1932

Abstract

The phenomena associated with topological defects have had an enormous impact in condensed matter physics for more than 50 years. Beginning with an understanding of topological defects in ordered phases, the field is now sharply focused on defects in topological phases of matter. In this review, we cover aspects of defects in conventional ordered media, bound states on defects in strong topological insulators (TIs) and topological superconductors (TSCs), and bound states on defects in crystalline topological phases protected by spatial symmetries. As a unifying theme, we present the structure of many types of index theorems that relate the existence of topological bound states to the bulk topology of the host phase of matter and the topological charge of the relevant defects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025154
2017-03-31
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025154.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025154&mimeType=html&fmt=ahah

Literature Cited

  1. Mermin ND. 1.  1979. Rev. Mod. Phys. 51:591 [Google Scholar]
  2. Chaikin PM, Lubensky TC. 2.  2000. Principles of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  3. Nelson DR. 3.  2002. Defects and Geometry in Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  4. Volovik GE. 4.  2003. The Universe in a Helium Droplet Oxford, UK: Oxford Univ. Press [Google Scholar]
  5. von Klitzing K, Dorda G, Pepper M. 5.  1980. Phys. Rev. Lett. 45:494 [Google Scholar]
  6. Tsui DC, Stormer HL, Gossard AC. 6.  1982. Phys. Rev. Lett. 48:1559 [Google Scholar]
  7. Kane CL, Mele EJ. 7.  2005. Phys. Rev. Lett. 95:226801 [Google Scholar]
  8. Kane CL, Mele EJ. 8.  2005. Phys. Rev. Lett. 95:146802 [Google Scholar]
  9. Bernevig BA, Hughes TL, Zhang SC. 9.  2006. Science 314:1757–61 [Google Scholar]
  10. König M, Wiedmann S, Brüne C, Roth A, Buhmann H. 10.  et al. 2007. Science 318:766 [Google Scholar]
  11. Fu L, Kane CL, Mele EJ. 11.  2007. Phys. Rev. Lett. 98:106803 [Google Scholar]
  12. Moore JE, Balents L. 12.  2007. Phys. Rev. B 75:121306(R) [Google Scholar]
  13. Roy R. 13.  2009. Phys. Rev. B 79:195322 [Google Scholar]
  14. Fu L, Kane CL. 14.  2007. Phys. Rev. B 76:045302 [Google Scholar]
  15. Hsieh D, Qian D, Wray L, Xia Y, Hor YS. 15.  et al. 2008. Nature 452:970 [Google Scholar]
  16. Hasan MZ, Kane CL. 16.  2010. Rev. Mod. Phys. 82:3045 [Google Scholar]
  17. Haldane FDM. 17.  1988. Phys. Rev. Lett. 61:2015 [Google Scholar]
  18. Chang CZ, Zhang J, Feng X, Shen J, Zhang Z. 18.  et al. 2013. Science 340:167–70 [Google Scholar]
  19. Wen XG. 19.  2004. Quantum Field Theory of Many-Body Systems Oxford, UK: Oxford Univ. Press [Google Scholar]
  20. Laughlin RB. 20.  1983. Phys. Rev. Lett. 50:1395 [Google Scholar]
  21. Read N, Green D. 21.  2000. Phys. Rev. B 61:10267 [Google Scholar]
  22. Ivanov DA. 22.  2001. Phys. Rev. Lett. 86:268 [Google Scholar]
