1932

Abstract

Hypercomplex fluids are amalgamations of polymers, colloids, or amphiphilic molecules that exhibit emergent properties not observed in elemental systems alone. Especially promising building-blocks for assembly of hypercomplex materials are molecules with anisotropic shape. Alone, these molecules form numerous liquid crystalline phases with symmetries and properties that are fundamentally different from those of conventional liquids or solids. When combined with other complex fluids, liquid crystals form materials with diverse emergent properties. In equilibrium, the interactions, dimensions, and shapes of these hypercomplex materials can be precisely controlled. When driven far from equilibrium, these materials can deform and even spontaneously flow in the absence of external forces. Here we describe recent experimental accomplishments in this rapidly developing research area. We emphasize how the common theme underlying these diverse efforts is their reliance on the basic physics of molecular liquid crystals developed in the 1970s.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031113-133827
2014-03-10
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/5/1/annurev-conmatphys-031113-133827.html?itemId=/content/journals/10.1146/annurev-conmatphys-031113-133827&mimeType=html&fmt=ahah

Literature Cited

  1. De Gennnes PG, Prost J. 1993. The Physics of Liquid Crystals Oxford: Clarendon Press [Google Scholar]
  2. Chandrasekhar S. 1992. Liquid Crystals Cambridge: Cambridge Univ. Press [Google Scholar]
  3. Bates FS, Fredrickson GH. 1990. Annu. Rev. Phys. Chem. 41:525–57 [Google Scholar]
  4. Discher DE, Eisenberg A. 2002. Science 297:967–73 [Google Scholar]
  5. Kupfer J, Finkelmann H. 1991. Makromol. Chem. Rapid Commun. 12:717–26 [Google Scholar]
  6. Poulin P, Stark H, Lubensky TC, Weitz DA. 1997. Science 275:1770–73 [Google Scholar]
  7. Chaikin PC, Lubensky TC. 1995. Principles of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  8. Frank FC. 1958. Discuss. Faraday Soc. 25:19–28 [Google Scholar]
  9. Lu PJ, Weitz DA. 2013. Annu. Rev. Condens. Matter Phys. 4:217–33 [Google Scholar]
  10. Crocker JC, Matteo JA, Dinsmore AD, Yodh AG. 1999. Phys. Rev. Lett. 82:4352–55 [Google Scholar]
  11. Verma R, Crocker JC, Lubensky TC, Yodh AG. 1998. Phys. Rev. Lett. 81:4004–7 [Google Scholar]
  12. Asakura S, Oosawa F. 1954. J. Chem. Phys. 22:1255–56 [Google Scholar]
  13. Crocker JC, Grier DG. 1996. J. Colloid Interface Sci. 179:298–310 [Google Scholar]
  14. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. 1986. Opt. Lett. 11:288–90 [Google Scholar]
  15. Neuman KC, Block SM. 2004. Rev. Sci. Instrum. 75:2787–809 [Google Scholar]
  16. Van Blaaderen A, Ruel R, Wiltzius P. 1997. Nature 385:321–24 [Google Scholar]
  17. Van Blaaderen A, Wiltzius P. 1995. Science 270:1177–79 [Google Scholar]
  18. Pusey PN. 1991. Liquids, Freezing and the Glass Transition Amsterdam: Elsevier [Google Scholar]
  19. Chandler D, Weeks JD, Andersen HC. 1983. Science 220:787–94 [Google Scholar]
  20. Weeks JD, Chandler D, Andersen HC. 1971. J. Chem. Phys. 54:5237–46 [Google Scholar]
  21. Pusey PN, Vanmegen W. 1986. Nature 320:340–42 [Google Scholar]
  22. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA. 2000. Science 287:627–31 [Google Scholar]
  23. Kegel WK, van Blaaderen A. 2000. Science 287:290–93 [Google Scholar]
  24. Gasser U, Weeks ER, Schofield A, Pusey PN, Weitz DA. 2001. Science 292:258–62 [Google Scholar]
