1932

Abstract

Actin is the main protein used by biological cells to adapt their structure and mechanics to their needs. Cellular adaptation is made possible by molecular processes that strongly depend on mechanics. The actin cytoskeleton is also an active material that continuously consumes energy. This allows for dynamical processes that are possible only out of equilibrium and opens up the possibility for multiple layers of control that have evolved around this single protein. Here we discuss the actin cytoskeleton from the viewpoint of physics as an active adaptive material that can build structures superior to man-made soft matter systems. Not only can actin be used to build different network architectures on demand and in an adaptive manner, but it also exhibits the dynamical properties of feedback systems, like excitability, bistability, or oscillations. Therefore, it is a prime example of how biology couples physical structure and information flow and a role model for biology-inspired metamaterials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013231
2020-03-10
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031218-013231.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013231&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alberts B, Johnson A, Lewis J, Morgan D, Raff M et al. 2014. Molecular Biology of the Cell New York: Norton & Co, 6th rev. ed..
    [Google Scholar]
  2. 2. 
    Phillips R, Kondev J, Theriot J, Garcia H 2012. Physical Biology of the Cell New York: Taylor & Francis, 2nd ed..
    [Google Scholar]
  3. 3. 
    Pollard TD, Cooper JA. 2009. Science 326:59571208–12
    [Google Scholar]
  4. 4. 
    Jockusch BM 2017. The Actin Cytoskeleton Berlin: Springer
    [Google Scholar]
  5. 5. 
    Stricker J, Falzone T, Gardel ML 2010. J. Biomech. 43:19–14
    [Google Scholar]
  6. 6. 
    Pollard TD, Borisy GG. 2003. Cell 112:4453–65
    [Google Scholar]
  7. 7. 
    Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J 2014. Physiol. Rev. 94:1235–63
    [Google Scholar]
  8. 8. 
    Small JV, Rottner K, Kaverina I, Anderson KI 1998. Biochim. Biophys. Acta Mol. Cell Res. 1404:3271–81
    [Google Scholar]
  9. 9. 
    Schwarz US, Gardel ML. 2012. J. Cell Sci. 125:133051–60
    [Google Scholar]
  10. 10. 
    Jungbauer S, Gao H, Spatz J, Kemkemer R 2008. Biophys. J. 95:73470–78
    [Google Scholar]
  11. 11. 
    Faust U, Hampe N, Rubner W, Kirchgessner N, Safran S et al. 2011. PLOS ONE 6:12e28963
    [Google Scholar]
  12. 12. 
    Livne A, Bouchbinder E, Geiger B 2014. Nat. Commun. 5:3938
    [Google Scholar]
  13. 13. 
    Lecuit T, Lenne P-F, Munro E 2011. Annu. Rev. Cell Dev. Biol. 27:1157–84
    [Google Scholar]
  14. 14. 
    Heisenberg C-P, Bellaïche Y. 2013. Cell 153:5948–62
    [Google Scholar]
  15. 15. 
    Dasbiswas K, Hu S, Schnorrer F, Safran SA, Bershadsky AD 2018. Philos. Trans. R. Soc. B 373:174720170114
    [Google Scholar]
  16. 16. 
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS 2004. Dev. Cell 6:4483–95
    [Google Scholar]
  17. 17. 
    Engler AJ, Sen S, Sweeney HL, Discher DE 2006. Cell 126:4677–89
    [Google Scholar]
  18. 18. 
    Fenix AM, Neininger AC, Taneja N, Hyde K, Visetsouk MR et al. 2018. eLife 7:e42144
    [Google Scholar]
  19. 19. 
    Göpfrich K, Platzman I, Spatz JP 2018. Trends Biotechnol 36:9938–51
    [Google Scholar]
  20. 20. 
    Ganzinger KA, Schwille P. 2019. J. Cell Sci. 132:4jcs227488
    [Google Scholar]
  21. 21. 
    Reymann A-C, Martiel J-L, Cambier T, Blanchoin L, Boujemaa-Paterski R, Théry M 2010. Nat. Mater. 9:10827–32
    [Google Scholar]
  22. 22. 
