1932

Abstract

Active matter physics is about systems in which energy is dissipated at some local level to produce work. This is a generic situation, particularly in the living world but not only. What is at stake is the understanding of the fascinating, sometimes counterintuitive, emerging phenomena observed, from collective motion in animal groups to in vitro dynamical self-organization of motor proteins and biofilaments.

Dry aligning dilute active matter (DADAM) is a corner of the multidimensional, fast-growing domain of active matter that has both historical and theoretical importance for the entire field. This restrictive setting only involves self-propulsion/activity, alignment, and noise, yet unexpected collective properties can emerge from it.

This review provides a personal but synthetic and coherent overview of DADAM, focusing on the collective-level phenomenology of simple active particle models representing basic classes of systems and on the solutions of the continuous hydrodynamic theories that can be derived from them. The obvious fact that orientational order is advected by the aligning active particles at play is shown to be at the root of the most striking properties of DADAM systems: () direct transitions to orientational order are not observed; () instead generic phase separation occurs with a coexistence phase involving inhomogeneous nonlinear structures; () orientational order, which can be long range even in two dimensions, is accompanied by long-range correlations and anomalous fluctuations; () defects are not point-like, topologically bound objects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050752
2020-03-10
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050752.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050752&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ramaswamy S 2010. Annu. Rev. Condens. Matter Phys. 1:323–45
    [Google Scholar]
  2. 2. 
    Simha RA, Ramaswamy S 2002. Phys. Rev. Lett. 89:058101
    [Google Scholar]
  3. 3. 
    Toner J, Tu Y, Ramaswamy S 2005. Ann. Phys. 318:170–244
    [Google Scholar]
  4. 4. 
    Peruani F, Deutsch A, Bär M 2006. Phys. Rev. E 74:030904
    [Google Scholar]
  5. 5. 
    Baskaran A, Marchetti MC 2010.J. Stat. Mech.: Theory Exp. 2010:P04019
  6. 6. 
    Lopez U, Gautrais J, Couzin ID, Theraulaz G 2012. Interface Focus 2:693–707
    [Google Scholar]
  7. 7. 
    Hemelrijk CK, Hildenbrandt H 2012. Interface Focus 2:726–37
    [Google Scholar]
  8. 8. 
    Fily Y, Marchetti MC 2012. Phys. Rev. Lett. 108:235702
    [Google Scholar]
  9. 9. 
    Cates ME, Tailleur J 2015. Annu. Rev. Condens. Matter Phys. 6:219–44
    [Google Scholar]
  10. 10. 
    Solon AP, Stenhammar J, Cates ME, Kafri Y, Tailleur J 2018. Phys. Rev. E 97:020602
    [Google Scholar]
  11. 11. 
    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O 1995. Phys. Rev. Lett. 75:1226
    [Google Scholar]
  12. 12. 
    Toner J, Tu Y 1995. Phys. Rev. Lett. 75:4326–29
    [Google Scholar]
  13. 13. 
    Kaiser D 2003. Nat. Rev. Microbiol. 1:45–54
    [Google Scholar]
  14. 14. 
    Igoshin OA, Welch R, Kaiser D, Oster G 2004. PNAS 101:4256–61
    [Google Scholar]
  15. 15. 
    Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:1143–89
    [Google Scholar]
  16. 16. 
    Degond P, Motsch S 2008. Math. Models Methods Appl. Sci. 18:1193–215
    [Google Scholar]
  17. 17. 
    Baskaran A, Marchetti MC 2008. Phys. Rev. Lett. 101:268101
    [Google Scholar]
  18. 18. 
    Baskaran A, Marchetti MC 2008. Phys. Rev. E 77:011920
    [Google Scholar]
  19. 19. 
    Farrell F, Marchetti M, Marenduzzo D, Tailleur J 2012. Phys. Rev. Lett. 108:248101
    [Google Scholar]
  20. 20. 
