1932

Abstract

In this review, we summarize recent theoretical and computational developments in the field of smart responsive materials, together with complementary experimental data. A material is referred to as smart responsive when a slight change in external stimulus can drastically alter its structure, function, or stability. Because of this smart responsiveness, these systems are used for the design of advanced functional materials. The most characteristic properties of smart polymers are discussed, especially polymer properties in solvent mixtures. We show how multiscale simulation approaches can shed light on the intriguing experimental observations. Special emphasis is given to two symmetric phenomena: co-non-solvency and co-solvency. The first phenomenon is associated with the collapse of polymers in two miscible good solvents, whereas the latter is associated with the swelling of polymers in poor solvent mixtures. Furthermore, we discuss when the standard Flory–Huggins-type mean-field polymer theory can (or cannot) be applied to understand these complex solution properties. We also sketch a few examples to highlight possible future directions, that is, how smart polymer properties can be used for the design principles of advanced functional materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050618
2020-03-10
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050618.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050618&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Cohen-Stuart MA, Huck WTS, Genzer J, Müller M, Ober C et al. 2010. Nat. Mater. 9:101–13
    [Google Scholar]
  2. 2. 
    de Beer S, Kutnyanszky E, Schön PM, Vancso GJ, Müser MH 2014. Nat. Commun. 5:3781
    [Google Scholar]
  3. 3. 
    Mukherji D, Marques CM, Kremer K 2014. Nat. Commun. 5:4882
    [Google Scholar]
  4. 4. 
    Halperin A, Kröger M, Winnik FM 2015.. Angew. Chem. Int. Ed. 54:15342–67
    [Google Scholar]
  5. 5. 
    Zhang Q, Hoogenboom R 2015. Prog. Polym. Sci. 48:122–42
    [Google Scholar]
  6. 6. 
    Mukherji D, Marques CM, Stühn T, Kremer K 2017. Nat. Commun. 8:1374
    [Google Scholar]
  7. 7. 
    Wu C, Wang X 1998. Phys. Rev. Lett. 80:4092–94
    [Google Scholar]
  8. 8. 
    Wang X, Qui X, Wu C 1998. Macromolecules 31:2972–76
    [Google Scholar]
  9. 9. 
    Meyer DE, Chilkoti A 1999. Nat. Biotechnol. 17:1112–15
    [Google Scholar]
  10. 10. 
    Li C, Buurma NJ, Haq I, Turner C, Armes SP et al. 2005. Langmuir 21:11026–33
    [Google Scholar]
  11. 11. 
    Lutz JF, Akbemir Ö, Hoth A 2006. J. Am. Chem. Soc. 128:13046–47
    [Google Scholar]
  12. 12. 
    Cui S, Pang X, Zhang S, Yu Y, Ma H, Zhang X 2012. Langmuir 28:5151–57
    [Google Scholar]
  13. 13. 
    Samanta S, Bogdanowicz DR, Lu HH, Koberstein JT 2016. Macromolecules 49:1858–64
    [Google Scholar]
  14. 14. 
    Zhang M, Jia Y-G, Liu L, Li J, Zhu XX 2018. ACS Omega 3:10172–79
    [Google Scholar]
  15. 15. 
    Zhang Y, Furyk S, Bergbreiter DE, Cremer PS 2005. J. Am. Chem. Soc. 127:14505–10
    [Google Scholar]
  16. 16. 
    Sakota K, Tabata D, Sekiya H 2015. J. Phys. Chem. B 119:10334–40
    [Google Scholar]
  17. 17. 
    Okur HI, Hladilkova J, Rembert KB, Cho Y, Heyda J et al. 2017. J. Phys. Chem. B 121:1997–2014
    [Google Scholar]
  18. 18. 
    Schild HG, Muthukumar M, Tirrell DA 1991. Macromolecules 24:948–52
    [Google Scholar]
  19. 19. 
    Winnik FM, Ringsdorf H, Venzmer J 1990. Macromolecules 23:2415–16
    [Google Scholar]
  20. 20. 
    Zhang G, Wu C 2001. Phys. Rev. Lett. 86:822–25
    [Google Scholar]
  21. 21. 
