1932

Abstract

The physics of the pseudogap phase of high-temperature cuprate superconductors has been an enduring mystery over the past 30 years. The ubiquitous presence of the pseudogap phase in underdoped cuprates suggests that understanding it is key to unraveling the origin of high-temperature superconductivity. We review various theoretical approaches to this problem, emphasizing the concept of emergent symmetries in the underdoped region of those compounds. We differentiate these theories by considering a few fundamental questions related to the rich phenomenology of these materials. Lastly, we discuss a recent idea regarding two kinds of entangled preformed pairs that open a gap at the pseudogap onset temperature, *, through a specific Higgs mechanism. We review the experimental consequences of this line of thought.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013125
2020-03-10
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031218-013125.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013125&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alloul H, Ohno T, Mendels P 1989. Phys. Rev. Lett. 63:1700–3
    [Google Scholar]
  2. 2. 
    Alloul H, Mendels P, Casalta H, Marucco JF, Arabski J 1991. Phys. Rev. Lett. 67:3140–43
    [Google Scholar]
  3. 3. 
    Warren WW, Walstedt RE, Brennert GF, Cava RJ, Tycko R et al. 1989. Phys. Rev. Lett. 62:1193–96
    [Google Scholar]
  4. 4. 
    Campuzano JC, Norman MR, Ding H, Randeria M, Yokoya T et al. 1998. Nature 392:157–60
    [Google Scholar]
  5. 5. 
    Campuzano JC, Ding H, Norman MR, Fretwell HM, Randeria M et al. 1999. Phys. Rev. Lett. 83:3709–12
    [Google Scholar]
  6. 6. 
    Shen KM, Ronning F, Lu DH, Baumberger F, Ingle NJC et al. 2005. Science 307:901–4
    [Google Scholar]
  7. 7. 
    Vishik IM, Lee WS, He RH, Hashimoto M, Hussain Z et al. 2010. New J. Phys. 12:105008–19
    [Google Scholar]
  8. 8. 
    Vishik IM, Lee WS, Schmitt F, Moritz B, Sasagawa T et al. 2010. Phys. Rev. Lett. 104:207002
    [Google Scholar]
  9. 9. 
    Wise WD, Boyer MC, Chatterjee K, Kondo T, Takeuchi T et al. 2008. Nat. Phys. 4:696–99
    [Google Scholar]
  10. 10. 
    Hoffman JE, Hudson EW, Lang KM, Madhavan V, Eisaki H et al. 2002. Science 295:466–69
    [Google Scholar]
  11. 11. 
    Hamidian MH, Edkins SD, Kim CK, Davis JC, Mackenzie AP et al. 2015. Nat. Phys. 12:150–56
    [Google Scholar]
  12. 12. 
    Benhabib S, Sacuto A, Civelli M, Paul I, Cazayous M et al. 2015. Phys. Rev. Lett. 114:147001
    [Google Scholar]
  13. 13. 
    Loret B, Auvray N, Gallais Y, Cazayous M, Forget A et al. 2019. Nat. Phys. 15:771–75
    [Google Scholar]
  14. 14. 
    Loret B, Sakai S, Benhabib S, Gallais Y, Cazayous M et al. 2017. Phys. Rev. B 96:094525
    [Google Scholar]
  15. 15. 
    Norman MR, Pépin C 2003. Rep. Prog. Phys. 66:1547–610
    [Google Scholar]
  16. 16. 
    Lee PA, Nagaosa N, Wen XG 2006. Rev. Mod. Phys. 78:17–85
    [Google Scholar]
  17. 17. 
    Chubukov A, Pines D, Schmalian J 2003. The Physics of Conventional and Unconventional Superconductors, Vol. 1: Superconductivity KH Bennemann, JB Ketterson1349–413 Berlin: Springer
    [Google Scholar]
  18. 18. 
    Rice TM, Yang KY, Zhang FC 2012. Rep. Prog. Phys. 75:016502
    [Google Scholar]
  19. 19. 
    Senthil T, Lee PA 2009. Phys. Rev. B 79:245116
    [Google Scholar]
  20. 20. 
    Verret S, Simard O, Charlebois M, Sénéchal D, Tremblay AMS 2017. Phys. Rev. B 96:125139
    [Google Scholar]
  21. 21. 
