies on the inheritance and origin of mental illness, I: the problem of the inheritance and primary origin of dementia praecox]. Monogr. Gesamtgeb. Neurol. Psychiatr.12 Berlin: Springer
  166. Schizophr. Working Group Psychiatr. Genom. Consort 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–27 [Google Scholar]
  167. Schulze TG, Fangerau H, Propping P. 2004. From degeneration to genetic susceptibility, from eugenics to genethics, from Bezugsziffer to LOD score: the history of psychiatric genetics. Int. Rev. Psychiatry 16:246–59 [Google Scholar]
  168. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR. et al. 2016. Schizophrenia risk from complex variation of complement component 4. Nature 530:177–83 [Google Scholar]
  169. Sengupta SM, Macdonald K, Fathalli F, Yim A, Lepage M. et al. 2017. Polygenic risk score associated with specific symptom dimensions in first-episode psychosis. Schizophr. Res. 184:116–21 [Google Scholar]
  170. Shi J, Park JH, Duan J, Berndt ST, Moy W. et al. 2016. Winner's curse correction and variable thresholding improve performance of polygenic risk modeling based on genome-wide association study summary-level data. PLOS Genet 12:e1006493 [Google Scholar]
  171. Skafidas E, Testa R, Zantomio D, Chana G, Everall IP, Pantelis C. 2014. Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol. Psychiatry 19:504–10 [Google Scholar]
  172. So HC, Sham PC. 2017. Exploring the predictive power of polygenic scores derived from genome-wide association studies: a study of 10 complex traits. Bioinformatics 33:886–92 [Google Scholar]
  173. Sokolowski M, Wasserman J, Wasserman D. 2016. Polygenic associations of neurodevelopmental genes in suicide attempt. Mol. Psychiatry 21:1381–90 [Google Scholar]
  174. St. Pourcain B, Robinson EB, Anttila V, Sullivan BB, Maller J. et al. 2018. ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties. Mol. Psychiatry 23:263–70 [Google Scholar]
  175. Stein MB, Chen CY, Ursano RJ, Cai T, Gelernter J. et al. 2016. Genome-wide association studies of posttraumatic stress disorder in 2 cohorts of US Army soldiers. JAMA Psychiatry 73:695–704 [Google Scholar]
  176. Stepniak B, Papiol S, Hammer C, Ramin A, Everts S. et al. 2014. Accumulated environmental risk determining age at schizophrenia onset: a deep phenotyping–based study. Lancet Psychiatry 1:444–53 [Google Scholar]
  177. Stringer S, Kahn RS, de Witte LD, Ophoff RA, Derks EM. 2014. Genetic liability for schizophrenia predicts risk of immune disorders. Schizophr. Res. 159:347–52 [Google Scholar]
  178. Sullivan PF. 2015. Genetics of disease: associations with depression. Nature 523:539–40 [Google Scholar]
  179. Sullivan PF, Agrawal A, Bulik C, Andreassen OA, Børglum A. et al. 2018. Psychiatric genomics: an update and an agenda. Am. J. Psychiatry 175:15–27 [Google Scholar]
  180. Sumner JA, Duncan L, Ratanatharathorn A, Roberts AL, Koenen KC. 2016. PTSD has shared polygenic contributions with bipolar disorder and schizophrenia in women. Psychol. Med. 46:669–71 [Google Scholar]
  181. Sutterland AL, Fond G, Kuin A, Koeter MW, Lutter R. et al. 2015. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr. Scand. 132:161–79 [Google Scholar]
  182. Thomasson HR, Edenberg HJ, Crabb DW, Mai XL, Jerome RE. et al. 1991. Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am. J. Hum. Genet. 48:677–81 [Google Scholar]
  183. Tob. Genet. Consort 2010. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet 42:441–47 [Google Scholar]
  184. Torrey EF, Yolken RH. 2003. Toxoplasma gondii and schizophrenia. Emerg. Infect. Dis. 9:1375–80 [Google Scholar]
  185. Tost H, Braus DF, Hakimi S, Ruf M, Vollmert C. et al. 2010. Acute D2 receptor blockade induces rapid, reversible remodeling in human cortical–striatal circuits. Nat. Neurosci. 13:920–22 [Google Scholar]
  186. Treadway MT, Zald DH. 2011. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci. Biobehav. Rev. 35:537–55 [Google Scholar]
  187. Trotta A, Iyegbe C, di Forti M, Sham PC, Campbell DD. et al. 2016. Interplay between schizophrenia polygenic risk score and childhood adversity in first-presentation psychotic disorder: a pilot study. PLOS ONE 11:e0163319 [Google Scholar]
  188. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ. et al. 2018. Multi-trait analysis of genome-wide association summary statistics using MTAG.. Nat. Genet. 50229–37
  189. van der Auwera S, Teumer A, Hertel J, Homuth G, Volker U. et al. 2016. The inverse link between genetic risk for schizophrenia and migraine through NMDA (N-methyl-d-aspartate) receptor activation via d-serine. Eur. Neuropsychopharmacol. 26:1507–15 [Google Scholar]
  190. van der Auwera S, Wittfeld K, Homuth G, Teumer A, Hegenscheid K, Grabe HJ. 2015. No association between polygenic risk for schizophrenia and brain volume in the general population. Biol. Psychiatry 78:e41–42 [Google Scholar]