    Hiroki A, Maekawa Y, Yoshida M, Kubota K, Katakai R 2001. Polymer 42:1863–67
    [Google Scholar]
  22. 22. 
    Kiritoshi Y, Ishihara K 2002. J. Biomater. Sci. Polym. Ed. 13:213–24
    [Google Scholar]
  23. 23. 
    Kiritoshi Y, Ishihara K 2003. Sci. Technol. Adv. Mater. 4:93–98
    [Google Scholar]
  24. 24. 
    Tanaka F, Koga T, Winnik FM 2008. Phys. Rev. Lett. 101:028302
    [Google Scholar]
  25. 25. 
    Sagle LB, Zhang Y, Litosh VA, Chen X, Cho Y, Cremer PS 2010. J. Am. Chem. Soc. 131:9304–10
    [Google Scholar]
  26. 26. 
    Tanaka F, Koga T, Kojima H, Xue N, Winnik FM 2011. Macromolecules 44:2978–89
    [Google Scholar]
  27. 27. 
    Kojima H, Tanaka F, Scherzinger C, Richtering W 2012. J. Polym. Sci. B 51:1100–11
    [Google Scholar]
  28. 28. 
    Walter J, Sehrt J, Vrabec J, Hasse H 2012. J. Phys. Chem. B 116:5251–59
    [Google Scholar]
  29. 29. 
    Heyda J, Muzdalo A, Dzubiella J 2013. Macromolecules 46:1231–38
    [Google Scholar]
  30. 30. 
    Mukherji D, Kremer K 2013. Macromolecules 46:9158–63
    [Google Scholar]
  31. 31. 
    Bischofberger I, Calzolari DCE, Trappe V 2014.Soft Matter 10:8288–95
  32. 32. 
    Dudowicz J, Freed KF, Douglas JF 2015. J. Chem. Phys. 143:131101
    [Google Scholar]
  33. 33. 
    Kyriakos K, Philipp M, Lin C-H, Dyakonova M, Vishnevetskaya N et al. 2016. Macromol. Rapid Commun. 37:420–25
    [Google Scholar]
  34. 34. 
    Micciulla S, Michalowsky J, Schroer MA, Holm C, von Klitzinga R, Smiatek J 2016. Phys. Chem. Chem. Phys. 18:5324–35
    [Google Scholar]
  35. 35. 
    Zhu P-W, Chen L 2019. Phys. Rev. E 99:022501
    [Google Scholar]
  36. 36. 
    Perez-Ramirez HA, Haro-Prez C, Vázquez-Contreras E, Klapp J, Bautista-Carbajald G, Odriozola G 2019. Phys. Chem. Chem. Phys. 21:5106–16
    [Google Scholar]
  37. 37. 
    Bédard MF, De Geest BG, Skirtach AG, Möhwald H, Sukhorukov GB 2010. Adv. Coll. Int. Sci. 158:1–22–14
    [Google Scholar]
  38. 38. 
    Ishii N, Obeid R, Qiu XP, Mamiya J, Ikeda T, Winnik FM 2010. Mol. Cryst. Liq. Cryst. 529:60–70
    [Google Scholar]
  39. 39. 
    Ishii N, Mamiya J, Ikedaa T, Winnik FM 2011. Chem. Comm. 47:1267–69
    [Google Scholar]
  40. 40. 
    Esser-Kahn AP, Odom SA, Sottos NR, White SR, Moore JS 2011. Macromolecules 44:5539–53
    [Google Scholar]
  41. 41. 
    Zhao Y 2012. Macromolecules 45:3647–57
    [Google Scholar]
  42. 42. 
    Kitayama Y, Yoshikawa K, Takeuchi T 2016. Langmuir 32:9245–53
    [Google Scholar]
  43. 43. 
    Löwe C, Weber C 2002. Adv. Mat. 14:1625–29
    [Google Scholar]
  44. 44. 
    Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR et al. 2009. Chem. Rev. 109:5755–98
    [Google Scholar]
  45. 45. 
    Bruns N, Pustelny K, Bergeron LM, Whitehead TA, Clark DS 2009. Angew. Chem. 48:5666–69
    [Google Scholar]
  46. 46. 
