1932

Abstract

The measurement of superconductivity at above 200 K in compressed samples of hydrogen sulfide and in lanthanum hydride at 250 K is reinvigorating the search for conventional high temperature superconductors. At the same time, it exposes a fascinating interplay between theory, computation, and experiment. Conventional superconductivity is well understood, and theoretical tools are available for accurate predictions of the superconducting critical temperature. These predictions depend on knowing the microscopic structure of the material under consideration, which can now be provided by computational first-principles structure predictions. The experiments at the megabar pressures required are extremely challenging, but, for some groups at least, permit the experimental exploration of materials space. We discuss the prospects for the search for new superconductors, ideally at lower pressures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013413
2020-03-10
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031218-013413.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013413&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Van Delft D, Kes P 2010. Phys. Today 63:38–43
    [Google Scholar]
  2. 2. 
    Meissner W, Ochsenfeld R. 1933. Naturwissenschaften 21:787–88
    [Google Scholar]
  3. 3. 
    Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI 2015. Nature 525:73–76
    [Google Scholar]
  4. 4. 
    Drozdov AP, Kong PP, Minkov VS, Besedin SP, Kuzovnikov MA et al. 2019. Nature 569:528–31
    [Google Scholar]
  5. 5. 
    Matthias B, Geballe T, Geller S, Corenzwit E 1954. Phys. Rev. 95:1435
    [Google Scholar]
  6. 6. 
    London F, London H. 1935. Proc. R. Soc. Lond. Ser. A-Math. Phys. Sci. 149:71–88
    [Google Scholar]
  7. 7. 
    Maxwell E. 1950. Phys. Rev. 79:173
    [Google Scholar]
  8. 8. 
    Reynolds C, Serin B, Wright W, Nesbitt L 1950. Phys. Rev. 78:487
    [Google Scholar]
  9. 9. 
    Bardeen J, Cooper LN, Schrieffer JR 1957. Phys. Rev. 106:162
    [Google Scholar]
  10. 10. 
    Bardeen J, Cooper LN, Schrieffer JR 1957. Phys. Rev. 108:1175
    [Google Scholar]
  11. 11. 
    Wigner E, Huntington HB. 1935. J. Chem. Phys. 3:764–70
    [Google Scholar]
  12. 12. 
    McMahon JM, Morales MA, Pierleoni C, Ceperley DM 2012. Rev. Mod. Phys. 84:1607
    [Google Scholar]
  13. 13. 
    Zaghoo M, Silvera IF. 2017. PNAS 114:11873–77
    [Google Scholar]
  14. 14. 
    Celliers PM, Millot M, Brygoo S, McWilliams RS, Fratanduono DE et al. 2018. Science 361:677–82
    [Google Scholar]
  15. 15. 
    Knudson MD, Desjarlais MP, Becker A, Lemke RW, Cochrane KR et al. 2015. Science 348:1455–60
    [Google Scholar]
  16. 16. 
    Dias RP, Silvera IF. 2017. Science 355:715–18
    [Google Scholar]
  17. 17. 
    Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A et al. 2008. Phys. Rev. Lett. 100:257001
    [Google Scholar]
  18. 18. 
    Monserrat B, Drummond ND, Dalladay-Simpson P, Howie RT, Ríos PL et al. 2018. Phys. Rev. Lett. 120:255701
    [Google Scholar]
  19. 19. 
    Azadi S, Monserrat B, Foulkes WMC, Needs RJ 2014. Phys. Rev. Lett. 112:165501
    [Google Scholar]
  20. 20. 
    Ashcroft NW. 1968. Phys. Rev. Lett. 21:1748
    [Google Scholar]
  21. 21. 
    Pickard CJ, Needs RJ. 2007. Nat. Phys. 3:473
    [Google Scholar]
  22. 22. 
    Merriam M, Schreiber D. 1963. J. Phys. Chem. Solids 24:1375–77
    [Google Scholar]
  23. 23. 
    Gupta M, Burger J. 1980. Phys. Rev. B 22:6074
    [Google Scholar]
  24. 24. 
    Satterthwaite CB, Toepke IL. 1970. Phys. Rev. Lett. 25:741–43
    [Google Scholar]
  25. 25. 
    Skoskiewicz T. 1973. Phys. Status Solidi (b) 59:329–34
    [Google Scholar]
  26. 26. 
    Stritzker B, Buckel W. 1972. Z. Phys. A Hadrons Nuclei 257:1–8
    [Google Scholar]
  27. 27. 
