1932

Abstract

When global continuous symmetries are spontaneously broken, there appear gapless collective excitations called Nambu–Goldstone modes (NGMs) that govern the low-energy property of the system. The application of this famous theorem ranges from high-energy particle physics to condensed matter and atomic physics. When a symmetry breaking occurs in systems that lack the Lorentz invariance to start with, as is usually the case in condensed matter systems, the number of resulting NGMs can be lower than that of broken symmetry generators, and the dispersion of NGMs is not necessarily linear. In this article, we review recently established formulae for NGMs associated with broken internal symmetries that work equally for relativistic and nonrelativistic systems. We also discuss complexities of NGMs originating from space-time symmetry breaking. Along the way we cover many illuminating examples from various context. We also present a complementary point of view from the Lieb–Schultz–Mattis theorem.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050644
2020-03-10
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050644.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050644&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nambu Y 1960. Phys. Rev. Lett. 4:380–82
    [Google Scholar]
  2. 2. 
    Nambu Y, Jona-Lasinio G 1961. Phys. Rev. 122:345–58
    [Google Scholar]
  3. 3. 
    Goldstone J 1961. Nuovo Cim 19:154–64
    [Google Scholar]
  4. 4. 
    Goldstone J, Salam A, Weinberg S 1962. Phys. Rev. 127:965–70
    [Google Scholar]
  5. 5. 
    Nambu Y 2009. Rev. Mod. Phys. 81:1015–18
    [Google Scholar]
  6. 6. 
    Weinberg S 1995. The Quantum Theory of Fields: I. Foundations, II. Applications Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  7. 7. 
    Anderson PW 1984. Basic Notions of Condensed Matter Physics Boca Raton, FL: CRC
    [Google Scholar]
  8. 8. 
    Kittel C 2005. Introduction to Solid State Physics Hoboken, NJ: John Wiley & Sons. 8th ed.
    [Google Scholar]
  9. 9. 
    Ashcroft NW, Mermin ND 1976. Solid State Physics Boston: Cengage Learning
    [Google Scholar]
  10. 10. 
    Grosso G, Parravicini GP 2014. Solid State Physics San Diego: Elsevier. 2nd ed.
    [Google Scholar]
  11. 11. 
    Senthil T 2015. Annu. Rev. Condens. Matter Phys. 6:299–324
    [Google Scholar]
  12. 12. 
    Wen XG 2019. Science 363:6429eaal3099
    [Google Scholar]
  13. 13. 
    Miransky VA, Shovkovy IA 2002. Phys. Rev. Lett. 88:111601
    [Google Scholar]
  14. 14. 
    Schäfer T, Son D, Stephanov M, Toublan D, Verbaarschot J 2001. Phys. Lett. B 522:67–75
    [Google Scholar]
  15. 15. 
    Blaschke D, Ebert D, Klimenko KG, Volkov MK, Yudichev VL 2004. Phys. Rev. D 70:014006
    [Google Scholar]
  16. 16. 
    Ebert D, Klimenko KG, Yudichev VL 2005. Phys. Rev. C 72:015201
    [Google Scholar]
  17. 17. 
    He L, Jin M, Zhuang P 2006. Phys. Rev. A 74:033604
    [Google Scholar]
  18. 18. 
    Lange RV 1965. Phys. Rev. Lett. 14:3–6
    [Google Scholar]
  19. 19. 
    Lange RV 1966. Phys. Rev. 146:301–3
    [Google Scholar]
  20. 20. 
    Brauner T 2007. Phys. Rev. D 75:105014
    [Google Scholar]
  21. 21. 
    Brauner T 2010. Symmetry 2:609–57
    [Google Scholar]
  22. 22. 
    Watanabe H, Brauner T 2011. Phys. Rev. D 84:125013
    [Google Scholar]
  23. 23. 
    Watanabe H, Murayama H 2012. Phys. Rev. Lett. 108:251602
    [Google Scholar]
  24. 24. 
    Hidaka Y 2013. Phys. Rev. Lett. 110:091601
    [Google Scholar]
  25. 25. 
    Watanabe H, Murayama H 2014. Phys. Rev. X 4:031057
    [Google Scholar]
  26. 26. 
    Nielsen H, Chadha S 1976. Nuclear Phys. B 105:445–53
    [Google Scholar]
  27. 27. 
    Nambu Y 2004. J. Stat. Phys. 115:7–17
    [Google Scholar]
  28. 28. 
    Nozières P, Pines D 1990. Theory of Quantum Liquids: Superfluid Bose Liquids Boca Raton, FL: CRC
    [Google Scholar]
  29. 29. 
    Pethick CJ, Smith H 2008. Bose-Einstein Condensation in Dilute Gases Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  30. 30. 
    Ueda M 2010. Fundamentals and New Frontiers of Bose-Einstein Condensation Singapore: World Scientific
    [Google Scholar]
  31. 31. 
