- Home
- A-Z Publications
- Annual Review of Condensed Matter Physics
- Previous Issues
- Volume 11, 2020
Annual Review of Condensed Matter Physics - Volume 11, 2020
Volume 11, 2020
-
-
Matchmaking Between Condensed Matter and Quantum Foundations, and Other Stories: My Six Decades in Physics
Vol. 11 (2020), pp. 1–16More LessI present some rather selective reminiscences of my long career in physics, from my doctoral work to the present. I do not spend time on topics such as the nuclear magnetic resonance behavior of 3He, as I have reviewed the history extensively elsewhere, but rather concentrate, first, on my long-running project to make condensed matter physics relevant to questions in the foundations of quantum mechanics, and second, on various rather “quirky” problems such as an attempt to amplify the effects of the parity violation due to the weak interaction to a macroscopic level, and an unconventional proposal for the mechanism of the first-order phase transition between the A and B phases of superfluid liquid 3He.
-
-
-
Competition of Pairing and Nematicity in the Two-Dimensional Electron Gas
Vol. 11 (2020), pp. 17–35More LessDue to its extremely rich phase diagram, the two-dimensional electron gas exposed to perpendicular magnetic fields has been the subject of intense and sustained study. One particularly interesting problem in this system is that of the half-filled Landau level, where the Fermi sea of composite fermions, a fractional quantum Hall state arising from a pairing instability of the composite fermions, and the quantum Hall nematic were observed in the half-filled N = 0, N = 1, and N ≥ 2 Landau levels, respectively. Thus, different ground states developed in different half-filled Landau levels. This situation has recently changed, when evidence for both the paired fractional quantum Hall state and the quantum Hall nematic was reported in the half-filled N = 1 Landau level. Furthermore, a direct quantum phase transition between these two ordered states was found. These results highlight an intimate connection between pairing and nematicity, which is a topic of current interest in several strongly correlated systems, in a well-understood and low-disorder environment.
-
-
-
Quantum Turbulence in Quantum Gases
Vol. 11 (2020), pp. 37–56More LessTurbulence is characterized by a large number of degrees of freedom, distributed over several length scales, that result in a disordered state of a fluid. The field of quantum turbulence deals with the manifestation of turbulence in quantum fluids, such as liquid helium and ultracold gases. We review, from both experimental and theoretical points of view, advances in quantum turbulence focusing on atomic Bose–Einstein condensates. We also explore the similarities and differences between quantum and classical turbulence. Last, we present challenges and possible directions for the field. We summarize questions that are being asked in recent works, which need to be answered in order to understand fundamental properties of quantum turbulence, and we provide some possible ways of investigating them.
-
-
-
Superconducting Hydrides Under Pressure
Vol. 11 (2020), pp. 57–76More LessThe measurement of superconductivity at above 200 K in compressed samples of hydrogen sulfide and in lanthanum hydride at 250 K is reinvigorating the search for conventional high temperature superconductors. At the same time, it exposes a fascinating interplay between theory, computation, and experiment. Conventional superconductivity is well understood, and theoretical tools are available for accurate predictions of the superconducting critical temperature. These predictions depend on knowing the microscopic structure of the material under consideration, which can now be provided by computational first-principles structure predictions. The experiments at the megabar pressures required are extremely challenging, but, for some groups at least, permit the experimental exploration of materials space. We discuss the prospects for the search for new superconductors, ideally at lower pressures.
-
-
-
Physical Models of Collective Cell Migration
Vol. 11 (2020), pp. 77–101More LessCollective cell migration is a key driver of embryonic development, wound healing, and some types of cancer invasion. Here, we provide a physical perspective of the mechanisms underlying collective cell migration. We begin with a catalog of the cell–cell and cell–substrate interactions that govern cell migration, which we classify into positional and orientational interactions. We then review the physical models that have been developed to explain how these interactions give rise to collective cellular movement. These models span the subcellular to the supracellular scales, and they include lattice models, phase-field models, active network models, particle models, and continuum models. For each type of model, we discuss its formulation, its limitations, and the main emergent phenomena that it has successfully explained. These phenomena include flocking and fluid–solid transitions, as well as wetting, fingering, and mechanical waves in spreading epithelial monolayers. We close by outlining remaining challenges and future directions in the physics of collective cell migration.