    Galland R, Leduc P, Guérin C, Peyrade D, Blanchoin L, Théry M 2013. Nat. Mater. 12:5416–21
    [Google Scholar]
  23. 23. 
    Thoresen T, Lenz M, Gardel ML 2011. Biophys. J. 100:112698–705
    [Google Scholar]
  24. 24. 
    Thoresen T, Lenz M, Gardel ML 2013. Biophys. J. 104:3655–65
    [Google Scholar]
  25. 25. 
    Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA 2004. Science 304:56751301–5
    [Google Scholar]
  26. 26. 
    Murrell MP, Gardel ML. 2012. PNAS 109:5120820–25
    [Google Scholar]
  27. 27. 
    Fletcher D, Geissler P. 2009. Annu. Rev. Phys. Chem. 60:469–86
    [Google Scholar]
  28. 28. 
    MacKintosh FC, Schmidt CF. 2010. Curr. Opin. Cell Biol. 22:129–35
    [Google Scholar]
  29. 29. 
    Pollard TD, Berro J. 2009. J. Biol. Chem. 284:95433–37
    [Google Scholar]
  30. 30. 
    Peskin CS, Odell GM, Oster GF 1993. Biophys. J. 65:1316–24
    [Google Scholar]
  31. 31. 
    Pollard TD. 2016. Biophys. J. 111:81589–92
    [Google Scholar]
  32. 32. 
    Murrell M, Oakes PW, Lenz M, Gardel ML 2015. Nat. Rev. Mol. Cell Biol. 16:8486–98
    [Google Scholar]
  33. 33. 
    Mizuno D, Tardin C, Schmidt CF, MacKintosh FC 2007. Science 315:5810370–73
    [Google Scholar]
  34. 34. 
    Etienne-Manneville S, Hall A. 2002. Nature 420:6916629–35
    [Google Scholar]
  35. 35. 
    Zmurchok C, Bhaskar D, Edelstein-Keshet L 2018. Phys. Biol. 15:4046004
    [Google Scholar]
  36. 36. 
    Nobes CD, Hall A. 1995. Cell 81:153–62
    [Google Scholar]
  37. 37. 
    Machacek M, Hodgson L, Welch C, Elliott H, Pertz O et al. 2009. Nature 461:726099–103
    [Google Scholar]
  38. 38. 
    Valon L, Etoc F, Remorino A, di Pietro F, Morin X et al. 2015. Biophys. J. 109:91785–97
    [Google Scholar]
  39. 39. 
    Guglielmi G, Barry JD, Huber W, De Renzis S 2015. Dev. Cell 35:5646–60
    [Google Scholar]
  40. 40. 
    Valon L, Marín-Llauradó A, Wyatt T, Charras G, Trepat X 2017. Nat. Commun. 8:14396
    [Google Scholar]
  41. 41. 
    Oakes PW, Wagner E, Brand CA, Probst D, Linke M et al. 2017. Nat. Commun. 8:15817
    [Google Scholar]
  42. 42. 
    Guglielmi G, Falk HJ, De Renzis S 2016. Trends Cell Biol 26:11864–74
    [Google Scholar]
  43. 43. 
    Stokes DL, DeRosier DJ. 1987. J. Cell Biol. 104:41005–17
    [Google Scholar]
  44. 44. 
    Hayakawa K, Tatsumi H, Sokabe M 2011. J. Cell Biol. 195:5721–27
    [Google Scholar]
  45. 45. 
    Huehn A, Cao W, Elam WA, Liu X, De La Cruz EM, Sindelar CV 2018. J. Biol. Chem. 293:155377–83
    [Google Scholar]
  46. 46. 
    Naganathan SR, Fürthauer S, Nishikawa M, Jülicher F, Grill SW 2014. eLife 3:e04165
    [Google Scholar]
  47. 47. 
    Tee YH, Shemesh T, Thiagarajan V, Hariadi RF, Anderson KL et al. 2015. Nat. Cell Biol. 17:4445–57
    [Google Scholar]
  48. 48. 