    Romanczuk P, Schimansky-Geier L 2012. Ecol. Complex. 10:83–92
    [Google Scholar]
  21. 21. 
    Grossmann R, Schimansky-Geier L, Romanczuk P 2012. New J. Phys. 14:073033
    [Google Scholar]
  22. 22. 
    Grossmann R, Schimansky-Geier L, Romanczuk P 2013. New J. Phys. 15:085014
    [Google Scholar]
  23. 23. 
    Barbaro AB, Degond P 2014. Discret. Contin. Dyn. Syst.-B 19:1249–78
    [Google Scholar]
  24. 24. 
    Bertin E, Droz M, Grégoire G 2006. Phys. Rev. E 74:022101
    [Google Scholar]
  25. 25. 
    Bertin E, Droz M, Grégoire G 2009. J. Phys. A: Math. Theor. 42:445001
    [Google Scholar]
  26. 26. 
    Peshkov A, Bertin E, Ginelli F, Chaté H 2014. Eur. Phys. J. Spec. Top. 223:1315–44
    [Google Scholar]
  27. 27. 
    Ihle T 2011. Phys. Rev. E 83:030901
    [Google Scholar]
  28. 28. 
    Ihle T 2016. J. Stat. Mech.: Theory Exp. 2016:083205
    [Google Scholar]
  29. 29. 
    Mahault B 2018.Outstanding problems in the statistical physics of active matter Ph.D. thesis, Université Paris-Saclay, Saint-Aubin, France
  30. 30. 
    Bertin E, Baskaran A, Chaté H, Marchetti MC 2015. Phys. Rev. E 92:042141
    [Google Scholar]
  31. 31. 
    Dean DS 1996. J. Phys. A: Math. Gen. 29:L613
    [Google Scholar]
  32. 32. 
    Bertin E, Chaté H, Ginelli F, Mishra S, Peshkov A, Ramaswamy S 2013. New J. Phys. 15:085032
    [Google Scholar]
  33. 33. 
    Solon A, Tailleur J 2013. Phys. Rev. Lett. 111:078101
    [Google Scholar]
  34. 34. 
    Solon AP, Tailleur J 2015. Phys. Rev. E 92:042119
    [Google Scholar]
  35. 35. 
    Toner J, Tu Y 1998. Phys. Rev. E 58:4828
    [Google Scholar]
  36. 36. 
    Tu Y, Toner J, Ulm M 1998. Phys. Rev. Lett. 80:4819
    [Google Scholar]
  37. 37. 
    Ramaswamy S, Simha RA, Toner J 2003. Europhys. Lett. 62:196
    [Google Scholar]
  38. 38. 
    Toner J 2012. Phys. Rev. E 86:031918
    [Google Scholar]
  39. 39. 
    Peshkov A, Aranson IS, Bertin E, Chaté H, Ginelli F 2012. Phys. Rev. Lett. 109:268701
    [Google Scholar]
  40. 40. 
    Mahault B, Patelli A, Chaté H 2018. J. Stat. Mech.: Theory Exp. 2018:093202
    [Google Scholar]
  41. 41. 
    Toner J 2012. Phys. Rev. Lett. 108:088102
    [Google Scholar]
  42. 42. 
    Solon AP, Chaté H, Tailleur J 2015. Phys. Rev. Lett. 114:068101
    [Google Scholar]
  43. 43. 
    Mishra S, Baskaran A, Marchetti MC 2010. Phys. Rev. E 81:061916
    [Google Scholar]
  44. 44. 
    Gopinath A, Hagan MF, Marchetti MC, Baskaran A 2012. Phys. Rev. E 85:061903
    [Google Scholar]
  45. 45. 
    Putzig E, Baskaran A 2014. Phys. Rev. E 90:042304
    [Google Scholar]
  46. 46. 
    Ngo S, Peshkov A, Aranson IS, Bertin E, Ginelli F, Chaté H 2014. Phys. Rev. Lett. 113:038302
    [Google Scholar]
  47. 47. 