    Fradkin E, Kivelson SA, Tranquada JM 2015. Rev. Mod. Phys. 87:457–82
    [Google Scholar]
  22. 22. 
    Alloul H 2014. C. R. Phys. 15:519–24
    [Google Scholar]
  23. 23. 
    Scalapino DJ 2007.Handbook of High-Temperature Superconductivity JR Schrieffer495–526 New York: Springer
  24. 24. 
    Le Hur K, Rice TM 2009. Ann. Phys. 324:1452–515
    [Google Scholar]
  25. 25. 
    Lee PA, Nagaosa N, Ng TK, Wen XG 1998. Phys. Rev. B 57:6003–21
    [Google Scholar]
  26. 26. 
    Lee PA, Nagaosa N 1992. Phys. Rev. B 46:5621–39
    [Google Scholar]
  27. 27. 
    Kotliar G, Liu J 1988. Phys. Rev. B 38:5142–45
    [Google Scholar]
  28. 28. 
    Senthil T, Fisher MPA 2000. Phys. Rev. B 62:7850–81
    [Google Scholar]
  29. 29. 
    Senthil T, Fisher MPA 2001. Phys. Rev. Lett. 86:292–95
    [Google Scholar]
  30. 30. 
    Lee P, Wen XG 1997. Phys. Rev. Lett. 78:4111–14
    [Google Scholar]
  31. 31. 
    Lee PA, Nagaosa N, Ng TK, Wen XG 1998. Phys. Rev. B 57:6003–21
    [Google Scholar]
  32. 32. 
    Sachdev S, Scammell HD, Scheurer MS, Tarnopolsky G 2019. Phys. Rev. B 99:054516
    [Google Scholar]
  33. 33. 
    Ferraz A, Kochetov E 2011. Nucl. Phys. B 853:710–38
    [Google Scholar]
  34. 34. 
    Ivantsov I, Ferraz A, Kochetov E 2018. Phys. Rev. B 98:214511
    [Google Scholar]
  35. 35. 
    Chakraborty D, Morice C, Pépin C 2018. Phys. Rev. B 97:214501
    [Google Scholar]
  36. 36. 
    Kotliar G 1988. Phys. Rev. B 37:3664–66
    [Google Scholar]
  37. 37. 
    Anderson PW 1987. Science 235:1196–98
    [Google Scholar]
  38. 38. 
    Anderson PW, Lee PA, Randeria M, Rice TM, Trivedi N, Zhang FC 2004. J. Phys. Condens. Matter 16:R755–69
    [Google Scholar]
  39. 39. 
    Kloss T, Montiel X, de Carvalho VS, Freire H, Pépin C 2016. Rep. Prog. Phys. 79:084507
    [Google Scholar]
  40. 40. 
    Emery VJ, Kivelson SA 1995. Nature 374:434–37
    [Google Scholar]
  41. 41. 
    Benfatto L, Caprara S, Castro CD 2000. Eur. Phys. J. B 17:95–102
    [Google Scholar]
  42. 42. 
    Benfatto L, Castellani C, Giamarchi T 2007. Phys. Rev. Lett. 98:117008
    [Google Scholar]
  43. 43. 
    Uemura YJ, Luke GM, Sternlieb BJ, Brewer JH, Carolan JF et al. 1989. Phys. Rev. Lett. 62:2317–20
    [Google Scholar]
  44. 44. 
    Homes CC, Dordevic SV, Strongin M, Bonn DA, Liang R et al. 2004. Nature 430:539–41
    [Google Scholar]
  45. 45. 
    Norman MR, Ding H, Randeria M 1998. J. Phys. Chem. Solids 59:1902–6
    [Google Scholar]
  46. 46. 
    Norman MR, Kanigel A, Randeria M, Chatterjee U, Campuzano JC 2007. Phys. Rev. B 76:174501
    [Google Scholar]
  47. 47. 
    Norman MR, Randeria M, Ding H, Campuzano JC 1995. Phys. Rev. B 52:615–22
    [Google Scholar]
  48. 48. 
    Banerjee S, Ramakrishnan TV, Dasgupta C 2011. Phys. Rev. B 83:024510
    [Google Scholar]
  49. 49. 
    Banerjee S, Ramakrishnan TV, Dasgupta C 2011. Phys. Rev. B 84:144525
    [Google Scholar]
  50. 50. 