    Davison A, McDowell GS, Holden JM, Johnson HF, Koutsovoulos GD et al. 2016. Curr. Biol. 26:5654–60
    [Google Scholar]
  49. 49. 
    Kaiser DA, Vinson VK, Murphy DB, Pollard TD 1999. J. Cell Sci. 112:213779–90
    [Google Scholar]
  50. 50. 
    Michelot A, Drubin DG. 2011. Curr. Biol. 21:14R560–69
    [Google Scholar]
  51. 51. 
    Howard J. 2001. Mechanics of Motor Proteins and the Cytoskeleton Basingstoke, UK: Palgrave Macmillan
    [Google Scholar]
  52. 52. 
    Burla F, Mulla Y, Vos BE, Aufderhorst-Roberts A, Koenderink GH 2019. Nat. Rev. Phys. 1:249–63
    [Google Scholar]
  53. 53. 
    Weirich KL, Banerjee S, Dasbiswas K, Witten TA, Vaikuntanathan S, Gardel ML 2017. PNAS 114:92131–36
    [Google Scholar]
  54. 54. 
    Morse DC. 1998. Macromolecules 31:207030–43
    [Google Scholar]
  55. 55. 
    Falzone TT, Lenz M, Kovar DR, Gardel ML 2012. Nat. Commun. 3:861
    [Google Scholar]
  56. 56. 
    Schmoller KM, Lieleg O, Bausch AR 2009. Biophys. J. 97:183–89
    [Google Scholar]
  57. 57. 
    Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA 2004. Science 304:56751301–5
    [Google Scholar]
  58. 58. 
    Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA 2005. Nature 435:7039191–94
    [Google Scholar]
  59. 59. 
    Broedersz CP, MacKintosh FC. 2014. Rev. Mod. Phys. 86:3995 Erratum. 2016. Rev. Mod. Phys. 88:039903
    [Google Scholar]
  60. 60. 
    Majumdar S, Foucard LC, Levine AJ, Gardel ML 2018. Soft Matter 14:112052–58
    [Google Scholar]
  61. 61. 
    Prinsen P, van der Schoot P 2003. Phys. Rev. E 68:2021701
    [Google Scholar]
  62. 62. 
    Oakes PW, Viamontes J, Tang JX 2007. Phys. Rev. E 75:6061902
    [Google Scholar]
  63. 63. 
    Rotty JD, Wu C, Bear JE 2013. Nat. Rev. Mol. Cell Biol. 14:17–12
    [Google Scholar]
  64. 64. 
    Gouin E, Welch MD, Cossart P 2005. Curr. Opin. Microbiol. 8:135–45
    [Google Scholar]
  65. 65. 
    Cameron LA, Footer MJ, van Oudenaarden A, Theriot JA 1999. PNAS 96:94908–13
    [Google Scholar]
  66. 66. 
    Loisel TP, Boujemaa R, Pantaloni D, Carlier M-F 1999. Nature 401:6753613–16
    [Google Scholar]
  67. 67. 
    Giardini PA, Fletcher DA, Theriot JA 2003. PNAS 100:116493–98
    [Google Scholar]
  68. 68. 
    Svitkina TM. 2018. Curr. Opin. Cell Biol. 54:1–8
    [Google Scholar]
  69. 69. 
    Schreiber CH, Stewart M, Duke T 2010. PNAS 107:209141–46
    [Google Scholar]
  70. 70. 
    Rouiller I, Xu X-P, Amann KJ, Egile C, Nickell S et al. 2008. J. Cell Biol. 180:5887–95
    [Google Scholar]
  71. 71. 
    Boujemaa-Paterski R, Suarez C, Klar T, Zhu J, Guérin C et al. 2017. Nat. Commun. 8:1655
    [Google Scholar]
  72. 72. 
    Parekh SH, Chaudhuri O, Theriot JA, Fletcher DA 2005. Nat. Cell Biol. 7:121219–23
    [Google Scholar]
  73. 73. 