  25. Stanley WM. 1935. Science 81:644–45 [Google Scholar]
  26. Bawden F, Pirie N, Bernal J, Fankuchen I. 1936. Nature 138:1051–52 [Google Scholar]
  27. Onsager L. 1949. Ann. N.Y. Acad. Sci. 51:627–59 [Google Scholar]
  28. Frenkel D. 1987. J. Phys. Chem. 91:4912–16 [Google Scholar]
  29. Straley J. 1973. Mol. Cryst. Liq. Cryst. 22:333–57 [Google Scholar]
  30. Straley JP. 1973. Mol. Cryst. Liq. Cryst. 24:7–20 [Google Scholar]
  31. Khokhlov AR, Semenov AN. 1981. Phys. A 108:546–56 [Google Scholar]
  32. Stroobants A, Lekkerkerker HNW, Odijk T. 1986. Macromolecules 19:2232–38 [Google Scholar]
  33. Vroege GJ, Lekkerkerker HNW. 1992. Rep. Prog. Phys. 55:1241–309 [Google Scholar]
  34. Vroege GJ, Lekkerkerker HNW. 1993. J. Phys. Chem. 97:3601–5 [Google Scholar]
  35. Bolhuis P, Frenkel D. 1997. J. Chem. Phys. 106:666–87 [Google Scholar]
  36. McGrother SC, Williamson DC, Jackson G. 1996. J. Chem. Phys. 104:6755–71 [Google Scholar]
  37. Frenkel D, Lekkerkerker HNW, Stroobants A. 1988. Nature 332:822–23 [Google Scholar]
  38. Belamie E, Davidson P, Giraud-Guille MM. 2004. J. Phys. Chem. B 108:14991–5000 [Google Scholar]
  39. Dong XM, Kimura T, Revol JF, Gray DG. 1996. Langmuir 12:2076–82 [Google Scholar]
  40. Livolant F, Leforestier A. 1996. Prog. Polym. Sci. 21:1115–64 [Google Scholar]
  41. Oakes PW, Viamontes J, Tang JX. 2007. Phys. Rev. E 75:061902 [Google Scholar]
  42. Strey HH, Parsegian VA, Podgornik R. 1999. Phys. Rev. E 59:999–1008 [Google Scholar]
  43. Lemaire BJ, Davidson P, Ferre J, Jamet JP, Panine P et al. 2002. Phys. Rev. Lett. 88:125507 [Google Scholar]
  44. Davidson P, Gabriel JCP. 2005. Curr. Opin. Colloid Interface Sci. 9:377–83 [Google Scholar]
  45. Lekkerkerker HNW, Vroege GJ. 2013. Philos. Trans. R. Soc. A 371:20120263 [Google Scholar]
  46. van Bruggen MPB, Dhont JKG, Lekkerkerker HNW. 1999. Macromolecules 32:2256–64 [Google Scholar]
  47. van der Kooij FM, Kassapidou K, Lekkerkerker HNW. 2000. Nature 406:868–71 [Google Scholar]
  48. Fraden S, Maret G, Caspar DLD, Meyer RB. 1989. Phys. Rev. Lett. 63:2068–71 [Google Scholar]
  49. Tang JX, Fraden S. 1995. Liq. Cryst. 19:459–67 [Google Scholar]
  50. Purdy KR, Dogic Z, Fraden S, Ruhm A, Lurio L, Mochrie SGJ. 2003. Phys. Rev. E 67:031708 [Google Scholar]
  51. Barry E, Beller D, Dogic Z. 2009. Soft Matter 5:2563–70 [Google Scholar]
  52. Wensink HH, Vroege GJ. 2003. J. Chem. Phys. 119:6868–82 [Google Scholar]
  53. Bates MA, Frenkel D. 1998. J. Chem. Phys. 109:6193–99 [Google Scholar]
  54. Wen X, Meyer RB, Caspar DLD. 1989. Phys. Rev. Lett. 63:2760–63 [Google Scholar]
  55. Dogic Z, Fraden S. 1997. Phys. Rev. Lett. 78:2417–20 [Google Scholar]
  56. Pouget E, Grelet E, Lettinga MP. 2011. Phys. Rev. E 84:041704 [Google Scholar]
  57. Lettinga MP, Grelet E. 2007. Phys. Rev. Lett. 99:197802 [Google Scholar]
  58. Kuijk A, Byelov DV, Petukhov AV, van Blaaderen A, Imhof A. 2012. Faraday Discuss. 159:181–99 [Google Scholar]
  59. Kuijk A, van Blaaderen A, Imhof A. 2011. J. Am. Chem. Soc. 133:2346–49 [Google Scholar]
  60. Straley JP. 1973. Phys. Rev. A 8:2181–83 [Google Scholar]
  61. Lee SD, Meyer RB. 1986. J. Chem. Phys. 84:3443–48 [Google Scholar]
  62. Li LS, Alivisatos AP. 2003. Adv. Mater. 15:408–11 [Google Scholar]
  63. Jana NR, Gearheart LA, Obare SO, Johnson CJ, Edler KJ et al. 2002. J. Mater. Chem. 12:2909–12 [Google Scholar]