    Boyack R, Wu CT, Scherpelz P, Levin K 2014. Phys. Rev. B 90:220513
    [Google Scholar]
  51. 51. 
    Boyack R, Chen Q, Varlamov AA, Levin K 2018. Phys. Rev. B 97:064503
    [Google Scholar]
  52. 52. 
    Chien CC, He Y, Chen Q, Levin K 2009. Phys. Rev. B 79:214527
    [Google Scholar]
  53. 53. 
    Li L, Wang Y, Komiya S, Ono S, Ando Y et al. 2010. Phys. Rev. B 81:054510
    [Google Scholar]
  54. 54. 
    Li L, Alidoust N, Tranquada JM, Gu GD, Ong NP 2011. Phys. Rev. Lett. 107:277001
    [Google Scholar]
  55. 55. 
    Li L, Wang Y, Ong NP 2013. Phys. Rev. B 87:056502
    [Google Scholar]
  56. 56. 
    Cyr-Choinière O, Daou R, Laliberté F, Collignon C, Badoux S et al. 2018. Phys. Rev. B 97:064502
    [Google Scholar]
  57. 57. 
    Rullier-Albenque F, Alloul H, Rikken G 2011. Phys. Rev. B 84:014522
    [Google Scholar]
  58. 58. 
    Bergeal N, Lesueur J, Aprili M, Faini G, Contour JP, Leridon B 2008. Nat. Phys. 4:608–11
    [Google Scholar]
  59. 59. 
    Wachtel G, Orgad D 2014. Phys. Rev. B 90:224506
    [Google Scholar]
  60. 60. 
    Demler E, Zhang SC 1995. Phys. Rev. Lett. 75:4126–29
    [Google Scholar]
  61. 61. 
    Demler E, Hanke W, Zhang SC 2004. Rev. Mod. Phys. 76:909–74
    [Google Scholar]
  62. 62. 
    Zhang SC 1997. Science 275:1089–96
    [Google Scholar]
  63. 63. 
    Wu T, Mayaffre H, Krämer S, Horvatić M, Berthier C 2014. arXiv:1404.1617 [cond-mat.supr-con]
  64. 64. 
    Wu T, Mayaffre H, Krämer S, Horvatic M, Berthier C et al. 2011. Nature 477:191–94
    [Google Scholar]
  65. 65. 
    Blackburn E, Chang J, Hücker M, Holmes AT, Christensen NB et al. 2013. Phys. Rev. Lett. 110:137004
    [Google Scholar]
  66. 66. 
    Blanco-Canosa S, Frano A, Loew T, Lu Y, Porras J et al. 2013. Phys. Rev. Lett. 110:187001
    [Google Scholar]
  67. 67. 
    Blanco-Canosa S, Frano A, Schierle E, Porras J, Loew T et al. 2014. Phys. Rev. B 90:054513
    [Google Scholar]
  68. 68. 
    Ghiringhelli G, Le Tacon M, Minola M, Blanco-Canosa S, Mazzoli C et al. 2012. Science 337:821–25
    [Google Scholar]
  69. 69. 
    Doiron-Leyraud N, Proust C, LeBoeuf D, Levallois J, Bonnemaison JB et al. 2007. Nature 447:565–68
    [Google Scholar]
  70. 70. 
    LeBoeuf D, Doiron-Leyraud N, Levallois J, Daou R, Bonnemaison JB et al. 2007. Nature 450:533–36
    [Google Scholar]
  71. 71. 
    Sebastian SE, Harrison N, Liang R, Bonn DA, Hardy WN et al. 2012. Phys. Rev. Lett. 108:196403
    [Google Scholar]
  72. 72. 
    Tabis W, Li Y, Le Tacon M, Braicovich L, Kreyssig A et al. 2014. Nat. Commun. 5:5875
    [Google Scholar]
  73. 73. 
    Barišić N, Badoux S, Chan MK, Dorow C, Tabis W et al. 2013. Nat. Phys. 9:761–64
    [Google Scholar]
  74. 74. 
    Grissonnanche G, Laliberté F 2015. arXiv:1508.05486 [cond-mat]
  75. 75. 