-
-
-
Higgs Mode in Superconductors
Ryo Shimano, and Naoto TsujiVol. 11 (2020), pp. 103–124More LessWhen the continuous symmetry of a physical system is spontaneously broken, two types of collective modes typically emerge: the amplitude and the phase modes of the order-parameter fluctuation. For superconductors, the amplitude mode is referred to most recently as the Higgs mode as it is a condensed-matter analog of a Higgs boson in particle physics. Higgs mode is a scalar excitation of the order parameter, distinct from charge or spin fluctuations, and thus does not couple to electromagnetic fields linearly. This is why the Higgs mode in superconductors has evaded experimental observations for over a half century after the initial theoretical prediction, except for a charge-density-wave coexisting system. With the advance of nonlinear and time-resolved terahertz spectroscopy techniques, however, it has become possible to study the Higgs mode through the nonlinear light–Higgs coupling. In this review, we overview recent progress in the study of the Higgs mode in superconductors.
-
-
-
Topographic Mechanics and Applications of Liquid Crystalline Solids
Vol. 11 (2020), pp. 125–145More LessLiquid crystal elastomers and glasses suffer huge length changes on heating, illumination, exposure to humidity, etc. A challenge is to program these changes to give a complex mechanical response for micromachines and soft robotics. Also desirable can be strong response, where bend is avoided in favor of stretch and compression, even in the slender shells that are our subject.
A new mechanics paradigm arises from such materials—spatially programmed anisotropy allows a spatially varying metric to develop upon stimulation, with evolving Gaussian curvature, topography changes, and superstrong actuation. We call this metric mechanics or topographical mechanics. Thus programmed, liquid crystalline solids meet the above aims.
A frontier is the complete programming and control of topography, driving both Gaussian and mean curvature evolution. That, and smart shells, which sense and self-regulate, and exotic new realizations of anisotropic responsive structures, are our concluding themes.
-
-
-
Nonequilibrium Aspects of Integrable Models
Vol. 11 (2020), pp. 147–168More LessDriven by breakthroughs in experimental and theoretical techniques, the study of nonequilibrium quantum physics is a rapidly expanding field with many exciting new developments. Among the manifold ways the topic can be investigated, one-dimensional systems provide a particularly fine platform. The trifecta of strongly correlated physics, powerful theoretical techniques, and experimental viability have resulted in a flurry of research activity over the past decade or so. In this review, we explore the nonequilibrium aspects of one-dimensional systems that are integrable. Through a number of illustrative examples, we discuss nonequilibrium phenomena that arise in such models, the role played by integrability, and the consequences these have for more generic systems.
-
-
-
Counting Rules of Nambu–Goldstone Modes
Vol. 11 (2020), pp. 169–187More LessWhen global continuous symmetries are spontaneously broken, there appear gapless collective excitations called Nambu–Goldstone modes (NGMs) that govern the low-energy property of the system. The application of this famous theorem ranges from high-energy particle physics to condensed matter and atomic physics. When a symmetry breaking occurs in systems that lack the Lorentz invariance to start with, as is usually the case in condensed matter systems, the number of resulting NGMs can be lower than that of broken symmetry generators, and the dispersion of NGMs is not necessarily linear. In this article, we review recently established formulae for NGMs associated with broken internal symmetries that work equally for relativistic and nonrelativistic systems. We also discuss complexities of NGMs originating from space-time symmetry breaking. Along the way we cover many illuminating examples from various context. We also present a complementary point of view from the Lieb–Schultz–Mattis theorem.
-
-
-
Dry Aligning Dilute Active Matter
Vol. 11 (2020), pp. 189–212More LessActive matter physics is about systems in which energy is dissipated at some local level to produce work. This is a generic situation, particularly in the living world but not only. What is at stake is the understanding of the fascinating, sometimes counterintuitive, emerging phenomena observed, from collective motion in animal groups to in vitro dynamical self-organization of motor proteins and biofilaments.
Dry aligning dilute active matter (DADAM) is a corner of the multidimensional, fast-growing domain of active matter that has both historical and theoretical importance for the entire field. This restrictive setting only involves self-propulsion/activity, alignment, and noise, yet unexpected collective properties can emerge from it.