    Hernandez-Sosa G, Bornemann N, Ringle I, Agari M, Dörsam E et al. 2013. Adv. Funct. Mater. 23:3164–71
    [Google Scholar]
  47. 47. 
    Yablonovitch E 1987. Phys. Rev. Lett. 58:2059–62
    [Google Scholar]
  48. 48. 
    John S 1987. Phys. Rev. Lett. 58:2486–89
    [Google Scholar]
  49. 49. 
    Fudouzi H, Xia Y 2003. Langmuir 19:9653–60
    [Google Scholar]
  50. 50. 
    Yin SN, Wang CF, Liu SS, Chen S 2013. J. Mater. Chem. C 1:4685–92
    [Google Scholar]
  51. 51. 
    Montarnal D, Capelot M, Tournilhac F, Leibler L 2011. Science 334:965–68
    [Google Scholar]
  52. 52. 
    Brutman JP, Delgado PA, Hillmyer MA 2014. ACS Macro Lett. 3:607–10
    [Google Scholar]
  53. 53. 
    Röttger M, Domenech T, van der Weegen R, Breuillac A, Nicolaÿ R, Leibler L 2017. Science 356:62–65
    [Google Scholar]
  54. 54. 
    Kim G, Lee D, Shanker A, Shao L, Kwon MS et al. 2015. Nat. Mater. 14:295–300
    [Google Scholar]
  55. 55. 
    Xie X, Li D, Tsai T, Liu J, Braun PV, Cahill DG 2016. Macromolecules 49:972–78
    [Google Scholar]
  56. 56. 
    Adams ML, Lavasanifar A, Kwon GS 2003. J. Pharm. Sci. 92:1343–55
    [Google Scholar]
  57. 57. 
    Chang DP, Dolbow JE, Zauscher S 2007. Langmuir 23:250–57
    [Google Scholar]
  58. 58. 
    Lee H, Lee BP, Messersmith PB 2007. Nature 448:338–41
    [Google Scholar]
  59. 59. 
    Batrakova EV, Kabanov AV 2008. J. Control Release 130:98–106
    [Google Scholar]
  60. 60. 
    Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H 2010. Adv. Funct. Mater. 20:3235–43
    [Google Scholar]
  61. 61. 
    Vogel MJ, Steen PH 2010. PNAS 107:3377–81
    [Google Scholar]
  62. 62. 
    Meddahi-Pelle A, Legrand A, Marcellan A, Louedec L, Letourneur D, Leibler L 2014. Angew. Chem. Int. Ed. 53:6369–73
    [Google Scholar]
  63. 63. 
    de Gennes PG 1979. Scaling Concepts in Polymer Physics Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  64. 64. 
    Doi M, Edwards SF 1986. The Theory of Polymer Dynamics Oxford, UK: Oxford University Press
    [Google Scholar]
  65. 65. 
    Des Cloizeaux J, Jannink G 1990. Polymers in Solution: Their Modelling and Structure Oxford, UK: Clarendon
    [Google Scholar]
  66. 66. 
    Kratz K, Hellweg T, Eimer W 2000. Coll. Surf. A: Phys. Eng. Aspects 170:137–49
    [Google Scholar]
  67. 67. 
    Scherzinger C, Lindner P, Keerl M, Richtering W 2010. Macromolecules 43:6829–33
    [Google Scholar]
  68. 68. 
    Backes S, Krause P, Tabaka W, Witt MU, Mukherji D et al. 2017. ACS Macro Lett. 6:1042
    [Google Scholar]
  69. 69. 
    Landau LD, Lifshitz EM 2003. Statistical Physics Amsterdam: Elsevier Butterworth-Heinemann. 3rd ed.
    [Google Scholar]
  70. 70. 
    Jeppesen C, Kremer K 1996. Europhys. Lett. 34:563–68
    [Google Scholar]
  71. 71. 
    Kawasaki H, Nakamura T, Miyamoto K, Tokita M, Komai T 1995. J. Chem. Phys. 103:6241–47
    [Google Scholar]
  72. 72. 
    de Oliveira TE, Marques CM, Netz PA 2018. Phys. Chem. Chem. Phys. 20:10100–7
    [Google Scholar]
  73. 73. 