    Laliberté F, Chang J, Doiron-Leyraud N, Hassinger E, Daou R et al. 2011. Nat. Commun. 2:432
    [Google Scholar]
  76. 76. 
    Chang J, Daou R, Proust C, LeBoeuf D, Doiron-Leyraud N et al. 2010. Phys. Rev. Lett. 104:057005
    [Google Scholar]
  77. 77. 
    Gerber S, Jang H, Nojiri H, Matsuzawa S, Yasumura H et al. 2015. Science 350:949–52
    [Google Scholar]
  78. 78. 
    Chang J, Blackburn E, Ivashko O, Holmes AT, Christensen NB et al. 2016. Nat. Commun. 7:11494
    [Google Scholar]
  79. 79. 
    Jang H, Lee WS, Nojiri H, Matsuzawa S, Yasumura H et al. 2016. PNAS 113:14645–50
    [Google Scholar]
  80. 80. 
    LeBoeuf D, Kramer S, Hardy WN, Liang R, Bonn DA, Proust C 2013. Nat. Phys. 9:79–83
    [Google Scholar]
  81. 81. 
    Laliberté F, Frachet M, Benhabib S, Borgnic B, Loew T et al. 2018. New Phys. J. Quantum Mater. 3:11
    [Google Scholar]
  82. 82. 
    Efetov KB, Meier H, Pépin C 2013. Nat. Phys. 9:442–46
    [Google Scholar]
  83. 83. 
    Pépin C, de Carvalho VS, Kloss T, Montiel X 2014. Phys. Rev. B 90:195207
    [Google Scholar]
  84. 84. 
    Metlitski MA, Sachdev S 2010. Phys. Rev. B 82:075128
    [Google Scholar]
  85. 85. 
    Atkinson WA, Kampf AP, Bulut S 2015. New J. Phys. 17:013025
    [Google Scholar]
  86. 86. 
    Freire H, de Carvalho VS, Pépin C 2015. Phys. Rev. B 92:045132
    [Google Scholar]
  87. 87. 
    Abanov A, Chubukov AV, Schmalian J 2003. Adv. Phys. 52:119–218
    [Google Scholar]
  88. 88. 
    Einenkel M, Meier H, Pépin C, Efetov KB 2014. Phys. Rev. B 90:054511
    [Google Scholar]
  89. 89. 
    Hayward LE, Hawthorn DG, Melko RG, Sachdev S 2014. Science 343:1336–39
    [Google Scholar]
  90. 90. 
    Wu T, Mayaffre H, Krämer S, Horvatić M, Berthier C et al. 2013. Nat. Commun. 4:2113
    [Google Scholar]
  91. 91. 
    Arovas DP, Berlinsky AJ, Kallin C, Zhang SC 1997. Phys. Rev. Lett. 79:2871–74
    [Google Scholar]
  92. 92. 
    Ghosal A, Kallin C, Berlinsky AJ 2002. Phys. Rev. B 66:214502
    [Google Scholar]
  93. 93. 
    Lee PA, Wen XG 2001. Phys. Rev. B 63:224517
    [Google Scholar]
  94. 94. 
    Lake B, Aeppli G, Clausen KN, McMorrow DF, Lefmann K et al. 2001. Science 291:1759–62
    [Google Scholar]
  95. 95. 
    Kivelson SA, Lee DH, Fradkin E, Oganesyan V 2002. Phys. Rev. B 66:144516
    [Google Scholar]
  96. 96. 
    Zhang Y, Demler E, Sachdev S 2002. Phys. Rev. B 66:094501
    [Google Scholar]
  97. 97. 
    Meier H, Einenkel M, Pépin C, Efetov KB 2013. Phys. Rev. B 88:020506
    [Google Scholar]
  98. 98. 
    Kačmarčík J, Vinograd I, Michon B, Rydh A, Demuer A et al. 2018. Phys. Rev. Lett. 121:167002
    [Google Scholar]
  99. 99. 
    Morice C, Chakraborty D, Pépin C 2018. Phys. Rev. B 98:224514
    [Google Scholar]
  100. 100. 
    Vig S, Kogar A, Mitrano M, Husain A, Venema L et al. 2017. SciPost Phys. 3:026
    [Google Scholar]
  101. 101. 
    Mitrano M, Husain AA, Vig S, Kogar A, Rak MS et al. 2018. PNAS 115:5392–96
    [Google Scholar]
  102. 102. 