This review provides a personal but synthetic and coherent overview of DADAM, focusing on the collective-level phenomenology of simple active particle models representing basic classes of systems and on the solutions of the continuous hydrodynamic theories that can be derived from them. The obvious fact that orientational order is advected by the aligning active particles at play is shown to be at the root of the most striking properties of DADAM systems: (a) direct transitions to orientational order are not observed; (b) instead generic phase separation occurs with a coexistence phase involving inhomogeneous nonlinear structures; (c) orientational order, which can be long range even in two dimensions, is accompanied by long-range correlations and anomalous fluctuations; (d) defects are not point-like, topologically bound objects.
-
-
-
The Strange Metal State of the Electron-Doped Cuprates
Vol. 11 (2020), pp. 213–229More LessAn understanding of the high-temperature copper oxide (cuprate) superconductors has eluded the physics community for over thirty years and represents one of the greatest unsolved problems in condensed matter physics. Particularly enigmatic is the normal state from which superconductivity emerges, so much so that this phase has been dubbed a “strange metal.” In this article, we review recent research into this strange metallic state as realized in the electron-doped cuprates with a focus on their transport properties. The electron-doped compounds differ in several ways from their more thoroughly studied hole-doped counterparts, and understanding these asymmetries of the phase diagram may prove crucial to developing a final theory of the cuprates. Most of the experimental results discussed in this review have yet to be explained and remain an outstanding challenge for theory.
-
-
-
The Physics of Pair-Density Waves: Cuprate Superconductors and Beyond
Vol. 11 (2020), pp. 231–270More LessWe review the physics of pair-density wave (PDW) superconductors. We begin with a macroscopic description that emphasizes order induced by PDW states, such as charge-density wave, and discuss related vestigial states that emerge as a consequence of partial melting of the PDW order. We review and critically discuss the mounting experimental evidence for such PDW order in the cuprate superconductors, the status of the theoretical microscopic description of such order, and the current debate on whether the PDW is a mother order or another competing order in the cuprates. In addition, we give an overview of the weak coupling version of PDW order, Fulde–Ferrell–Larkin–Ovchinnikov states, in the context of cold atom systems, unconventional superconductors, and noncentrosymmetric and Weyl materials.
-
-
-
Smart Responsive Polymers: Fundamentals and Design Principles
Vol. 11 (2020), pp. 271–299More LessIn this review, we summarize recent theoretical and computational developments in the field of smart responsive materials, together with complementary experimental data. A material is referred to as smart responsive when a slight change in external stimulus can drastically alter its structure, function, or stability. Because of this smart responsiveness, these systems are used for the design of advanced functional materials. The most characteristic properties of smart polymers are discussed, especially polymer properties in solvent mixtures. We show how multiscale simulation approaches can shed light on the intriguing experimental observations. Special emphasis is given to two symmetric phenomena: co-non-solvency and co-solvency. The first phenomenon is associated with the collapse of polymers in two miscible good solvents, whereas the latter is associated with the swelling of polymers in poor solvent mixtures. Furthermore, we discuss when the standard Flory–Huggins-type mean-field polymer theory can (or cannot) be applied to understand these complex solution properties. We also sketch a few examples to highlight possible future directions, that is, how smart polymer properties can be used for the design principles of advanced functional materials.
-
-
-
Fluctuations and the Higgs Mechanism in Underdoped Cuprates
Vol. 11 (2020), pp. 301–323More LessThe physics of the pseudogap phase of high-temperature cuprate superconductors has been an enduring mystery over the past 30 years. The ubiquitous presence of the pseudogap phase in underdoped cuprates suggests that understanding it is key to unraveling the origin of high-temperature superconductivity. We review various theoretical approaches to this problem, emphasizing the concept of emergent symmetries in the underdoped region of those compounds. We differentiate these theories by considering a few fundamental questions related to the rich phenomenology of these materials. Lastly, we discuss a recent idea regarding two kinds of entangled preformed pairs that open a gap at the pseudogap onset temperature, T*, through a specific Higgs mechanism. We review the experimental consequences of this line of thought.
-
-
-
Machine-Learning Quantum States in the NISQ Era
Vol. 11 (2020), pp. 325–344More LessWe review the development of generative modeling techniques in machine learning for the purpose of reconstructing real, noisy, many-qubit quantum states. Motivated by its interpretability and utility, we discuss in detail the theory of the restricted Boltzmann machine. We demonstrate its practical use for state reconstruction, starting from a classical thermal distribution of Ising spins, then moving systematically through increasingly complex pure and mixed quantum states. We review recent techniques in reconstruction of a cold atom wavefunction, intended for use on experimental noisy intermediate-scale quantum (NISQ) devices. Finally, we discuss the outlook for future experimental state reconstruction using machine learning in the NISQ era and beyond.