    Solon AP, Caussin JB, Bartolo D, Chaté H, Tailleur J 2015. Phys. Rev. E 92:062111
    [Google Scholar]
  48. 48. 
    Ginelli F, Peruani F, Bär M, Chaté H 2010. Phys. Rev. Lett. 104:184502
    [Google Scholar]
  49. 49. 
    Chaté H, Mahault B 2019.Active Matter and Non-Equilibrium Statistical Physics: A Synthetic and Self-Contained Overview, ed. J Tailleur. In press. Oxford, UK: Oxford Univ. Press
  50. 50. 
    Großmann R, Peruani F, Bär M 2016. Phys. Rev. E 94:050602
    [Google Scholar]
  51. 51. 
    Cai Lb, Chaté H, Ma Yq, Shi Xq 2019. Phys. Rev. E 99:010601
    [Google Scholar]
  52. 52. 
    Shankar S, Ramaswamy S, Marchetti MC 2018. Phys. Rev. E 97:012707
    [Google Scholar]
  53. 53. 
    Ginelli F 2016. Eur. Phys. J. Spec. Top. 225:2099–117
    [Google Scholar]
  54. 54. 
    Dey S, Das D, Rajesh R 2012. Phys. Rev. Lett. 108:238001
    [Google Scholar]
  55. 55. 
    Chaté H, Ginelli F, Grégoire G, Raynaud F 2008. Phys. Rev. E 77:046113
    [Google Scholar]
  56. 56. 
    Nagai KH, Sumino Y, Montagne R, Aranson IS, Chaté H 2015. Phys. Rev. Lett. 114:168001
    [Google Scholar]
  57. 57. 
    Huber L, Suzuki R, Krüger T, Frey E, Bausch AR 2018. Science 361:255–58
    [Google Scholar]
  58. 58. 
    Chen L, Toner J 2013. Phys. Rev. Lett. 111:088701
    [Google Scholar]
  59. 59. 
    Chen L, Toner J, Lee CF 2015. New J. Phys. 17:042002
    [Google Scholar]
  60. 60. 
    Chen L, Lee CF, Toner J 2016. Nat. Commun. 7:12215
    [Google Scholar]
  61. 61. 
    Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E et al. 2008. PNAS 105:1232–37
    [Google Scholar]
  62. 62. 
    Moussaid M, Helbing D, Theraulaz G 2011. PNAS 108:6884–88
    [Google Scholar]
  63. 63. 
    Gautrais J, Ginelli F, Fournier R, Blanco S, Soria M 2012. PLOS Comput. Biol. 8:9e1002678
    [Google Scholar]
  64. 64. 
    Jiang L, Giuggioli L, Perna A, Escobedo R, Lecheval V 2017. PLOS Comput. Biol. 13:12e1005902
    [Google Scholar]
  65. 65. 
    Ginelli F, Chaté H 2010. Phys. Rev. Lett. 105:168103
    [Google Scholar]
  66. 66. 
    Mahault B, Jiang Xc, Bertin E, Ma Yq, Patelli A et al. 2018. Phys. Rev. Lett. 120:258002
    [Google Scholar]
  67. 67. 
    Giomi L, Bowick MJ, Ma X, Marchetti MC 2013. Phys. Rev. Lett. 110:228101
    [Google Scholar]
  68. 68. 
    Keber FC, Loiseau E, Sanchez T, DeCamp SJ, Giomi L et al. 2014. Science 345:1135–39
    [Google Scholar]
  69. 69. 
    Giomi L, Bowick MJ, Mishra P, Sknepnek R, Marchetti MC 2014. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372:20130365
    [Google Scholar]
  70. 70. 
    Thampi SP, Golestanian R, Yeomans JM 2014. EPL (Europhys. Lett.) 105:18001
    [Google Scholar]
  71. 71. 