  64. Damasceno PF, Engel M, Glotzer SC. 2012. Science 337:453–57 [Google Scholar]
  65. Gast AP, Hall CK, Russel WB. 1983. J. Colloid Interface Sci. 96:251–67 [Google Scholar]
  66. Lekkerkerker HNW, Poon WCK, Pusey PN, Stroobants A, Warren PB. 1992. Europhys. Lett. 20:559–64 [Google Scholar]
  67. Meijer EJ, Frenkel D. 1991. Phys. Rev. Lett. 67:1110–13 [Google Scholar]
  68. Meijer EJ, Frenkel D. 1994. J. Chem. Phys. 100:6873–87 [Google Scholar]
  69. Lin KH, Crocker JC, Zeri AC, Yodh AG. 2001. Phys. Rev. Lett. 87:088301 [Google Scholar]
  70. Lekkerkerker HNW, Stroobants A. 1994. Nuovo Cim. Soc. Ital. Fis. D 16:949–62 [Google Scholar]
  71. Bolhuis PG, Stroobants A, Frenkel D, Lekkerkerker HNW. 1997. J. Chem. Phys. 107:1551–64 [Google Scholar]
  72. Warren PB. 1994. J. Phys. I 4:237–44 [Google Scholar]
  73. Dogic Z, Purdy KR, Grelet E, Adams M, Fraden S. 2004. Phys. Rev. E 69:051702 [Google Scholar]
  74. Buitenhuis J, Donselaar LN, Buining PA, Stroobants A, Lekkerkerker HNW. 1995. J. Colloid Interface Sci. 175:46–56 [Google Scholar]
  75. Koda T, Numajiri M, Ikeda S. 1996. J. Phys. Soc. Jpn. 65:3551–56 [Google Scholar]
  76. Dogic Z. 2003. Phys. Rev. Lett. 91:165701 [Google Scholar]
  77. Dogic Z, Fraden S. 2001. Philos. Trans. R. Soc. A 359:997–1014 [Google Scholar]
  78. Adams M, Dogic Z, Keller SL, Fraden S. 1998. Nature 393:349–52 [Google Scholar]
  79. Dogic Z, Frenkel D, Fraden S. 2000. Phys. Rev. E 62:3925–33 [Google Scholar]
  80. Frenkel D, Schilling T. 2002. Phys. Rev. E 66:041606 [Google Scholar]
  81. Barry E, Dogic Z. 2010. Proc. Natl. Acad. Sci. USA 107:10348–53 [Google Scholar]
  82. Yang YS, Barry E, Dogic Z, Hagan MF. 2012. Soft Matter 8:707–14 [Google Scholar]
  83. Helfrich W. 1978. Zeitschrift Fur Naturforschung Sect. A 33:305–15 [Google Scholar]
  84. Goetz R, Gompper G, Lipowsky R. 1999. Phys. Rev. Lett. 82:221–24 [Google Scholar]
  85. Israelachvili JN, Wennerstrom H. 1992. J. Phys. Chem. 96:520–31 [Google Scholar]
  86. Lipowsky R, Grotehans S. 1993. Europhys. Lett. 23:599–604 [Google Scholar]
  87. Gibaud T, Barry E, Zakhary MJ, Henglin M, Ward A et al. 2012. Nature 481:348–51 [Google Scholar]
  88. Baker JL, Widmer-Cooper A, Toney MF, Geissler PL, Alivisatos AP. 2010. Nano Lett. 10:195–201 [Google Scholar]
  89. Smith SB, Finzi L, Bustamante C. 1992. Science 258:1122–26 [Google Scholar]
  90. Wang MD, Yin H, Landick R, Gelles J, Block SM. 1997. Biophys. J. 72:1335–46 [Google Scholar]
  91. Warner M, Bladon P, Terentjev E. 1994. J. Phys. II 4:93–102 [Google Scholar]
  92. Warner M, Terentjev EM. 1996. Prog. Polym. Sci. 21:853–91 [Google Scholar]
  93. Tajbakhsh AR, Terentjev EM. 2001. Eur. Phys. J. E 6:181–88 [Google Scholar]
  94. Finkelmann H, Greve A, Warner M. 2001. Eur. Phys. J. E 5:281–93 [Google Scholar]
  95. Finkelmann H, Nishikawa E, Pereira GG, Warner M. 2001. Phys. Rev. Lett. 87:015501 [Google Scholar]
  96. Finkelmann H, Kock HJ, Gleim W, Rehage G. 1984. Makromol. Chem. Rapid. Commun. 5:287–93 [Google Scholar]
  97. Mitchell GR, Coulter M, Davis FJ, Guo W. 1992. J. Phys. II 2:1121–32 [Google Scholar]
  98. Mitchell GR, Davis FJ, Guo W. 1993. Phys. Rev. Lett. 71:2947–50 [Google Scholar]
  99. Kundler I, Finkelmann H. 1995. Macromol. Rapid Commun. 16:679–86 [Google Scholar]
  100. Küupfer J, Finkelmann H. 1994. Macromol. Chem. Phys. 195:1353–67 [Google Scholar]
  101. Finkelmann H, Kim ST, Munoz A, Palffy-Muhoray P, Taheri B. 2001. Adv. Mater. 13:1069–72 [Google Scholar]