    Gernandt J, Frenning G, Richtering W, Hansson P 2011. Soft Matter 7:10327–38
    [Google Scholar]
  74. 74. 
    Ray B, Okamoto Y, Kamigaito M, Sawamoto M, Seno K et al. 2005. Polym. J. 37:234–37
    [Google Scholar]
  75. 75. 
    Hirano T, Okumura Y, Kitajima H, Seno M, Sato T 2006. J. Polym. Sc. A: Polym. Chem. 44:4450–60
    [Google Scholar]
  76. 76. 
    de Oliveira TE, Mukherji D, Kremer K, Netz PA 2017. J. Chem. Phys. 146:034904
    [Google Scholar]
  77. 77. 
    Hoffman AS, Stayton PS, Bulmus V, Chen G, Chen J et al. 2000. J. Biomed. Mater. Res. 52:577–86
    [Google Scholar]
  78. 78. 
    Shen Z, Terao K, Maki Y, Dobashi T, Ma G, Yamamoto T 2006. Colloid Polym. Sci. 284:1001–7
    [Google Scholar]
  79. 79. 
    Schulz B, Chudoba R, Heyda J, Dzubiella J 2015. J. Chem. Phys. 143:243119
    [Google Scholar]
  80. 80. 
    De Silva CC, Leophairatana P, Ohkuma T, Koberstein JT, Kremer K, Mukherji D 2017. J. Chem. Phys. 147:064904
    [Google Scholar]
  81. 81. 
    Tschöp W, Kremer K, Batoulis J, Bürger T, Hahn O 1998. Acta. Polym. 49:61–74
    [Google Scholar]
  82. 82. 
    Tschöp W, Kremer K, Batoulis J, Bürger T, Hahn O 1998. Acta. Polym. 49:75–79
    [Google Scholar]
  83. 83. 
    Reith D, Pütz M, Müller-Plathe F 2003. J. Comput. Chem. 24:1624–36
    [Google Scholar]
  84. 84. 
    de Oliveira TE, Netz PA, Kremer K, Junghans C, Mukherji D 2016. J. Chem. Phys. 144:174106
    [Google Scholar]
  85. 85. 
    Riegger A, Chen C, Zirafi O, Daiss N, Mukherji D et al. 2017. ACS Macro Lett. 6:241–46
    [Google Scholar]
  86. 86. 
    Abbott LJ, Stevens MJ 2015. J. Chem. Phys. 143:244901
    [Google Scholar]
  87. 87. 
    Shinoda W, DeVane R, Klein ML 2007. Mol. Simul. 33:27–36
    [Google Scholar]
  88. 88. 
    Marrink SJ, Tieleman DP 2013. Chem. Soc. Rev. 42:6801–22
    [Google Scholar]
  89. 89. 
    Mukherjee B, Delle Site L, Kremer K, Peter C 2012. J. Phys. Chem. B 116:8474–84
    [Google Scholar]
  90. 90. 
    Wolf BA, Willms MM 1978. Makromol. Chem. 179:2265–77
    [Google Scholar]
  91. 91. 
    Di J, Zuo T, Rogers S, Cheng H, Hammouda B, Han CC 2016. Macromolecules 49:5152–59
    [Google Scholar]
  92. 92. 
    Di J, Murugappan M, Cheng H, Han CC, Hammouda B 2017. Macromolecules 50:7291–98
    [Google Scholar]
  93. 93. 
    Perera A, Sokolic F, Almasy L, Koga Y 2006. J. Chem. Phys. 124:124515
    [Google Scholar]
  94. 94. 
    Mukherji D, van der Vegt NFA, Kremer K, Delle Site L 2012. J. Chem. Theor. Comp. 8:375–79
    [Google Scholar]
  95. 95. 
    Krüger P, Schnell SK, Bedeaux D, Kjelstrup S, Vlugt TJH, Simon JM 2012. J. Phys. Chem. Lett. 4:235–38
    [Google Scholar]
  96. 96. 
    Ben-Naim A 2006. Molecular Theory of Solutions Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  97. 97. 
