1932

Abstract

An understanding of the high-temperature copper oxide (cuprate) superconductors has eluded the physics community for over thirty years and represents one of the greatest unsolved problems in condensed matter physics. Particularly enigmatic is the normal state from which superconductivity emerges, so much so that this phase has been dubbed a “strange metal.” In this article, we review recent research into this strange metallic state as realized in the electron-doped cuprates with a focus on their transport properties. The electron-doped compounds differ in several ways from their more thoroughly studied hole-doped counterparts, and understanding these asymmetries of the phase diagram may prove crucial to developing a final theory of the cuprates. Most of the experimental results discussed in this review have yet to be explained and remain an outstanding challenge for theory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050558
2020-03-10
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050558.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050558&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bednorz JG, Müller KA 1986. Z. Phys. B 64:189–93
    [Google Scholar]
  2. 2. 
    Keimer B, Kivelson SA, Norman MR, Uchida S, Zaanen J 2016. Nature 518:179–86
    [Google Scholar]
  3. 3. 
    Armitage NP, Fournier P, Greene RL 2010. Rev. Mod. Phys. 82:2421–87
    [Google Scholar]
  4. 4. 
    Scalapino DJ 2012. Rev. Mod. Phys. 84:1383–417
    [Google Scholar]
  5. 5. 
    Lee PA, Nagaosa N, Wen X-G 2006. Rev. Mod. Phys. 78:17–85
    [Google Scholar]
  6. 6. 
    Timusk T, Statt B 1999. Rep. Prog. Phys. 62:61
    [Google Scholar]
  7. 7. 
    Norman MR, Pines D, Kallin C 2005. Adv. Phys. 54:715–33
    [Google Scholar]
  8. 8. 
    Varma CM, Littlewood PB, Schmitt-Rink S, Abrahams E, Ruckenstein AE 1989. Phys. Rev. Lett. 63:1996–99
    [Google Scholar]
  9. 9. 
    Sachdev S 1999. Quantum Phase Transitions New York: Cambridge Univ. Press
    [Google Scholar]
  10. 10. 
    Coleman P, Schofield AJ 2005. Nature 433:226–29
    [Google Scholar]
  11. 11. 
    Sachdev S, Keimer B 2011. Phys. Today 64:29–35
    [Google Scholar]
  12. 12. 
    Berg E, Hartnoll SA, Mousatov CH 2018. arXiv:1810.12945
  13. 13. 
    Rosch A 1999. Phys. Rev. Lett. 82:4280–83
    [Google Scholar]
  14. 14. 
    Hartnoll SA 2015. Nat. Phys. 11:54–61
    [Google Scholar]
  15. 15. 
    Zaanen J 2004. Nature 430:512–13
    [Google Scholar]
  16. 16. 
    Zaanen J 2019. SciPost Phys. 6:061
    [Google Scholar]
  17. 17. 
    da Silva Neto EH, Comin R, He F, Sutarto R, Jiang Y et al. 2015. Science 347:282–85
    [Google Scholar]
  18. 18. 
    da Silva-Neto EH, Yu B, Minola M, Sutarto R, Schierle E et al. 2016. Sci. Adv. 2:e1600782
    [Google Scholar]
  19. 19. 
    Proust C, Taillefer L 2019. Annu. Rev. Condens. Matter Phys. 10:409–29
    [Google Scholar]
  20. 20. 
    Sarkar T, Mandal PR, Poniatowski NR, Greene RL 2019. arXiv:1902:11235
  21. 21. 
    Jin K, Butch NP, Kirshenbaum K, Paglione J, Greene RL 2011. Nature 476:73–75
    [Google Scholar]
  22. 22. 
    Butch NP, Jin K, Kirshenbaum K, Greene RL, Paglione J 2012. PNAS 109:8440–44
    [Google Scholar]
  23. 23. 
    Sarkar T, Mandal P, Poniatowski NR, Greene RL 2019. Sci. Adv. 5:eaav6753
    [Google Scholar]
  24. 24. 
    Mandal PR, Sarkar T, Greene RL 2019. PNAS 116:5991–94
    [Google Scholar]
  25. 25. 
    Dagan Y, Qazilbash MM, Hill CP, Kulkarni VN, Greene RL 2004. Phys. Rev. Lett. 92:167001
    [Google Scholar]
  26. 26. 