    Bednorz JG, Müller KA. 1986. Z. Phys. B Condens. Matter 64:189–93
    [Google Scholar]
  28. 28. 
    Gao L, Xue YY, Chen F, Xiong Q, Meng RL et al. 1994. Phys. Rev. B 50:4260–63
    [Google Scholar]
  29. 29. 
    Zaanen J. 2010. 100 Years of Superconductivity H Rogalla, PH Kes 92–114 Boca Raton, FL: CRC Press
    [Google Scholar]
  30. 30. 
    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H et al. 2006. J. Am. Chem. Soc. 128:10012–13
    [Google Scholar]
  31. 31. 
    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008. J. Am. Chem. Soc. 130:3296–97
    [Google Scholar]
  32. 32. 
    Vojta M. 2003. Rep. Progress Phys. 66:2069
    [Google Scholar]
  33. 33. 
    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001. Nature 410:63–64
    [Google Scholar]
  34. 34. 
    Tomsic M, Rindfleisch M, Yue J, McFadden K, Phillips J et al. 2007. Int. J. Appl. Ceram. Technol. 4:250–59
    [Google Scholar]
  35. 35. 
    Weller TE, Ellerby M, Saxena SS, Smith RP, Skipper NT 2005. Nat. Phys. 1:39–41
    [Google Scholar]
  36. 36. 
    Ashcroft NW. 2004. Phys. Rev. Lett. 92:187002
    [Google Scholar]
  37. 37. 
    Feng J, Grochala W, Jaroń T, Hoffmann R, Bergara A, Ashcroft NW 2006. Phys. Rev. Lett. 96:017006
    [Google Scholar]
  38. 38. 
    Capitani F, Langerome B, Brubach JB, Roy P, Drozdov A et al. 2017. Nat. Phys. 13:859–63
    [Google Scholar]
  39. 39. 
    Hohenberg P, Kohn W. 1964. Phys. Rev. 136:B864–71
    [Google Scholar]
  40. 40. 
    Kohn W, Sham LJ. 1965. Phys. Rev. 140:A1133–38
    [Google Scholar]
  41. 41. 
    Perdew JP, Burke K, Ernzerhof M 1996. Phys. Rev. Lett. 77:3865–68
    [Google Scholar]
  42. 42. 
    Needs RJ, Pickard CJ. 2016. APL Mater 4:053210
    [Google Scholar]
  43. 43. 
    Oganov AR, Glass CW. 2006. J. Chem. Phys. 124:244704
    [Google Scholar]
  44. 44. 
    Pickard CJ, Needs RJ. 2006. Phys. Rev. Lett. 97:045504
    [Google Scholar]
  45. 45. 
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI et al. 2005. Z. Krist. Cryst. Mater. 220:567–70
    [Google Scholar]
  46. 46. 
    Kresse G, Furthmüller J. 1996. Phys. Rev. B 54:11169
    [Google Scholar]
  47. 47. 
    Pickard CJ, Needs RJ. 2011. J. Phys.: Condens. Matter 23:053201
    [Google Scholar]
  48. 48. 
    Wang Y, Lv J, Zhu L, Ma Y 2012. Comput. Phys. Commun. 183:2063–70
    [Google Scholar]
  49. 49. 
    Li Y, Wang L, Liu H, Zhang Y, Hao J et al. 2016. Phys. Rev. B 93:020103
    [Google Scholar]
  50. 50. 
    Peng F, Sun Y, Pickard CJ, Needs RJ, Wu Q, Ma Y 2017. Phys. Rev. Lett. 119:107001
    [Google Scholar]
  51. 51. 
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R et al. 2009. J. Phys.: Condens. Matter 21:395502
    [Google Scholar]
  52. 52. 
    Lejaeghere K, Bihlmayer G, Björkman T, Blaha P, Blügel S et al. 2016. Science 351:aad3000
    [Google Scholar]
  53. 53. 
    Oganov A, Pickard CJ, Zhu Q, Needs RJ 2019. Nat. Rev. Mater. 4:331–48
    [Google Scholar]
  54. 54. 
    Jain A, Shin Y, Persson KA 2016. Nat. Rev. Mater. 1:15004
    [Google Scholar]
  55. 55. 
    Zhang L, Wang Y, Lv J, Ma Y 2017. Nat. Rev. Mater. 2:17005
    [Google Scholar]
  56. 56. 
    Eremets M, Troyan I. 2011. Nat. Mater. 10:927
    [Google Scholar]
  57. 57. 