    Chaix L, Ghiringhelli G, Peng YY, Hashimoto M, Moritz B et al. 2017. Nat. Phys. 13:952–56
    [Google Scholar]
  103. 103. 
    Sacuto A, Gallais Y, Cazayous M, Méasson MA, Gu GD, Colson D 2013. Rep. Prog. Phys. 76:022502
    [Google Scholar]
  104. 104. 
    Devereaux TP, Hackl R 2007. Rev. Mod. Phys. 79:175–233
    [Google Scholar]
  105. 105. 
    Kugler M, Fischer O, Renner C, Ono S, Ando Y 2001. Phys. Rev. Lett. 86:4911–14
    [Google Scholar]
  106. 106. 
    Damascelli A, Hussain Z, Shen ZX 2003. Rev. Mod. Phys. 75:473–541
    [Google Scholar]
  107. 107. 
    Vishik IM 2018. Rep. Prog. Phys. 81:062501
    [Google Scholar]
  108. 108. 
    Lee PA 2014. Phys. Rev. X 4:031017
    [Google Scholar]
  109. 109. 
    Montiel X, Kloss T, Pépin C 2016. Europhys. Lett. 115:57001
    [Google Scholar]
  110. 110. 
    Wu W, Scheurer MS, Chatterjee S, Sachdev S, Georges A, Ferrero M 2018. Phys. Rev. X 8:021048
    [Google Scholar]
  111. 111. 
    Sakai S, Civelli M, Imada M 2016. Phys. Rev. Lett. 116:057003
    [Google Scholar]
  112. 112. 
    Sakai S, Civelli M, Imada M 2018. Phys. Rev. B 98:195109
    [Google Scholar]
  113. 113. 
    Badoux S, Tabis W, Laliberté F, Grissonnanche G, Vignolle B et al. 2016. Nature 531:210–14
    [Google Scholar]
  114. 114. 
    Yang KY, Rice TM, Zhang FC 2006. Phys. Rev. B 73:174501
    [Google Scholar]
  115. 115. 
    Chatterjee S, Sachdev S, Eberlein A 2017. Phys. Rev. B 96:075103
    [Google Scholar]
  116. 116. 
    Storey JG 2016. Europhys. Lett. 113:27003
    [Google Scholar]
  117. 117. 
    Morice C, Montiel X, Pépin C 2017. Phys. Rev. B 96:134511
    [Google Scholar]
  118. 118. 
    Paramekanti A, Randeria M, Trivedi N 2001. Phys. Rev. Lett. 87:217002
    [Google Scholar]
  119. 119. 
    Montiel X, Kloss T, Pépin C 2017. Phys. Rev. B 95:104510
    [Google Scholar]
  120. 120. 
    Hinkov V, Bourges P, Pailhès S, Sidis Y, Ivanov A et al. 2007. Nat. Phys. 3:780–85
    [Google Scholar]
  121. 121. 
    Wang X, Wang Y, Schattner Y, Berg E, Fernandes RM 2018. Phys. Rev. Lett. 120:247002
    [Google Scholar]
  122. 122. 
    Montiel X, Kloss T, Pépin C 2017. Sci. Rep. 7:3477
    [Google Scholar]
  123. 123. 
    Rullier-Albenque F, Vieillefond PA, Alloul H, Tyler AW, Lejay P, Marucco JF 2000. Europhys. Lett. 50:81–87
    [Google Scholar]
  124. 124. 
    Alloul H, Bobroff J, Gabay M, Hirschfeld PJ 2009. Rev. Mod. Phys. 81:45–108
    [Google Scholar]
  125. 125. 
    Montiel X, Pépin C 2017. Phys. Rev. B 96:094529
    [Google Scholar]
  126. 126. 
    Chakraborty D, Grandadam M, Hamidian MH, Davis JCS, Sidis Y, Pépin C 2019. arXiv:1906.01633 [cond-mat]
  127. 127. 
    Fradkin E 2007. Field Theories of Condensed Matter Systems chapter 7.9. Kolkata: Sarat
    [Google Scholar]
  128. 128. 
    Grissonnanche G, Legros A, Badoux S, Lefrançois E, Zatko V 2019. arXiv:1901.03104 [cond-mat.supr-con]
  129. 129. 