    Armitage NP, Ronning F, Lu DH, Kim C, Damascelli A et al. 2002. Phys. Rev. Lett. 88:257001
    [Google Scholar]
  27. 27. 
    Matsui H, Takahashi T, Sato T, Terashima K, Ding H et al. 2007. Phys. Rev. B 75:224514
    [Google Scholar]
  28. 28. 
    Helm T, Kartsovnik MV, Bartkowiak M, Bittner N, Lambacher M et al. 2009. Phys. Rev. Lett. 103:157002
    [Google Scholar]
  29. 29. 
    Zimmers A, Tomczak JM, Lobo RPMS, Bontemps N, Hill CP et al. 2003. Europhys. Lett. 70:225–31
    [Google Scholar]
  30. 30. 
    Motoyama EM, Yu G, Vishik IM, Vajk OP, Mang PK, Greven M 2007. Nature 445:186–89
    [Google Scholar]
  31. 31. 
    Saadaoui Salman Z, Luetkens H, Prokscha T, Suter A et al. 2015. Nat. Comm. 6:6041
    [Google Scholar]
  32. 32. 
    Hepting M, Chaix L, Huang EW, Fumagalli R, Peng YY et al. 2018. Nature 563:374–78
    [Google Scholar]
  33. 33. 
    Takagi H, Takagi H, Uchida S 1989. Nature 337:345–47
    [Google Scholar]
  34. 34. 
    Lambacher M, Helm T, Kartsovnik M, Erb A 2010. Eur. Phys. J. Spec. Top. 188:61–72
    [Google Scholar]
  35. 35. 
    Wei H, Adamo C, Nowadnick EA, Lochocki EB, Chatterjee S et al. 2016. Phys. Rev. Lett. 117:147002
    [Google Scholar]
  36. 36. 
    Kartsovnik MV, Helm T, Putzke C, Wolff-Fabris F, Sheikin I et al. 2011. New J. Phys. 13:015001
    [Google Scholar]
  37. 37. 
    Li Y, Behnia K, Greene RL 2007. Phys. Rev. B 75:020506R
    [Google Scholar]
  38. 38. 
    Sarkar T, Mandal PR, Higgins JS, Zhao Y, Yu H et al. 2017. Phys. Rev. B 96:155449
    [Google Scholar]
  39. 39. 
    Badoux S, Tabis W, Laliberté F, Grissonnanche G, Vignolle B et al. 2016. Nature 531:201–14
    [Google Scholar]
  40. 40. 
    He JF, Rotundu CR, Scheurer MS, He Y, Hashimoto M et al. 2018. PNAS 116:3449–53
    [Google Scholar]
  41. 41. 
    Senechal D, Perez D, Plouffe D 2002. Phys. Rev. B 66:075129
    [Google Scholar]
  42. 42. 
    Sachdev S 2018. Rep. Prog. Phys. 82:014001
    [Google Scholar]
  43. 43. 
    Tsukada A, Krockenberger Y, Noda M, Yamamoto H, Manske D et al. 2005. Solid State Comm. 133:427–31
    [Google Scholar]
  44. 44. 
    Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T, Naito M 2009. Physica C 469:924–27
    [Google Scholar]
  45. 45. 
    Krockenberger Y, Irie H, Matsumoto O, Yamagami K, Mitsuhashi M et al. 2013. Sci. Rep. 3:2235
    [Google Scholar]
  46. 46. 
    Yu Y, Liang B, Li P, Fujino S, Murakami T 2007.Phys. Rev. B 75020503(R)
  47. 47. 
    Horio M, Krockenberger Y, Koshiishi K, Nakata S, Hagiwara K 2018.Phys. Rev. B 98020505(R)
  48. 48. 
    Breznay NP, McDonald RD, Krockenberger Y, Modic KA, Zhu Z 2015. arXiv:1510.04268
  49. 49. 
    Sarkar T, Sankar DS, Greene RL 2018. Phys. Rev. B 98:224503
    [Google Scholar]
  50. 50. 
    Dagan Y, Greene RL 2016. arXiv:1612.01703
  51. 51. 
    Bach P, Saha SR, Kirshenbaum K, Paglione J, Greene RL 2011. Phys. Rev. B 83:212506
    [Google Scholar]
  52. 52. 
    Martin, Fiory AT, Fleming RM, Schneemeyer LF, Waszczak JV 1990.Phys. Rev. B 41846(R)
  53. 53. 