    Bieling P, Li T-D, Weichsel J, McGorty R, Jreij P et al. 2016. Cell 164:1115–27
    [Google Scholar]
  74. 74. 
    Koestler SA, Auinger S, Vinzenz M, Rottner K, Small JV 2008. Nat. Cell Biol. 10:3306–13
    [Google Scholar]
  75. 75. 
    Mueller J, Szep G, Nemethova M, de Vries I, Lieber AD et al. 2017. Cell 171:1188–200.e16
    [Google Scholar]
  76. 76. 
    Maly IV, Borisy GG. 2001. PNAS 98:2011324–29
    [Google Scholar]
  77. 77. 
    Weichsel J, Schwarz US. 2010. PNAS 107:146304–9
    [Google Scholar]
  78. 78. 
    Weichsel J, Urban E, Small JV, Schwarz US 2012. Cytometry 81:6496–507
    [Google Scholar]
  79. 79. 
    Risca VI, Wang EB, Chaudhuri O, Chia JJ, Geissler PL, Fletcher DA 2012. PNAS 109:82913–18
    [Google Scholar]
  80. 80. 
    Goehring NW, Hyman AA. 2012. Curr. Biol. 22:9R330–39
    [Google Scholar]
  81. 81. 
    Mohapatra L, Lagny TJ, Harbage D, Jelenkovic PR, Kondev J 2017. Cell Syst 4:5559–567.e14
    [Google Scholar]
  82. 82. 
    Manhart A, Icheva TA, Guerin C, Klar T, Boujemaa-Paterski R et al. 2019. eLife 8:e42413
    [Google Scholar]
  83. 83. 
    Billington N, Wang A, Mao J, Adelstein RS, Sellers JR 2013. J. Biol. Chem. 288:4633398–410
    [Google Scholar]
  84. 84. 
    Levayer R, Lecuit T. 2012. Trends Cell Biol 22:261–81
    [Google Scholar]
  85. 85. 
    Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM 2010. Annu. Rev. Cell Dev. Biol. 26:315–33
    [Google Scholar]
  86. 86. 
    Green RA, Paluch E, Oegema K 2012. Annu. Rev. Cell Dev. Biol. 28:29–58
    [Google Scholar]
  87. 87. 
    Salbreux G, Charras G, Paluch E 2012. Trends Cell Biol 22:10536–45
    [Google Scholar]
  88. 88. 
    Geiger B, Spatz JP, Bershadsky AD 2009. Nat. Rev. Mol. Cell Biol. 10:121–33
    [Google Scholar]
  89. 89. 
    Martin AC, Kaschube M, Wieschaus EF 2009. Nature 457:7228495
    [Google Scholar]
  90. 90. 
    Nedelec FJ, Surrey T, Maggs AC, Leibler S 1997. Nature 389:6648305
    [Google Scholar]
  91. 91. 
    Sanchez T, Chen DT, DeCamp SJ, Heymann M, Dogic Z 2012. Nature 491:7424431–34
    [Google Scholar]
  92. 92. 
    Backouche F, Haviv L, Groswasser D, Bernheim-Groswasser A 2006. Phys. Biol. 3:4264–73
    [Google Scholar]
  93. 93. 
    Smith D, Ziebert F, Humphrey D, Duggan C, Steinbeck M et al. 2007. Biophys. J. 93:124445–52
    [Google Scholar]
  94. 94. 
    Soares e Silva M, Depken M, Stuhrmann B, Korsten M, MacKintosh FC, Koenderink GH 2011. PNAS 108:239408–13
    [Google Scholar]
  95. 95. 
    Murrell MP, Gardel ML. 2012. PNAS 109:5120820–25
    [Google Scholar]
  96. 96. 
    Reymann A-C, Boujemaa-Paterski R, Martiel J-L, Guérin C, Cao W et al. 2012. Science 336:60861310–14
    [Google Scholar]
  97. 97. 
    Bendix PM, Koenderink GH, Cuvelier D, Dogic Z, Koeleman BN et al. 2008. Biophys. J. 94:83126–36
    [Google Scholar]
  98. 98. 