-
-
-
Topology and Broken Symmetry in Floquet Systems
Vol. 11 (2020), pp. 345–368More LessFloquet systems are governed by periodic, time-dependent Hamiltonians. Prima facie they should absorb energy from the external drives involved in modulating their couplings and heat up to infinite temperature. However, this unhappy state of affairs can be avoided in many ways. Instead, as has become clear from much recent work, Floquet systems can exhibit a variety of nontrivial behavior—some of which is impossible in undriven systems. In this review, we describe the main ideas and themes of this work: novel Floquet drives that exhibit nontrivial topology in single-particle systems, the existence and classification of exotic Floquet drives in interacting systems, and the attendant notion of many-body Floquet phases and arguments for their stability to heating.
-
-
-
Superconducting Qubits: Current State of Play
Vol. 11 (2020), pp. 369–395More LessSuperconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting qubit modality has been used to demonstrate prototype algorithms in the noisy intermediate-scale quantum (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high-fidelity, two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building larger-scale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. Although continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in recent years has been impressive, and here we hope to convey the excitement stemming from this progress.
-
-
-
Majorana Zero Modes in Networks of Cooper-Pair Boxes: Topologically Ordered States and Topological Quantum Computation
Vol. 11 (2020), pp. 397–420More LessRecent experimental progress introduced devices that can combine topological superconductivity with Coulomb-blockade effects. Experiments with these devices have already provided additional evidence for Majorana zero modes in proximity-coupled semiconductor wires. They also stimulated numerous ideas for how to exploit interactions between Majorana zero modes generated by Coulomb charging effects in networks of Majorana wires. Coulomb effects promise to become a powerful tool in the quest for a topological quantum computer as well as for driving topological superconductors into topologically ordered insulating states. Here, we present a focused review of these recent developments, including discussions of recent experiments, designs of topological qubits, Majorana-based implementations of universal quantum computation, and topological quantum error correction. Motivated by the analogy between a qubit and a spin-1/2 degree of freedom, we also review how coupling between Cooper-pair boxes leads to emergent topologically ordered insulating phases.
-
-
-
The Actin Cytoskeleton as an Active Adaptive Material
Vol. 11 (2020), pp. 421–439More LessActin is the main protein used by biological cells to adapt their structure and mechanics to their needs. Cellular adaptation is made possible by molecular processes that strongly depend on mechanics. The actin cytoskeleton is also an active material that continuously consumes energy. This allows for dynamical processes that are possible only out of equilibrium and opens up the possibility for multiple layers of control that have evolved around this single protein. Here we discuss the actin cytoskeleton from the viewpoint of physics as an active adaptive material that can build structures superior to man-made soft matter systems. Not only can actin be used to build different network architectures on demand and in an adaptive manner, but it also exhibits the dynamical properties of feedback systems, like excitability, bistability, or oscillations. Therefore, it is a prime example of how biology couples physical structure and information flow and a role model for biology-inspired metamaterials.
-
-
-
Self-Propelled Rods: Insights and Perspectives for Active Matter
Vol. 11 (2020), pp. 441–466More LessA wide range of experimental systems including gliding, swarming and swimming bacteria, in vitro motility assays, and shaken granular media are commonly described as self-propelled rods. Large ensembles of those entities display a large variety of self-organized, collective phenomena, including the formation of moving polar clusters, polar and nematic dynamic bands, mobility-induced phase separation, topological defects, and mesoscale turbulence, among others. Here, we give a brief survey of experimental observations and review the theoretical description of self-propelled rods. Our focus is on the emergent pattern formation of ensembles of dry self-propelled rods governed by short-ranged, contact mediated interactions and their wet counterparts that are also subject to long-ranged hydrodynamic flows. Altogether, self-propelled rods provide an overarching theme covering many aspects of active matter containing well-explored limiting cases. Their collective behavior not only bridges the well-studied regimes of polar self-propelled particles and active nematics, and includes active phase separation, but also reveals a rich variety of new patterns.
-