    Auerbach A 2012. Interacting Electrons and Quantum Magnetism New York: Springer-Verlag
    [Google Scholar]
  32. 32. 
    Leutwyler H 1994. Phys. Rev. D 49:3033–43
    [Google Scholar]
  33. 33. 
    Burgess C 2000. Phys. Rep. 330:193–261
    [Google Scholar]
  34. 34. 
    Fradkin E 2013. Field Theories of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press. 2nd ed.
    [Google Scholar]
  35. 35. 
    Ho TL 1998. Phys. Rev. Lett. 81:742–45
    [Google Scholar]
  36. 36. 
    Ohmi T, Machida K 1998. J. Phys. Soc. Jpn. 67:1822–25
    [Google Scholar]
  37. 37. 
    Takahashi DA, Nitta M 2015. Ann. Phys. 354:101–56
    [Google Scholar]
  38. 38. 
    Ueda M 2012. Annu. Rev. Condens. Matter Phys. 3:263–83
    [Google Scholar]
  39. 39. 
    Kawaguchi Y, Ueda M 2012. Phys. Rep. 520:253–381
    [Google Scholar]
  40. 40. 
    Stamper-Kurn DM, Ueda M 2013. Rev. Mod. Phys. 85:1191–244
    [Google Scholar]
  41. 41. 
    Cazalilla MA, Rey AM 2014. Rep. Prog. Phys. 77:124401
    [Google Scholar]
  42. 42. 
    Marti GE, MacRae A, Olf R, Lourette S, Fang F, Stamper-Kurn DM 2014. Phys. Rev. Lett. 113:155302
    [Google Scholar]
  43. 43. 
    Pich A 2018. Lectures given at The 2017 Les Houches Summer School on “Effective Field Theory in Particle Physics and Cosmology, Les Houches, France, July 3–28, 2017.. IFIC/18-13, FTUV/18-0415. arXiv:1804.05664
    [Google Scholar]
  44. 44. 
    Georgi H 1993. Annu. Rev. Nuclear Part. Sci. 43:209–52
    [Google Scholar]
  45. 45. 
    Bernard V, Meißner UG 2007. Annu. Rev. Nuclear Part. Sci. 57:33–60
    [Google Scholar]
  46. 46. 
    Furnstahl RJ, Rupak G, Schäfer T 2008. Annu. Rev. Nuclear Part. Sci. 58:1–25
    [Google Scholar]
  47. 47. 
    Hayata T, Hidaka Y 2015. Phys. Rev. D 91:056006
    [Google Scholar]
  48. 48. 
    Minami Y, Hidaka Y 2018. Phys. Rev. E 97:012130
    [Google Scholar]
  49. 49. 
    Coleman S, Wess J, Zumino B 1969. Phys. Rev. 177:2239–47
    [Google Scholar]
  50. 50. 
    Callan CG, Coleman S, Wess J, Zumino B 1969. Phys. Rev. 177:2247–50
    [Google Scholar]
  51. 51. 
    Weinberg S 1979. Phys. A: Stat. Mech. Appl. 96:327–40
    [Google Scholar]
  52. 52. 
    Pekker D, Varma C 2015. Annu. Rev. Condens. Matter Phys. 6:269–97
    [Google Scholar]
  53. 53. 
    Leutwyler H 1994. Ann. Phys. 235:165–203
    [Google Scholar]
  54. 54. 
    Hohenberg PC, Halperin BI 1977. Rev. Mod. Phys. 49:435–79
    [Google Scholar]
  55. 55. 
    Kapustin A 2012. arXiv:1207.0457
  56. 56. 
    Hohenberg PC 1967. Phys. Rev. 158:383–86
    [Google Scholar]
  57. 57. 
    Mermin ND, Wagner H 1966. Phys. Rev. Lett. 17:1133–36
    [Google Scholar]
  58. 58. 
    Coleman S 1973. Commun. Math. Phys. 31:259–64
    [Google Scholar]
  59. 59. 
    Anderson PW 1990. Phys. Today 43:117
    [Google Scholar]
  60. 60. 
    Landau LD, Lifshitz EM 1959. Course of Theoretical Physics, Vol. 7: Theory and Elasticity London: Pergamon
    [Google Scholar]
  61. 61. 
    Chaikin PM, Lubensky TC, Witten TA 1995. Principles of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  62. 62. 
    Fukuyama H 1975. Solid State Commun. 17:1323–26
    [Google Scholar]
  63. 63. 
    Watanabe H, Murayama H 2014. Phys. Rev. D 89:101701
    [Google Scholar]
  64. 64. 
    Nagaosa N, Tokura Y 2013. Nat. Nanotechnol. 8:899–911
    [Google Scholar]
  65. 65. 