    Alvarado J, Sheinman M, Sharma A, MacKintosh FC, Koenderink GH 2013. Nat. Phys. 9:9591–97
    [Google Scholar]
  99. 99. 
    Ennomani H, Letort G, Guérin C, Martiel J-L, Cao W et al. 2016. Curr. Biol. 26:5616–26
    [Google Scholar]
  100. 100. 
    Stam S, Freedman SL, Banerjee S, Weirich KL, Dinner AR, Gardel ML 2017. PNAS 114:47E10037–45
    [Google Scholar]
  101. 101. 
    Belmonte JM, Leptin M, Nédélec F 2017. Mol. Syst. Biol. 13:9941
    [Google Scholar]
  102. 102. 
    Nedelec F, Foethke D. 2007. New J. Phys. 9:11427
    [Google Scholar]
  103. 103. 
    Kim T, Hwang W, Lee H, Kamm RD 2009. PLOS Comput. Biol. 5:7e1000439
    [Google Scholar]
  104. 104. 
    Bidone TC, Tang H, Vavylonis D 2014. Biophys. J. 107:112618–28
    [Google Scholar]
  105. 105. 
    Popov K, Komianos J, Papoian GA 2016. PLOS Comput. Biol. 12:4e1004877
    [Google Scholar]
  106. 106. 
    Freedman SL, Banerjee S, Hocky GM, Dinner AR 2017. Biophys. J. 113:2448–60
    [Google Scholar]
  107. 107. 
    Prost J, Jülicher F, Joanny J-F 2015. Nat. Phys. 11:2111–17
    [Google Scholar]
  108. 108. 
    Marchetti MC, Joanny J-F, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:31143
    [Google Scholar]
  109. 109. 
    Kruse K, Jülicher F. 2000. Phys. Rev. Lett. 85:81778
    [Google Scholar]
  110. 110. 
    Dasanayake NL, Michalski PJ, Carlsson AE 2011. Phys. Rev. Lett. 107:11118101
    [Google Scholar]
  111. 111. 
    Oelz DB, Rubinstein BY, Mogilner A 2015. Biophys. J. 109:91818–29
    [Google Scholar]
  112. 112. 
    Hiraiwa T, Salbreux G. 2016. Phys. Rev. Lett. 116:18188101
    [Google Scholar]
  113. 113. 
    Liverpool TB, Marchetti MC, Joanny J-F, Prost J 2009. Europhys. Lett. 85:118007
    [Google Scholar]
  114. 114. 
    Lenz M, Thoresen T, Gardel ML, Dinner AR 2012. Phys. Rev. Lett. 108:23238107
    [Google Scholar]
  115. 115. 
    Liverpool TB, Marchetti MC. 2003. Phys. Rev. Lett. 90:13138102
    [Google Scholar]
  116. 116. 
    Aranson IS, Tsimring LS. 2005. Phys. Rev. E 71:5050901
    [Google Scholar]
  117. 117. 
    Ziebert F, Aranson IS, Tsimring LS 2007. New J. Phys. 9:11421
    [Google Scholar]
  118. 118. 
    Lenz M. 2014. Phys. Rev. X 4:4041002
    [Google Scholar]
  119. 119. 
    Lenz M, Gardel ML, Dinner AR 2012. New J. Phys. 14:3033037
    [Google Scholar]
  120. 120. 
    Linsmeier I, Banerjee S, Oakes PW, Jung W, Kim T, Murrell MP 2016. Nat. Commun. 7:12615
    [Google Scholar]
  121. 121. 
    Freedman SL, Hocky GM, Banerjee S, Dinner AR 2018. Soft Matter 14:377740–47
    [Google Scholar]
  122. 122. 
    Schuppler M, Keber FC, Kröger M, Bausch AR 2016. Nat. Commun. 7:13120
    [Google Scholar]
  123. 123. 
    Oakes PW, Banerjee S, Marchetti MC, Gardel ML 2014. Biophys. J. 107:4825–33
    [Google Scholar]
  124. 124. 