  191. van der Auwera S, Wittfeld K, Shumskaya E, Bralten J, Zwiers MP. et al. 2017. Predicting brain structure in population-based samples with biologically informed genetic scores for schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 174:324–32 [Google Scholar]
  192. van Dongen J, Boomsma DI. 2013. The evolutionary paradox and the missing heritability of schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162B:122–36 [Google Scholar]
  193. van Os J, van der Steen Y, Islam MA, Gülöksüz S, Rutten BP. et al. 2017. Evidence that polygenic risk for psychotic disorder is expressed in the domain of neurodevelopment, emotion regulation and attribution of salience. Psychol. Med. 47:2421–37 [Google Scholar]
  194. Vassos E, di Forti M, Coleman J, Iyegbe C, Prata D. et al. 2017. An examination of polygenic score risk prediction in individuals with first-episode psychosis. Biol. Psychiatry 81:470–77 [Google Scholar]
  195. Verweij KJ, Abdellaoui A, Nivard MG, Sainz Cort A, Ligthart L. et al. 2017. Genetic association between schizophrenia and cannabis use. Drug Alcohol Depend 171:117–21 [Google Scholar]
  196. Viana J, Hannon E, Dempster E, Pidsley R, Macdonald R. et al. 2017. Schizophrenia-associated methylomic variation: molecular signatures of disease and polygenic risk burden across multiple brain regions. Hum. Mol. Genet. 26:210–25 [Google Scholar]
  197. Vilhjalmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S. et al. 2015. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97:576–92 [Google Scholar]
  198. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI. et al. 2017. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101:5–22 [Google Scholar]
  199. Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI Jr., Hallmayer JF. 2017. Autism genetics: opportunities and challenges for clinical translation. Nat. Rev. Genet. 18:362–76 [Google Scholar]
  200. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW. et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–18 [Google Scholar]
  201. Wang Q, Polimanti R, Kranzler HR, Farrer LA, Zhao H, Gelernter J. 2017. Genetic factor common to schizophrenia and HIV infection is associated with risky sexual behavior: antagonistic versus synergistic pleiotropic SNPs enriched for distinctly different biological functions. Hum. Genet. 136:75–83 [Google Scholar]
  202. Wendland JR, Ehlers MD. 2016. Translating neurogenomics into new medicines. Biol. Psychiatry 79:650–56 [Google Scholar]
  203. Whalley HC, Adams MJ, Hall LS, Clarke TK, Fernandez-Pujals AM. et al. 2016. Dissection of major depressive disorder using polygenic risk scores for schizophrenia in two independent cohorts. Transl. Psychiatry 6:e938 [Google Scholar]
  204. Wheeler HE, Maitland ML, Dolan ME, Cox NJ, Ratain MJ. 2013. Cancer pharmacogenomics: strategies and challenges. Nat. Rev. Genet. 14:23–34 [Google Scholar]
  205. Willer CJ, Mohlke KL. 2012. Finding genes and variants for lipid levels after genome-wide association analysis. Curr. Opin. Lipidol. 23:98–103 [Google Scholar]
  206. Wimberley T, Gasse C, Meier SM, Agerbo E, Maccabe JH, Horsdal HT. 2017. Polygenic risk score for schizophrenia and treatment-resistant schizophrenia. Schizophr. Bull. 43:1064–69 [Google Scholar]
  207. Wray NR, Lee SH, Mehta D, Vinkhuyzen AA, Dudbridge F, Middeldorp CM. 2014. Research review: polygenic methods and their application to psychiatric traits. J. Child Psychol. Psychiatry 55:1068–87 [Google Scholar]
  208. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM. et al. 2017. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. bioRxiv 167577. https://doi.org/10.1101/167577 [Crossref]
  209. Wu J, Pfeiffer RM, Gail MH. 2013. Strategies for developing prediction models from genome-wide association studies. Genet. Epidemiol. 37:768–77 [Google Scholar]
  210. Xu K, Kranzler HR, Sherva R, Sartor CE, Almasy L. et al. 2015. Genomewide association study for maximum number of alcoholic drinks in European Americans and African Americans. Alcohol. Clin. Exp. Res. 39:1137–47 [Google Scholar]
  211. Yang J, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88:76–82 [Google Scholar]
  212. Yin X, Wineinger NE, Wang K, Yue W, Norgren N. et al. 2016. Common susceptibility variants are shared between schizophrenia and psoriasis in the Han Chinese population. J. Psychiatry Neurosci. 41:413–21 [Google Scholar]
  213. Zannas AS, Wiechmann T, Gassen NC, Binder EB. 2016. Gene–stress–epigenetic regulation of FKBP5: clinical and translational implications. Neuropsychopharmacology 41:261–74 [Google Scholar]
  214. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L. et al. 2017. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33:272–79 [Google Scholar]
  215. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR. et al. 2016. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48:481–87 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error