    Fert A, Reyren N, Cros V 2017. Nat. Rev. Mater. 2:17031
    [Google Scholar]
  66. 66. 
    Stone M 1996. Phys. Rev. B 53:16573–78
    [Google Scholar]
  67. 67. 
    Zang J, Mostovoy M, Han JH, Nagaosa N 2011. Phys. Rev. Lett. 107:136804
    [Google Scholar]
  68. 68. 
    Watanabe H, Murayama H 2014. Phys. Rev. Lett. 112:191804
    [Google Scholar]
  69. 69. 
    Watanabe H, Parameswaran SA, Raghu S, Vishwanath A 2014. Phys. Rev. B 90:045145
    [Google Scholar]
  70. 70. 
    Kobayashi M, Nitta M 2014. Phys. Rev. D 90:025010
    [Google Scholar]
  71. 71. 
    Boninsegni M, Prokof'ev NV 2012. Rev. Mod. Phys. 84:759–76
    [Google Scholar]
  72. 72. 
    Chan MHW, Hallock RB, Reatto L 2013. J. Low Temp. Phys. 172:317–63
    [Google Scholar]
  73. 73. 
    Son DT 2005. Phys. Rev. Lett. 94:175301
    [Google Scholar]
  74. 74. 
    Watanabe H, Brauner T 2012. Phys. Rev. D 85:085010
    [Google Scholar]
  75. 75. 
    Kunimi M, Kato Y 2012. Phys. Rev. B 86:060510
    [Google Scholar]
  76. 76. 
    Kobayashi M, Nitta M 2014. Phys. Rev. Lett. 113:120403
    [Google Scholar]
  77. 77. 
    Salam A, Strathdee J 1969. Phys. Rev. 184:1760–68
    [Google Scholar]
  78. 78. 
    Low I, Manohar AV 2002. Phys. Rev. Lett. 88:101602
    [Google Scholar]
  79. 79. 
    De Gennes P, Prost J 1993. The Physics of Liquid Crystals Oxford, UK: Oxford Univ. Press. 2nd ed.
    [Google Scholar]
  80. 80. 
    Grinstein G, Pelcovits RA 1981. Phys. Rev. Lett. 47:856–59
    [Google Scholar]
  81. 81. 
    Grinstein G, Pelcovits RA 1982. Phys. Rev. A 26:915–25
    [Google Scholar]
  82. 82. 
    Ivanov EA, Ogievetskii VI 1975. Theor. Math. Phys. 25:1050–59
    [Google Scholar]
  83. 83. 
    Brauner T, Watanabe H 2014. Phys. Rev. D 89:085004
    [Google Scholar]
  84. 84. 
    Hidaka Y, Noumi T, Shiu G 2015. Phys. Rev. D 92:045020
    [Google Scholar]
  85. 85. 
    Rothstein IZ, Shrivastava P 2018. J. High Energy Phys. 2018:14
    [Google Scholar]
  86. 86. 
    Watanabe H, Murayama H 2013. Phys. Rev. Lett. 110:181601
    [Google Scholar]
  87. 87. 
    Hayata T, Hidaka Y 2014. Phys. Lett. B 735:195–99
    [Google Scholar]
  88. 88. 
    Oganesyan V, Kivelson SA, Fradkin E 2001. Phys. Rev. B 64:195109
    [Google Scholar]
  89. 89. 
    Fradkin E, Kivelson SA, Lawler MJ, Eisenstein JP, Mackenzie AP 2010. Annu. Rev. Condens. Matter Phys. 1:153–78
    [Google Scholar]
  90. 90. 
    Watanabe H, Vishwanath A 2014. PNAS 111:16314–18
    [Google Scholar]
  91. 91. 
    Ruhman J, Berg E 2014. Phys. Rev. B 90:235119
    [Google Scholar]
  92. 92. 
    Bahri Y, Potter AC 2015. Phys. Rev. B 92:035131
    [Google Scholar]
  93. 93. 
    Chua V, Assawasunthonnet W, Fradkin E 2017. Phys. Rev. B 96:035110
    [Google Scholar]
  94. 94. 
    Wilczek F 2012. Phys. Rev. Lett. 109:160401
    [Google Scholar]
  95. 95. 
    Bruno P 2013. Phys. Rev. Lett. 111:070402
    [Google Scholar]
  96. 96. 
    Watanabe H, Oshikawa M 2015. Phys. Rev. Lett. 114:251603
    [Google Scholar]
  97. 97. 
    Khemani V, Lazarides A, Moessner R, Sondhi SL 2016. Phys. Rev. Lett. 116:250401
    [Google Scholar]
  98. 98. 
    Else DV, Bauer B, Nayak C 2016. Phys. Rev. Lett. 117:090402
    [Google Scholar]
  99. 99. 
    Yao NY, Potter AC, Potirniche ID, Vishwanath A 2017. Phys. Rev. Lett. 118:030401
    [Google Scholar]
  100. 100. 