  23. Beenakker C. 23.  2013. Annu. Rev. Condens. Matter Phys. 4:113 [Google Scholar]
  24. Volovik GE. 24.  1999. Pisma Zh. Eksp. Teor. Fiz. 70:601 [Google Scholar]
  25. Qi XL, Hughes TL, Raghu S, Zhang SC. 25.  2009. Phys. Rev. Lett. 102:187001 [Google Scholar]
  26. Roy R. 26.  2008. arXiv:0803 2868
  27. Nayak C, Simon SH, Stern A, Freedman M, Das Sarma S. 27.  2008. Rev. Mod. Phys. 80:1083 [Google Scholar]
  28. Fu L, Kane CL. 28.  2008. Phys. Rev. Lett. 100:096407 [Google Scholar]
  29. Fu L, Kane CL. 29.  2009. Phys. Rev. B 79:161408(R) [Google Scholar]
  30. Teo JCY, Kane CL. 30.  2010. Phys. Rev. Lett. 104:046401 [Google Scholar]
  31. Kitaev AY. 31.  2001. Phys.-Uspekhi 44:131 [Google Scholar]
  32. Sau JD, Lutchyn RM, Tewari S, Das Sarma S. 32.  2010. Phys. Rev. Lett. 104:040502 [Google Scholar]
  33. Oreg Y, Refael G, von Oppen F. 33.  2010. Phys. Rev. Lett. 105:177002 [Google Scholar]
  34. Alicea J. 34.  2012. Rep. Prog. Phys 75:076501 [Google Scholar]
  35. Kitaev A. 35.  2006. Ann. Phys. 321:2 [Google Scholar]
  36. Etingof P, Nikshych D, Ostrik V. 36.  2010. Quantum Topol. 1:209 [Google Scholar]
  37. Barkeshli M, Wen XG. 37.  2010. Phys. Rev. B 81:045323 [Google Scholar]
  38. Bombin H. 38.  2010. Phys. Rev. Lett. 105:030403 [Google Scholar]
  39. Barkeshli M, Qi XL. 39.  2012. Phys. Rev. X 2:031013 [Google Scholar]
  40. You YZ, Wen XG. 40.  2012. Phys. Rev. B 86:161107R [Google Scholar]
  41. Barkeshli M, Jian CM, Qi XL. 41.  2013. Phys. Rev. B 87:045130 [Google Scholar]
  42. Clarke DJ, Alicea J, Shtengel K. 42.  2012. Nat. Commun. 4:1348 [Google Scholar]
  43. Lindner NH, Berg E, Refael G, Stern A. 43.  2012. Phys. Rev. X 2:041002 [Google Scholar]
  44. Vaezi A. 44.  2013. Phys. Rev. B 87:035132 [Google Scholar]
  45. Teo JCY, Roy A, Chen X. 45.  2014. Phys. Rev. B 90:115118 [Google Scholar]
  46. Barkeshli M, Qi XL. 46.  2014. Phys. Rev. X 4:041035 [Google Scholar]
  47. Teo JCY, Roy A, Chen X. 47.  2014. Phys. Rev. B 90:155111 [Google Scholar]
  48. Barkeshli M, Jian CM, Qi XL. 48.  2013. Phys. Rev. B 88:241103 [Google Scholar]
  49. Mesaros A, Kim YB, Ran Y. 49.  2013. Phys. Rev. B 88:035141 [Google Scholar]
  50. Khan MN, Teo JCY, Hughes TL. 50.  2014. Phys. Rev. B 90:235149 [Google Scholar]
  51. Petrova O, Mellado P, Tchernyshyov O. 51.  2014. Phys. Rev. B 90:134404 [Google Scholar]
  52. Barkeshli M, Bonderson P, Cheng M, Wang Z. 52.  2014. arXiv:1410 4540
  53. Teo JC, Hughes TL, Fradkin E. 53.  2015. Ann. Phys. 360:349–445 [Google Scholar]
  54. Tarantino N, Lindner N, Fidkowski L. 54.  2016. New J. Phys. 18:3035006 [Google Scholar]
  55. Khan MN, Teo JC, Hughes TL, Vishveshwara S. 55.  2016. arXiv:1603.04427
  56. Kosterlitz JM, Thouless DJ. 56.  1973. J. Phys. C 6:1181 [Google Scholar]
  57. Halperin B, Nelson DR. 57.  1978. Phys. Rev. Lett. 41:121 [Google Scholar]