  102. Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. 2004. Nat. Mater. 3:307–10 [Google Scholar]
  103. deGennes PG, Hebert M, Kant R. 1997. Macromol. Symp. 113:39–49 [Google Scholar]
  104. Terentjev EM. 1995. Phys. Rev. E 51:1330–37 [Google Scholar]
  105. Stark H. 2001. Phys. Rep. 351:387–474 [Google Scholar]
  106. Ramaswamy S, Nityananda R, Raghunathan VA, Prost J. 1996. Mol. Cryst. Liq. Cryst. 288:175–80 [Google Scholar]
  107. Lubensky TC, Pettey D, Currier N, Stark H. 1998. Phys. Rev. E 57:610–25 [Google Scholar]
  108. Poulin P, Cabuil V, Weitz DA. 1997. Phys. Rev. Lett. 79:4862–65 [Google Scholar]
  109. Gu YD, Abbott NL. 2000. Phys. Rev. Lett. 85:4719–22 [Google Scholar]
  110. Musevic I, Skarabot M, Tkalec U, Ravnik M, Zumer S. 2006. Science 313:954–58 [Google Scholar]
  111. Guzman O, Kim EB, Grollau S, Abbott NL, de Pablo JJ. 2003. Phys. Rev. Lett. 91:235507 [Google Scholar]
  112. Ravnik M, Skarabot M, Zumer S, Tkalec U, Poberaj I et al. 2007. Phys. Rev. Lett. 99:247801 [Google Scholar]
  113. Loudet JC, Barois P, Poulin P. 2000. Nature 407:611–13 [Google Scholar]
  114. Musevic I. 2013. Philos. Trans. R. Soc. A 371:20120266 [Google Scholar]
  115. Tkalec U, Ravnik M, Copar S, Zumer S, Musevic I. 2011. Science 333:62–65 [Google Scholar]
  116. Lapointe CP, Mason TG, Smalyukh II. 2009. Science 326:1083–86 [Google Scholar]
  117. Senyuk B, Liu QK, He SL, Kamien RD, Kusner RB et al. 2013. Nature 493:200–5 [Google Scholar]
  118. Tjhung E, Marenduzzo D, Cates ME. 2012. Proc. Natl. Acad. Sci. USA 109:12381–86 [Google Scholar]
  119. Voituriez R, Joanny JF, Prost J. 2005. Europhys. Lett. 70:404–10 [Google Scholar]
  120. Giomi L, Marchetti MC, Liverpool TB. 2008. Phys. Rev. Lett.101 [Google Scholar]
  121. Simha RA, Ramaswamy S. 2002. Phys. Rev. Lett. 89:058101 [Google Scholar]
  122. Hawkins RJ, Piel M, Faure-Andre G, Lennon-Dumenil AM, Joanny JF et al. 2009. Phys. Rev. Lett. 102:058103 [Google Scholar]
  123. Toner J, Tu YH, Ramaswamy S. 2005. Ann. Phys. 318:170–244 [Google Scholar]
  124. Ramaswamy S. 2010. Mech. Stat. Act. Matter 1:323–45 [Google Scholar]
  125. Marchetti M, Joanny J-F, Ramaswamy S, Liverpool T, Prost J et al. 2012. Rev. Mod. Phys. 85:1143–89 [Google Scholar]
  126. Schaller V, Weber C, Semmrich C, Frey E, Bausch AR. 2010. Nature 467:73–77 [Google Scholar]
  127. Schaller V, Bausch AR. 2013. Proc. Natl. Acad. Sci. USA 110:4488–93 [Google Scholar]
  128. Schaller V, Weber C, Frey E, Bausch AR. 2011. Soft Matter 7:3213–18 [Google Scholar]
  129. Kron SJ, Spudich JA. 1986. Proc. Natl. Acad. Sci. USA 83:6272–76 [Google Scholar]
  130. Gruler H, Dewald U, Eberhardt M. 1999. Eur. Phys. J. B 11:187–92 [Google Scholar]
  131. Kemkemer R, Teichgraber V, Schrank-Kaufmann S, Kaufmann D, Gruler H. 2000. Eur. Phys. J. E 3:101–10 [Google Scholar]
  132. Narayan V, Ramaswamy S, Menon N. 2007. Science 317:105–8 [Google Scholar]
  133. Sanchez T, Chen DTN, DeCamp SJ, Heymann M, Dogic Z. 2012. Nature 491:431 [Google Scholar]
  134. Schnitzer MJ, Block SM. 1997. Nature 388:386–90 [Google Scholar]
  135. Giomi L, Bowick MJ, Ma X, Marchetti MC. 2013. Phys. Rev. Lett. 110:228101 [Google Scholar]
  136. Thampi SP, Golestanian R, Yeomans JM. 2013. Phys. Rev. Lett. 111:118101 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031113-133827
Loading
/content/journals/10.1146/annurev-conmatphys-031113-133827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error