    Choi S, Choi J, Landig R, Kucsko G, Zhou H et al. 2017. Nature 543:221–25
    [Google Scholar]
  101. 101. 
    Zhang J, Hess PW, Kyprianidis A, Becker P, Lee A et al. 2017. Nature 543:217–20
    [Google Scholar]
  102. 102. 
    Sacha K, Zakrzewski J 2017. Rep. Progress Phys. 81:016401
    [Google Scholar]
  103. 103. 
    Else DV, Monroe C, Nayak C, Yao NY 2020.Annu. Rev. Condens. Matter Phys. 11:467–99
  104. 104. 
    Hongo M, Kim S, Noumi T, Ota A 2019. J. High Energy Phys. 2019:131
    [Google Scholar]
  105. 105. 
    Hayata T, Hidaka Y 2018. RIKEN-QHP-380, RIKEN-iTHEMS-Report-18. arXiv:1808.07636
    [Google Scholar]
  106. 106. 
    Sieberer LM, Buchhold M, Diehl S 2016. Rep. Progress Phys. 79:096001
    [Google Scholar]
  107. 107. 
    Lieb E, Schultz T, Mattis D 1961. Ann. Phys. (N.Y.) 16:407–66
    [Google Scholar]
  108. 108. 
    Affleck I, Lieb EH 1986. Lett. Math. Phys. 12:57–69
    [Google Scholar]
  109. 109. 
    Yamanaka M, Oshikawa M, Affleck I 1997. Phys. Rev. Lett. 79:1110–13
    [Google Scholar]
  110. 110. 
    Oshikawa M 2000. Phys. Rev. Lett. 84:1535–38
    [Google Scholar]
  111. 111. 
    Hastings MB 2004. Phys. Rev. B 69:104431
    [Google Scholar]
  112. 112. 
    Parameswaran SA, Turner AM, Arovas DP, Vishwanath A 2013. Nat. Phys. 9:299–303
    [Google Scholar]
  113. 113. 
    Watanabe H, Vishwanath A 2014.PNAS 111:16314–18
  114. 114. 
    Watanabe H 2018. Phys. Rev. B 97:165117
    [Google Scholar]
  115. 115. 
    Wen XG 2004. Quantum Field Theory of Many-Body Systems Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  116. 116. 
    Oshikawa M, Senthil T 2006. Phys. Rev. Lett. 96:060601
    [Google Scholar]
  117. 117. 
    Weinberg S 1972. Phys. Rev. Lett. 29:1698–701
    [Google Scholar]
  118. 118. 
    Uchino S, Kobayashi M, Nitta M, Ueda M 2010. Phys. Rev. Lett. 105:230406
    [Google Scholar]
  119. 119. 
    Nitta M, Takahashi DA 2015. Phys. Rev. D 91:025018
    [Google Scholar]
  120. 120. 
    Volkov D, Akulov V 1973. Phys. Lett. B 46:109–10
    [Google Scholar]
  121. 121. 
    Salam A, Strathdee J 1974. Phys. Lett. B 49:465–67
    [Google Scholar]
  122. 122. 
    Yu Y, Yang K 2008. Phys. Rev. Lett. 100:090404
    [Google Scholar]
  123. 123. 
    Blaizot JP, Hidaka Y, Satow D 2015. Phys. Rev. A 92:063629
    [Google Scholar]
  124. 124. 
    Sannomiya N, Katsura H, Nakayama Y 2016. Phys. Rev. D 94:045014
    [Google Scholar]
  125. 125. 
    Higgs PW 1964. Phys. Rev. Lett. 13:508–9
    [Google Scholar]
  126. 126. 
    Englert F, Brout R 1964. Phys. Rev. Lett. 13:321–23
    [Google Scholar]
  127. 127. 
    Hama Y, Hatsuda T, Uchino S 2011. Phys. Rev. D 83:125009
    [Google Scholar]
  128. 128. 
    Watanabe H, Murayama H 2014. Phys. Rev. D 90:121703
    [Google Scholar]
  129. 129. 
    Gongyo S, Karasawa S 2014. Phys. Rev. D 90:085014
    [Google Scholar]
  130. 130. 
    Gaiotto D, Kapustin A, Seiberg N, Willett B 2015. J. High Energy Phys. 2015:172
    [Google Scholar]
  131. 131. 
    Lake E 2018. arXiv:1802.07747
  132. 132. 
    Yamamoto N 2016. Phys. Rev. D 93:085036
    [Google Scholar]
  133. 133. 
    Ozaki S, Yamamoto N 2017. J. High Energy Phys. 2017:98
    [Google Scholar]
  134. 134. 
    Sogabe N, Yamamoto N 2019. Phys. Rev. D 99:125003
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031119-050644
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050644
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error