  58. Nelson DR, Halperin B. 58.  1979. Phys. Rev. B 19:2457 [Google Scholar]
  59. Young A. 59.  1979. Phys. Rev. B 19:1855 [Google Scholar]
  60. Dasgupta C, Halperin B. 60.  1981. Phys. Rev. Lett. 47:1556 [Google Scholar]
  61. Fisher MP, Lee DH. 61.  1989. Phys. Rev. B 39:2756 [Google Scholar]
  62. Liu CX, Zhang SC, Qi XL. 62.  2016. Annu. Rev. Condens. Matter Phys. 7:301 [Google Scholar]
  63. Lee DH, Zhang GM, Xiang T. 63.  2007. Phys. Rev. Lett. 99:196805 [Google Scholar]
  64. Qi XL, Zhang SC. 64.  2008. Phys. Rev. Lett. 101:086802 [Google Scholar]
  65. Ran Y, Vishwanath A, Lee DH. 65.  2008. Phys. Rev. Lett. 101:086801 [Google Scholar]
  66. Ran Y, Zhang Y, Vishwanath A. 66.  2009. Nat. Phys. 5:298 [Google Scholar]
  67. Teo JCY, Kane CL. 67.  2010. Phys. Rev. B 82:115120 [Google Scholar]
  68. Ran Y. 68.  2010. arXiv:1006.5454
  69. Juricic V, Mesaros A, Slager RJ, Zaanen J. 69.  2012. Phys. Rev. Lett. 108:106403 [Google Scholar]
  70. Asahi D, Nagaosa N. 70.  2012. Phys. Rev. B 86:100504 [Google Scholar]
  71. Hughes TL, Yao H, Qi XL. 71.  2014. Phys. Rev. B 90:235123 [Google Scholar]
  72. Slager R-J, Mesaros A, Juričić V, Zaanen J. 72.  2014. Phys. Rev. B 90:241403(R) [Google Scholar]
  73. de Juan F, Rüegg A, Lee DH. 73.  2014. Phys. Rev. B 89:161117 [Google Scholar]
  74. Chung SB, Chan C, Yao H. 74.  2016. Sci. Rep. 6:25184 [Google Scholar]
  75. Paulose J, Chen BGG, Vitelli V. 75.  2015. Nat. Phys. 11:153–56 [Google Scholar]
  76. Teo JCY, Hughes TL. 76.  2013. Phys. Rev. Lett. 111:047006 [Google Scholar]
  77. Gopalakrishnan S, Teo JCY, Hughes TL. 77.  2013. Phys. Rev. Lett. 111:025304 [Google Scholar]
  78. Benalcazar WA, Teo JC, Hughes TL. 78.  2014. Phys. Rev. B 89:224503 [Google Scholar]
  79. Rüegg A, Lin C. 79.  2013. Phys. Rev. Lett. 110:046401 [Google Scholar]
  80. Rüegg A, Coh S, Moore JE. 80.  2013. Phys. Rev. B 88:155127 [Google Scholar]
  81. Levin M, Gu ZC. 81.  2012. Phys. Rev. B 86:115109 [Google Scholar]
  82. Nakahara M. 82.  2003. Geometry, Topology and Physics Boca Raton, FL: Taylor & Francis [Google Scholar]
  83. de Gennes PG. 83.  1999. Superconductivity of Metals and Alloys Philadelphia, PA: Westview [Google Scholar]
  84. Caroli C, de Gennes PG, Matricon J. 84.  1964. Phys. Lett. 9:307–9 [Google Scholar]
  85. Gurarie V, Radzihovsky L. 85.  2007. Phys. Rev. B 75:212509 [Google Scholar]
  86. Tewari S, Zhang C, Das Sarma S, Nayak C, Lee DH. 86.  2008. Phys. Rev. Lett. 100:027001 [Google Scholar]
  87. Kleman M, Friedel J. 87.  2008. Rev. Mod. Phys. 80:61 [Google Scholar]
  88. Maciejko J, Hughes TL, Zhang SC. 88.  2011. Annu. Rev. Condens. Matter Phys. 2:31 [Google Scholar]
  89. Hasan MZ, Moore JE. 89.  2011. Annu. Rev. Condens. Matter Phys. 2:55 [Google Scholar]
  90. Vafek O, Vishwanath A. 90.  2014. Annu. Rev. Condens. Matter Phys. 5:83 [Google Scholar]
  91. Altland A, Zirnbauer MR. 91.  1997. Phys. Rev. B 55:1142 [Google Scholar]