    Oakes PW, Wagner E, Brand CA, Probst D, Linke M et al. 2017. Nat. Commun. 8:15817
    [Google Scholar]
  125. 125. 
    Brown R, Prajapati R, McGrouther D, Yannas I, Eastwood M 1998. J. Cell. Physiol. 175:3323–32
    [Google Scholar]
  126. 126. 
    Webster KD, Ng WP, Fletcher DA 2014. Biophys. J. 107:1146–55
    [Google Scholar]
  127. 127. 
    Jilkine A, Marée AF, Edelstein-Keshet L 2007. Bull. Math. Biol. 69:61943–78
    [Google Scholar]
  128. 128. 
    Raftopoulou M, Hall A. 2004. Dev. Biol. 265:123–32
    [Google Scholar]
  129. 129. 
    Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S 1999. Nat. Cell Biol. 1:3136
    [Google Scholar]
  130. 130. 
    Wilson CA, Tsuchida MA, Allen GM, Barnhart EL, Applegate KT et al. 2010. Nature 465:7296373–77
    [Google Scholar]
  131. 131. 
    Jégou A, Carlier M-F, Romet-Lemonne G 2013. Nat. Commun. 4:1883
    [Google Scholar]
  132. 132. 
    Courtemanche N, Lee JY, Pollard TD, Greene EC 2013. PNAS 110:249752–57
    [Google Scholar]
  133. 133. 
    Zimmermann D, Homa KE, Hocky GM, Pollard LW, Enrique M et al. 2017. Nat. Commun. 8:1703
    [Google Scholar]
  134. 134. 
    Bement WM, Leda M, Moe AM, Kita AM, Larson ME et al. 2015. Nat. Cell Biol. 17:111471–83
    [Google Scholar]
  135. 135. 
    Michaux JB, Robin FB, McFadden WM, Munro EM 2018. J. Cell Biol. 217:124230–52
    [Google Scholar]
  136. 136. 
    Miki H, Takenawa T. 2003. J. Biochem. 134:3309–13
    [Google Scholar]
  137. 137. 
    Benink HA, Bement WM. 2005. J. Cell Biol. 168:3429–39
    [Google Scholar]
  138. 138. 
    Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M 2002. Mol. Cell. Biol. 22:186582–91
    [Google Scholar]
  139. 139. 
    Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A et al. 2003. Cell 114:2201–14
    [Google Scholar]
  140. 140. 
    Suarez C, Kovar DR. 2016. Nat. Rev. Mol. Cell Biol. 17:12799–810
    [Google Scholar]
  141. 141. 
    Diz-Muñoz A, Fletcher DA, Weiner OD 2013. Trends Cell Biol 23:247–53
    [Google Scholar]
  142. 142. 
    Ryan GL, Petroccia HM, Watanabe N, Vavylonis D 2012. Biophys. J. 102:71493–502
    [Google Scholar]
  143. 143. 
    Bretschneider T, Diez S, Anderson K, Heuser J, Clarke M et al. 2004. Curr. Biol. 14:11–10
    [Google Scholar]
  144. 144. 
    Weiner OD, Rentel MC, Ott A, Brown GE, Jedrychowski M et al. 2006. PLOS Biol 4:2e38
    [Google Scholar]
  145. 145. 
    Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T et al. 2001. J. Cell Biol. 153:61175–86
    [Google Scholar]
  146. 146. 
    Besser A, Schwarz US. 2007. New J. Phys. 9:11425
    [Google Scholar]
  147. 147. 
    Besser A, Schwarz US. 2010. Biophys. J. 99:1L10–12
    [Google Scholar]
  148. 148. 
    Hoffmann M, Schwarz US. 2013. BMC Syst. Biol. 7:12
    [Google Scholar]
  149. 149. 
    Bovellan M, Romeo Y, Biro M, Boden A, Chugh P et al. 2014. Curr. Biol. 24:141628–35
    [Google Scholar]
  150. 150. 
    Lomakin AJ, Lee K-C, Han SJ, Bui DA, Davidson M et al. 2015. Nat. Cell Biol. 17:111435–45
    [Google Scholar]
  151. 151. 
