
Full text loading...
We review the development of generative modeling techniques in machine learning for the purpose of reconstructing real, noisy, many-qubit quantum states. Motivated by its interpretability and utility, we discuss in detail the theory of the restricted Boltzmann machine. We demonstrate its practical use for state reconstruction, starting from a classical thermal distribution of Ising spins, then moving systematically through increasingly complex pure and mixed quantum states. We review recent techniques in reconstruction of a cold atom wavefunction, intended for use on experimental noisy intermediate-scale quantum (NISQ) devices. Finally, we discuss the outlook for future experimental state reconstruction using machine learning in the NISQ era and beyond.
Article metrics loading...
Full text loading...
Literature Cited
Data & Media loading...