  92. Schnyder AP, Ryu S, Furusaki A, Ludwig AWW. 92.  2008. Phys. Rev. B 78:195125 [Google Scholar]
  93. Qi XL, Hughes TL, Zhang SC. 93.  2008. Phys. Rev. B 78:195424 [Google Scholar]
  94. Kitaev A. 94.  2008. Advances in Theoretical Physics: Landau Memorial Conference ed. V Lebedev, M Feigel'man AIP Conf. Proc. 113422 Melville, NY: AIP [Google Scholar]
  95. Jackiw R, Rebbi C. 95.  1976. Phys. Rev. D 13:3398 [Google Scholar]
  96. Su WP, Schrieffer J, Heeger A. 96.  1979. Phys. Rev. Lett. 42:1698 [Google Scholar]
  97. Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M. 97.  1982. Phys. Rev. Lett. 49:405 [Google Scholar]
  98. Jackiw R, Rossi P. 98.  1981. Nucl. Phys. B 190:681–91 [Google Scholar]
  99. Nayak C, Simon SH, Stern A, Freedman M, Das Sarma S. 99.  2008. Rev. Mod. Phys. 80:1083 [Google Scholar]
  100. Shiozaki K, Sato M. 100.  2014. Phys. Rev. B 90:165114 [Google Scholar]
  101. Koshino M, Morimoto T, Sato M. 101.  2014. Phys. Rev. B 90:115207 [Google Scholar]
  102. Chiu CK, Teo JC, Schnyder AP, Ryu S. 102.  2016. Rev. Mod. Phys. 88:035005 [Google Scholar]
  103. Atiyah MF, Singer IM. 103.  1963. Bull. Am. Math. Soc. 69:422 [Google Scholar]
  104. Ando Y, Fu L. 104.  2015. Annu. Rev. Condens. Matter Phys. 6:361 [Google Scholar]
  105. Raghu S, Kapitulnik A, Kivelson S. 105.  2010. Phys. Rev. Lett. 105:136401 [Google Scholar]
  106. Asahi D, Nagaosa N. 106.  2012. Phys. Rev. B 86:100504(R) [Google Scholar]
  107. Stone M, Roy R. 107.  2004. Phys. Rev. B 69:184511 [Google Scholar]
  108. Hughes TL, Prodan E, Bernevig BA. 108.  2011. Phys. Rev. B 83:245132 [Google Scholar]
  109. Turner AM, Zhang Y, Mong RS, Vishwanath A. 109.  2012. Phys. Rev. B 85:165120 [Google Scholar]
  110. Fang C, Gilbert MJ, Bernevig BA. 110.  2012. Phys. Rev. B 86:115112 [Google Scholar]
  111. Fang C, Gilbert MJ, Bernevig BA. 111.  2013. Phys. Rev. B 87:035119 [Google Scholar]
  112. Alicea JF, Fendley P. 112.  2016. Annu. Rev. Condens. Matter Phys. 7:119–39 [Google Scholar]
  113. Maeno Y, Rice TM, Sigrist M. 113.  2001. Phys. Today 54:42–47 [Google Scholar]
  114. Sigrist M, Ueda K. 114.  1991. Rev. Mod. Phys. 63:239 [Google Scholar]
  115. Mackenzie AP, Maeno Y. 115.  2003. Rev. Mod. Phys. 75:657 [Google Scholar]
  116. Rasche B, Isaeva A, Ruck M, Borisenko S, Zabolotnyy V. 116.  et al. 2013. Nat. Mat. 12:422–25 [Google Scholar]
  117. Pauly C, Rasche B, Koepernik K, Liebmann M, Pratzer M. 117.  et al. 2015. Nat. Phys. 11:338–43 [Google Scholar]
  118. Mourik V, Zuo K, Frolov SM, Plissard S, Bakkers E, Kouwenhoven L. 118.  2012. Science 336:1003–7 [Google Scholar]
  119. Nadj-Perge S, Drozdov IK, Li J, Chen H, Jeon S. 119.  et al. 2014. Science 346:602–7 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031016-025154
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025154
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error