    Thampi SP, Golestanian R, Yeomans JM 2014. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 372:20130366
    [Google Scholar]
  72. 72. 
    Shankar S, Ramaswamy S, Marchetti MC, Bowick MJ 2018. Phys. Rev. Lett. 121:108002
    [Google Scholar]
  73. 73. 
    DeCamp SJ, Redner GS, Baskaran A, Hagan MF, Dogic Z 2015. Nat. Mater. 14:1110
    [Google Scholar]
  74. 74. 
    Deleted in proof
  75. 75. 
    Shi Xq, Chaté H 2018.Phys. Rev. Lett. In review. arXiv:1807.00294
  76. 76. 
    Narayan V, Ramaswamy S, Menon N 2007. Science 317:105–8
    [Google Scholar]
  77. 77. 
    Deseigne J, Dauchot O, Chaté H 2010. Phys. Rev. Lett. 105:098001
    [Google Scholar]
  78. 78. 
    Deseigne J, Leonard S, Dauchot O, Chaté H 2012. Soft Matter 8:5629–39
    [Google Scholar]
  79. 79. 
    Weber CA, Hanke T, Deseigne J, Léonard S, Dauchot O et al. 2013. Phys. Rev. Lett. 110:208001
    [Google Scholar]
  80. 80. 
    Kumar N, Soni H, Ramaswamy S, Sood AK 2013. Nat. Commun. 5:4688
    [Google Scholar]
  81. 81. 
    Schaller V, Weber C, Semmrich C, Frey E, Bausch AR 2010. Nature 467:73–77
    [Google Scholar]
  82. 82. 
    Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K et al. 2012. Nature 483:448–52
    [Google Scholar]
  83. 83. 
    Schaller V, Bausch AR 2013. PNAS 110:4488–93
    [Google Scholar]
  84. 84. 
    Nishiguchi D, Nagai KH, Chaté H, Sano M 2017. Phys. Rev. E 95:020601
    [Google Scholar]
  85. 85. 
    Bricard A, Caussin JB, Desreumaux N, Dauchot O, Bartolo D 2013. Nature 503:95
    [Google Scholar]
  86. 86. 
    Geyer D, Morin A, Bartolo D 2018. Nat. Mater. 17:789–93
    [Google Scholar]
  87. 87. 
    Giavazzi F, Malinverno C, Corallino S, Ginelli F, Scita G, Cerbino R 2017. J. Phys. D Appl. Phys. 50:384003
    [Google Scholar]
  88. 88. 
    Peshkov A, Ngo S, Bertin E, Chaté H, Ginelli F 2012. Phys. Rev. Lett. 109:098101
    [Google Scholar]
  89. 89. 
    Romanczuk P, Chaté H, Chen L, Ngo S, Toner J 2016. New J. Phys. 18:063015
    [Google Scholar]
  90. 90. 
    Patelli A, Djafer-Cherif I, Aranson IS, Bertin E, Chaté H 2019.Phys. Rev. Lett. 123:258001
  91. 91. 
    Grégoire G, Chaté H, Tu Y 2003. Phys. D Nonlinear Phenom. 181:157–70
    [Google Scholar]
  92. 92. 
    Chepizhko O, Altmann EG, Peruani F 2013. Phys. Rev. Lett. 110:238101
    [Google Scholar]
  93. 93. 
    Das R, Kumar M, Mishra S 2018. Phys. Rev. E 98:060602
    [Google Scholar]
  94. 94. 
    Toner J, Guttenberg N, Tu Y 2018. Phys. Rev. Lett. 121:248002
    [Google Scholar]
  95. 95. 
    Toner J, Guttenberg N, Tu Y 2018. Phys. Rev. E - Stat., Nonlinear, Soft Matter Phys. 98:062604
    [Google Scholar]
  96. 96. 
    Li H, Shi Xq, Huang M, Chen X, Xiao M et al. 2019. PNAS 116:777–85
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031119-050752
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050752
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error