    Sedzinski J, Biro M, Oswald A, Tinevez J-Y, Salbreux G, Paluch E 2011. Nature 476:7361462–66
    [Google Scholar]
  152. 152. 
    Banerjee S, Utuje KJ, Marchetti MC 2015. Phys. Rev. Lett. 114:22228101
    [Google Scholar]
  153. 153. 
    Serra-Picamal X, Conte V, Vincent R, Anon E, Tambe DT et al. 2012. Nat. Phys. 8:8628–34
    [Google Scholar]
  154. 154. 
    Izhikevich EM. 2007. Dynamical Systems in Neuroscience Cambridge, MA: MIT Press
    [Google Scholar]
  155. 155. 
    Luo C, Rudy Y. 1991. Circ. Res. 68:61501–26
    [Google Scholar]
  156. 156. 
    Dupont G, Goldbeter A. 1994. Biophys. J. 67:62191–204
    [Google Scholar]
  157. 157. 
    Gelens L, Anderson GA, Ferrell JE Jr. 2014. Mol. Biol. Cell 25:223486–93
    [Google Scholar]
  158. 158. 
    Goryachev AB, Leda M, Miller AL, von Dassow G, Bement WM 2016. Small GTPases 7:265–70
    [Google Scholar]
  159. 159. 
    Nishikawa M, Naganathan SR, Jülicher F, Grill SW 2017. eLife 6:e19595
    [Google Scholar]
  160. 160. 
    Graessl M, Koch J, Calderon A, Kamps D, Banerjee S et al. 2017. J. Cell Biol. 216:124271–85
    [Google Scholar]
  161. 161. 
    Xiong Y, Huang C-H, Iglesias PA, Devreotes PN 2010. PNAS 107:4017079–86
    [Google Scholar]
  162. 162. 
    Iglesias PA, Devreotes PN. 2012. Curr. Opin. Cell Biol. 24:2245–53
    [Google Scholar]
  163. 163. 
    Yang HW, Collins SR, Meyer T 2016. Nat. Cell Biol. 18:2191
    [Google Scholar]
  164. 164. 
    Bischof J, Brand CA, Somogyi K, Májer I, Thome S et al. 2017. Nat. Commun. 8:1849
    [Google Scholar]
  165. 165. 
    Chang JB, Ferrell JE Jr 2013. Nature 500:7464603–7
    [Google Scholar]
  166. 166. 
    Meron E. 1992. Phys. Rep. 218:11–66
    [Google Scholar]
  167. 167. 
    Deneke VE, Di Talia S 2018. J. Cell Biol. 217:41193–204
    [Google Scholar]
  168. 168. 
    Munro E, Nance J, Priess JR 2004. Dev. Cell 7:3413–24
    [Google Scholar]
  169. 169. 
    Seara DS, Yadav V, Linsmeier I, Tabatabai AP, Oakes PW et al. 2018. Nat. Commun. 9:14948
    [Google Scholar]
  170. 170. 
    Turlier H, Fedosov DA, Audoly B, Auth T, Gov NS et al. 2016. Nat. Phys. 12:5513–19
    [Google Scholar]
  171. 171. 
    Turlier H, Betz T. 2019. Annu. Rev. Condens. Matter Phys. 10:213–32
    [Google Scholar]
  172. 172. 
    Bertoldi K, Vitelli V, Christensen J, van Hecke M 2017. Nat. Rev. Mater. 2:1117066
    [Google Scholar]
  173. 173. 
    Kadic M, Milton GW, van Hecke M, Wegener M 2019. Nat. Rev. Phys. 1:3198–210
    [Google Scholar]
  174. 174. 
    Florijn B, Coulais C, van Hecke M 2014. Phys. Rev. Lett. 113:17175503
    [Google Scholar]
  175. 175. 
    Rocks JW, Pashine N, Bischofberger I, Goodrich CP, Liu AJ, Nagel SR 2017. PNAS 114:102520–25
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031218-013231
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013231
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error