    Cortes-Huerto R, Kremer K, Potestio R 2016. J. Chem. Phys. 145:141103
    [Google Scholar]
  98. 98. 
    Heidari M, Kremer K, Cortes-Huerto R, Potestio R 2018. J. Chem. Theor. Comp. 14:3409–14
    [Google Scholar]
  99. 99. 
    Panagiotis PC, Stefanos AD, Panagiotis-Nikolaos T, Theodorou DN 2019. J. Phys. Chem. B 123:247–57
    [Google Scholar]
  100. 100. 
    Frenkel D, Smit B 2002. Understanding Molecular Simulations New York: Academic. 2nd ed.
    [Google Scholar]
  101. 101. 
    Praprotnik M, Delle Site L, Kremer K 2005. J. Chem. Phys. 123:224106
    [Google Scholar]
  102. 102. 
    Mukherji D, Wagner M, Watson MD, Winzen S, de Oliveir TE et al. 2016. Soft Matter 12:7995–8003
    [Google Scholar]
  103. 103. 
    Mukherji D, Kremer K 2017. Polym. Sci. Ser. C 59:119–24
    [Google Scholar]
  104. 104. 
    Magda JJ, Fredrickson GH, Larson RG, Helfand E 1988. Macromolecules 21:726–32
    [Google Scholar]
  105. 105. 
    Winnik FM, Ottaviani MF, Bossmann SH, Garcia-Garibay M, Turro NJ 1992. Macromolecules 25:6007–17
    [Google Scholar]
  106. 106. 
    Wang J, Wang N, Liu B, Bai J, Gong P et al. 2017. Phys. Chem. Chem. Phys. 19:30097–106
    [Google Scholar]
  107. 107. 
    Mukherji D, Marques CM, Stuehn T, Kremer K 2015. J. Chem. Phys. 142:114903
    [Google Scholar]
  108. 108. 
    Okada Y, Tanaka F 2005. Macromolecules 38:4465–71
    [Google Scholar]
  109. 109. 
    Hill TL 1986. An Introduction to Statistical Thermodynamics New York: Dover Publ.
    [Google Scholar]
  110. 110. 
    Sommer JU 2017. Macromolecules 50:2219–28
    [Google Scholar]
  111. 111. 
    Sommer JU 2018. Macromolecules 51:3066–74
    [Google Scholar]
  112. 112. 
    Toshiki F, Shinyashiki N, Yagihara S, Kita R, Tanaka F 2018. Langmuir 34:3003–9
    [Google Scholar]
  113. 113. 
    Wu Y, Ng DYW, Kuan SL, Weil T 2014. Biomater. Sci. 3:214–30
    [Google Scholar]
  114. 114. 
    Weinberger A, Walter V, MacEwan SR, Schmatko T, Muller P et al. 2017. Sci. Rep. 7:43963
    [Google Scholar]
  115. 115. 
    Mills CE, Ding E, Olson BD 2019. Biomacromolecules 6:2167–73
    [Google Scholar]
  116. 116. 
    Masegosa RM, Prolongo MG, Hernandez-Feures I, Horta A 1984. Macromolecules 17:1181–87
    [Google Scholar]
  117. 117. 
    Hoogenboom R, Remzi BC, Guerrero-Sanchez C, Hoeppener S, Schubert US 2010. Aust. J. Chem. 63:1173–78
    [Google Scholar]
  118. 118. 
    Lee SM, Bae YC 2014. Polymer 55:4684–92
    [Google Scholar]
  119. 119. 
    Yu Y, Kieviet BD, Kutnyanszky E, Vancso GJ, de Beer S 2015. ACS Macro Lett. 4:75–79
    [Google Scholar]
  120. 120. 
    Wolf BA, Blaum GJ 1975. J. Polym. Sci. Polym. Phys. Ed. 13:1115–32
    [Google Scholar]
  121. 121. 
    Asadujjaman A, Ahmadi V, Yalcin M, ten Brummelhuis N, Bertin A 2017. Polym. Chem. 8:3140–53
    [Google Scholar]
  122. 122. 