    Chatterjee S, Guo H, Sachdev S, Samajdar R, Scheurer MS 2019. arXiv:1903.01992 [cond-mat.str-el]
  130. 130. 
    Han JH, Park JH, Lee PA 2019. arXiv:1903.01125 [cond-mat.str-el]
  131. 131. 
    Varma CM 2019. arXiv:1903.04699 [cond-mat.str-el]
  132. 132. 
    Chakravarty S, Laughlin RB, Morr DK, Nayak C 2001. Phys. Rev. B 63:094503
    [Google Scholar]
  133. 133. 
    Wang Y, Chubukov A 2014. Phys. Rev. B 90:035149
    [Google Scholar]
  134. 134. 
    Wang Y, Agterberg DF, Chubukov A 2015. Phys. Rev. B 91:115103
    [Google Scholar]
  135. 135. 
    Wang Y, Agterberg DF, Chubukov A 2015. Phys. Rev. Lett. 114:197001
    [Google Scholar]
  136. 136. 
    Rajasekaran S, Okamoto J, Mathey L, Fechner M, Thampy V et al. 2018. Science 359:575–79
    [Google Scholar]
  137. 137. 
    Hu W, Kaiser S, Nicoletti D, Hunt CR, Gierz I et al. 2014. Nat. Mater. 13:705–11
    [Google Scholar]
  138. 138. 
    Fausti D, Tobey R, Dean N, Kaiser S, Dienst A et al. 2011. Science 331:189–91
    [Google Scholar]
  139. 139. 
    Mahmood F, He X, Božović I, Armitage NP 2019. Phys. Rev. Lett. 122:027003
    [Google Scholar]
  140. 140. 
    Norman MR, Randeria M, Ding H, Campuzano JC 1998. Phys. Rev. B 57:R11093–96
    [Google Scholar]
  141. 141. 
    Eschrig M, Norman MR 2000. Phys. Rev. Lett. 85:3261–64
    [Google Scholar]
  142. 142. 
    Eschrig M 2006. Adv. Phys. 55:47–183
    [Google Scholar]
  143. 143. 
    Chubukov A, Devereaux T, Klein M 2006. Phys. Rev. B 73:094512
    [Google Scholar]
  144. 144. 
    Hamidian MH, Edkins SD, Joo SH, Kostin A, Eisaki H et al. 2016. Nature 532:343–47
    [Google Scholar]
  145. 145. 
    Edkins SD, Kostin A, Fujita K, Mackenzie AP, Eisaki H 2018. arXiv:1802.04673 [cond-mat]
  146. 146. 
    Wang Y, Edkins SD, Hamidian MH, Davis JCS, Fradkin E, Kivelson SA 2018. Phys. Rev. B 97:174510
    [Google Scholar]
  147. 147. 
    Dai Z, Zhang YH, Senthil T, Lee PA 2018. Phys. Rev. B 97:174511
    [Google Scholar]
  148. 148. 
    Hamidian MH, Edkins SD, Fujita K, Kostin A, Mackenzie AP 2015. arXiv:1508.00620 [cond-mat.supr-con]
  149. 149. 
    Fauqué B, Sidis Y, Hinkov V, Pailhès S, Lin CT et al. 2006. Phys. Rev. Lett. 96:197001
    [Google Scholar]
  150. 150. 
    Sato Y, Kasahara S, Murayama H, Kasahara Y, Moon EG et al. 2017. Nat. Phys. 13:1074–78
    [Google Scholar]
  151. 151. 
    Murayama H, Sato Y, Kurihara R, Kasahara S, Mizukami Y 2018. arXiv:1805.00276 [cond-mat.supr-con]
  152. 152. 
    Zhao L, Belvin CA, Liang R, Bonn DA, Hardy WN et al. 2016. Nat. Phys. 13:250–54
    [Google Scholar]
  153. 153. 
    Agterberg DF, Melchert DS, Kashyap MK 2015. Phys. Rev. B 91:054502
    [Google Scholar]
  154. 154. 
    Sarkar S, Chakraborty D, Pépin C 2019. arXiv:1906.08280 [cond-mat.supr-con]
  155. 155. 
    Zhang FC, Rice TM 1988. Phys. Rev. B 37:3759–61
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031218-013125
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013125
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error