    Howie RT, Guillaume CL, Scheler T, Goncharov AF, Gregoryanz E 2012. Phys. Rev. Lett. 108:125501
    [Google Scholar]
  58. 58. 
    Feng J, Hennig RG, Ashcroft N, Hoffmann R 2008. Nature 451:445
    [Google Scholar]
  59. 59. 
    Pickard CJ, Martinez-Canales M, Needs RJ 2013. Phys. Rev. Lett. 110:245701
    [Google Scholar]
  60. 60. 
    Giustino F. 2017. Rev. Mod. Phys. 89:015003
    [Google Scholar]
  61. 61. 
    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001. Rev. Mod. Phys. 73:515–62
    [Google Scholar]
  62. 62. 
    Frederiksen T, Paulsson M, Brandbyge M, Jauho AP 2007. Phys. Rev. B 75:205413
    [Google Scholar]
  63. 63. 
    Mauri F, Zakharov O, de Gironcoli S, Louie SG, Cohen ML 1996. Phys. Rev. Lett. 77:1151–54
    [Google Scholar]
  64. 64. 
    Monserrat B. 2018. J. Phys.: Condens. Matter 30:083001
    [Google Scholar]
  65. 65. 
    Allen PB, Dynes RC. 1975. Phys. Rev. B 12:905–22
    [Google Scholar]
  66. 66. 
    Sanna A, Flores-Livas JA, Davydov A, Profeta G, Dewhurst K et al. 2018. J. Phys. Soc. Jpn. 87:041012
    [Google Scholar]
  67. 67. 
    Yildirim T, Gülseren O, Lynn JW, Brown CM, Udovic TJ et al. 2001. Phys. Rev. Lett. 87:037001
    [Google Scholar]
  68. 68. 
    Calandra M, Mauri F. 2005. Phys. Rev. Lett. 95:237002
    [Google Scholar]
  69. 69. 
    Calandra M, Mauri F. 2008. Phys. Rev. Lett. 101:016401
    [Google Scholar]
  70. 70. 
    Allen PB, Mitrovicć B. 1983. Solid State Physics, Vol. 37 H Ehrenreich, F Seitz, D Turnbull 1–92 New York: Academic
    [Google Scholar]
  71. 71. 
    Oliveira LN, Gross EKU, Kohn W 1988. Phys. Rev. Lett. 60:2430–33
    [Google Scholar]
  72. 72. 
    Errea I, Calandra M, Pickard CJ, Nelson J, Needs RJ et al. 2015. Phys. Rev. Lett. 114:157004
    [Google Scholar]
  73. 73. 
    Rousseau B, Bergara A. 2010. Phys. Rev. B 82:104504
    [Google Scholar]
  74. 74. 
    Errea I, Calandra M, Mauri F 2013. Phys. Rev. Lett. 111:177002
    [Google Scholar]
  75. 75. 
    Errea I, Calandra M, Mauri F 2014. Phys. Rev. B 89:064302
    [Google Scholar]
  76. 76. 
    Errea I, Calandra M, Pickard CJ, Nelson JR, Needs RJ et al. 2016. Nature 532:81
    [Google Scholar]
  77. 77. 
    Sano W, Koretsune T, Tadano T, Akashi R, Arita R 2016. Phys. Rev. B 93:094525
    [Google Scholar]
  78. 78. 
    Borinaga M, Riego P, Leonardo A, Calandra M, Mauri F et al. 2016. J. Phys.: Condens. Matter 28:494001
    [Google Scholar]
  79. 79. 
    Borinaga M, Errea I, Calandra M, Mauri F, Bergara A 2016. Phys. Rev. B 93:174308
    [Google Scholar]
  80. 80. 
    Scheler T, Degtyareva O, Marqués M, Guillaume CL, Proctor JE et al. 2011. Phys. Rev. B 83:214106
    [Google Scholar]
  81. 81. 
    Eremets M, Trojan I, Medvedev S, Tse J, Yao Y 2008. Science 319:1506–9
    [Google Scholar]
  82. 82. 
    Gao G, Oganov AR, Bergara A, Martinez-Canales M, Cui T et al. 2008. Phys. Rev. Lett. 101:107002
    [Google Scholar]
  83. 83. 
    Pickard CJ, Needs R. 2007. Phys. Rev. B 76:144114
    [Google Scholar]
  84. 84. 