    Galvez LO, de Beer S, van der Meer D, Pons A 2017. Phys. Rev. E 95:030602
    [Google Scholar]
  123. 123. 
    Lekkerkerker HNW, Tuinier R 1990. Colloids and the Depletion Interaction Oxford, UK: Clarendon
    [Google Scholar]
  124. 124. 
    Mao Y, Cates ME, Lekkerkerker HNW 1995. Phys. Rev. Lett. 75:4548–51
    [Google Scholar]
  125. 125. 
    Mao Y, Cates ME, Lekkerkerker HNW 1995. Physica A 222:10–24
    [Google Scholar]
  126. 126. 
    Crocker JC, Matteo JA, Dinsmore AD, Yodh AG 1999. Phys. Rev. Lett. 82:4352–55
    [Google Scholar]
  127. 127. 
    Phillips R et al. 2012. Physical Biology of the Cell New York: Garland Sci. 2nd Ed.
    [Google Scholar]
  128. 128. 
    Mukherji D, Marques CM, Kremer K 2018. J. Phys. Condens. Mat. 30:024002
    [Google Scholar]
  129. 129. 
    Borisov OV, Halperin A 1995. Langmuir 11:2911–19
    [Google Scholar]
  130. 130. 
    Lashewki A 1995. Adv. Polym. Sci. 124:1–86
    [Google Scholar]
  131. 131. 
    Lee NK, Abrams CF 2004. J. Chem. Phys. 121:7484–93
    [Google Scholar]
  132. 132. 
    Arotcarena M, Heise B, Ishaya S, Laschewsky A 2002. J. Am. Chem. Soc. 124:3787–93
    [Google Scholar]
  133. 133. 
    Chengming L, Buurma NJ, Haq I, Turner C, Armes SP et al. 2005. Langmuir 21:11026–33
    [Google Scholar]
  134. 134. 
    Vishnevetskaya NS, Hildebrand V, Niebuur BJ, Grillo I, Filippov SK et al. 2017. Macromolecules 50:3985–99
    [Google Scholar]
  135. 135. 
    Sezonenko T, Qiu XP, Winnik FM, Sato T 2019. Macromolecules 52:935–44
    [Google Scholar]
  136. 136. 
    Vishnevetskaya NS, Hildebrand V, Nizardo NM, Ko CH, Di Z et al. 2019. Langmuir 35:6441–52
    [Google Scholar]
  137. 137. 
    Hietala S, Nuopponen M, Kalliomaki K, Tenhu H 2008. Macromolecules 41:2627–31
    [Google Scholar]
  138. 138. 
    Mukherji D, Watson MD, Morsbach S, Schmutz M, Wagner M et al. 2019. Macromolecules 52:3471–78
    [Google Scholar]
  139. 139. 
    Kelley EG, Smart TP, Jackson AJ, Sullivana MO, Epps TH III 2011. Soft Matter 7:7094–102
    [Google Scholar]
  140. 140. 
    Choy CL 1977. Polymer 18:984–1004
    [Google Scholar]
  141. 141. 
    Shen S, Henry A, Tong J, Zheng R, Chen G 2010. Nat. Nanotech. 5:251–55
    [Google Scholar]
  142. 142. 
    Einstein A 1911. Ann. Phys. 35:679–94
    [Google Scholar]
  143. 143. 
    Cahill DG, Watson SK, Pohl RO 1992. Phys. Rev. B 46:6131–40
    [Google Scholar]
  144. 144. 
    Hu L, Desai T, Keblinski P 2011. J. App. Phys. 110:033517
    [Google Scholar]
  145. 145. 
    Pereira LFC, Donadio D 2013. Phys. Rev. B 87:125424
    [Google Scholar]
  146. 146. 
    Kodama T, Ohnishi M, Park W, Shiga T, Park J et al. 2017. Nat. Mat. 16:892–97
    [Google Scholar]
  147. 147. 
    Mahoney C, Hui CM, Majumdar S, Wang Z, Malen JA et al. 2016. Polymer 93:72–77
    [Google Scholar]
  148. 148. 
    Bruns D, de Oliveira TE, Rottler J, Mukherji D 2019. Macromolecules 52:5510–17
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031119-050618
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050618
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error