    Hussey NE, Takenaka K, Takagi H 2004. Philos. Mag. 84:2847–64
    [Google Scholar]
  54. 54. 
    Mandal PR, Sarkar T, Higgins JS, Greene RL 2018. Phys. Rev. B 97:014522
    [Google Scholar]
  55. 55. 
    Fournier P, Mohanty P, Maiser E, Darzens S, Venkatesan T et al. 1998. Phys. Rev. Lett. 81:4720–23
    [Google Scholar]
  56. 56. 
    Dagan Y, Barr MC, Fisher WM, Beck R, Dhakal T et al. 2005. Phys. Rev. Lett. 94:057005
    [Google Scholar]
  57. 57. 
    Chen W, Andersen BM, Hirschfeld PJ 2009. Phys. Rev. B 80:134518
    [Google Scholar]
  58. 58. 
    Doiron-Leyraud N, Cyr-Choinière O, Badoux S, Ataei A, Collignon C et al. 2017. Nat. Comm. 8:2044
    [Google Scholar]
  59. 59. 
    Li Y, Tabis W, Yu G, Barišić N, Greven M 2016. Phys. Rev. Lett. 117:197001
    [Google Scholar]
  60. 60. 
    Jin K, Zhang XH, Bach P, Greene RL 2009. Phys. Rev. B 80:012501
    [Google Scholar]
  61. 61. 
    Higgins JS, Chan MK, Sarkar T, McDonald RD, Greene RL, Butch NP 2018. New J. Phys. 20:043019
    [Google Scholar]
  62. 62. 
    Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y et al. 2003. Nature 424:524–27
    [Google Scholar]
  63. 63. 
    Hayes I, McDonald RD, Breznay NP, Helm T, Moll P et al. 2016. Nat. Phys. 12:916–19
    [Google Scholar]
  64. 64. 
    Paul I, Kotliar G 2001. Phys. Rev. B 64:184414
    [Google Scholar]
  65. 65. 
    Moriya T, Ueda K 2003. Rep. Prog. Phys. 66:1299–341
    [Google Scholar]
  66. 66. 
    Bozovic I, He X, Wu J, Bollinger AT 2016. Nature 536:309–11
    [Google Scholar]
  67. 67. 
    Kopp A, Ghosal A, Chakravarty S 2007. PNAS 104:6123–27
    [Google Scholar]
  68. 68. 
    Sonier JE, Kaiser CV, Pacradouni V, Sabok-Sayr SA, Cochrane C et al. 2010. PNAS 107:17131–34
    [Google Scholar]
  69. 69. 
    Onose, Taguchi Y, Ishizaka K, Tokura Y 2004. Phys. Rev. B 69:024504
    [Google Scholar]
  70. 70. 
    Dagan Y, Greene RL 2007. Phys. Rev. B 76:024504
    [Google Scholar]
  71. 71. 
    Schachinger E Homes CC, Lobo RPSM, Carbotte JP 2008. Phys. Rev. B 78:134522
    [Google Scholar]
  72. 72. 
    Hwang EH, Das Sarma S 2019. Phys. Rev. B 99:085105
    [Google Scholar]
  73. 73. 
    Zhang J, Kountz ED, Levenson-Falk EM, Song D, Greene RL, Kapitulnik A 2018. arXiv:1808.07564
  74. 74. 
    Gunnarsson O, Calandra M, Han JE 2003. Rev. Mod. Phys. 75:1085–99
    [Google Scholar]
  75. 75. 
    Legros A, Benhabib S, Tabis W, Laliberté F, Dion M et al. 2019. Nat. Phys. 15:142–47
    [Google Scholar]
  76. 76. 
    Giraldo-Gallo R, Galvis JA Stegen Z, Modic KA, Balakirev FF et al. 2018. Science 361:479–81
    [Google Scholar]
  77. 77. 
    Cooper RA, Wang Y, Vignolle B, Lipscombe OJ, Hayden SM et al. 2009. Science 323:603–7
    [Google Scholar]
  78. 78. 
    Hussey NE, Gordon-Moys H, Kokalj J, McKenzie RH 2013. J. Phys. Conf. Ser. 449:012004
    [Google Scholar]
  79. 79. 
    Rourke PMC, Mouzopoulou I, Xu X, Panagopoulos C, Wang Y et al. 2011. Nat. Phys. 7:455–58
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031119-050558
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050558
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error