    Goncharenko I, Eremets M, Hanfland M, Tse J, Amboage M et al. 2008. Phys. Rev. Lett. 100:045504
    [Google Scholar]
  85. 85. 
    Wang H, John ST, Tanaka K, Iitaka T, Ma Y 2012. PNAS 109:6463–66
    [Google Scholar]
  86. 86. 
    Li Y, Hao J, Liu H, Li Y, Ma Y 2014. J. Chem. Phys. 140:174712
    [Google Scholar]
  87. 87. 
    Ma Y, Eremets M, Oganov AR, Xie Y, Trojan I et al. 2009. Nature 458:182
    [Google Scholar]
  88. 88. 
    Duan D, Liu Y, Tian F, Li D, Huang X et al. 2014. Sci. Rep. 4:6968
    [Google Scholar]
  89. 89. 
    Liu H, Naumov II, Hoffmann R, Ashcroft N, Hemley RJ 2017. PNAS 114:6990–95
    [Google Scholar]
  90. 90. 
    Duan D, Huang X, Tian F, Li D, Yu H et al. 2015. Phys. Rev. B 91:180502
    [Google Scholar]
  91. 91. 
    Akashi R, Kawamura M, Tsuneyuki S, Nomura Y, Arita R 2015. Phys. Rev. B 91:224513
    [Google Scholar]
  92. 92. 
    Flores-Livas JA, Sanna A, Gross EK 2016. Eur. Phys. J. B 89:63
    [Google Scholar]
  93. 93. 
    Akashi R, Sano W, Arita R, Tsuneyuki S 2016. Phys. Rev. Lett. 117:075503
    [Google Scholar]
  94. 94. 
    Bianco R, Errea I, Calandra M, Mauri F 2018. Phys. Rev. B 97:214101
    [Google Scholar]
  95. 95. 
    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets MI et al. 2016. Nat. Phys. 12:835–38
    [Google Scholar]
  96. 96. 
    Goncharov AF, Lobanov SS, Prakapenka VB, Greenberg E 2017. Phys. Rev. B 95:140101
    [Google Scholar]
  97. 97. 
    Guigue B, Marizy A, Loubeyre P 2017. Phys. Rev. B 95:020104
    [Google Scholar]
  98. 98. 
    Troyan I, Gavriliuk A, Rüffer R, Chumakov A, Mironovich A et al. 2016. Science 351:1303–6
    [Google Scholar]
  99. 99. 
    Mozaffari S, Sun D, Minkov VS, Drozdov AP, Knyazev D et al. 2019. Nat. Commun. 10:2522
    [Google Scholar]
  100. 100. 
    Schirber JE, Northrup CJM. 1974. Phys. Rev. B 10:3818–20
    [Google Scholar]
  101. 101. 
    Somayazulu M, Ahart M, Mishra AK, Geballe ZM, Baldini M et al. 2019. Phys. Rev. Lett. 122:027001
    [Google Scholar]
  102. 102. 
    Schilling A, Cantoni M, Guo JD, Ott HR 1993. Nature 363:56–58
    [Google Scholar]
  103. 103. 
    Wu G, Xie YL, Chen H, Zhong M, Liu RH et al. 2009. J. Phys.: Condens. Matter 21:142203
    [Google Scholar]
  104. 104. 
    Bi T, Zarifi N, Terpstra T, Zurek E 2019. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering https://doi.org/10.1016/B978-0-12-409547-2.11435-0
    [Crossref] [Google Scholar]
  105. 105. 
    Drozdov AP, Eremets MI, Troyan IA 2015. arXiv e-prints arXiv:1508.06224
    [Google Scholar]
  106. 106. 
    Flores-Livas JA, Amsler M, Heil C, Sanna A, Boeri L et al. 2016. Phys. Rev. B 93:020508
    [Google Scholar]
  107. 107. 
    Drozdov AP, Minkov VS, Besedin SP, Kong PP, Kuzovnikov MA et al. 2018. arXiv e-prints arXiv:1808.07039
    [Google Scholar]
  108. 108. 
    Geballe ZM, Liu H, Mishra AK, Ahart M, Somayazulu M et al. 2018. Angew. Chem. Int. Ed. 57:688–92
    [Google Scholar]
  109. 109. 
    Hirsch JE. 2009. Phys. Scr. 80:035702
    [Google Scholar]
  110. 110. 
    Zarifi N, Bi T, Liu H, Zurek E 2018. J. Phys. Chem. C 122:24262–69
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031218-013413
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013413
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error