1932

Abstract

When the continuous symmetry of a physical system is spontaneously broken, two types of collective modes typically emerge: the amplitude and the phase modes of the order-parameter fluctuation. For superconductors, the amplitude mode is referred to most recently as the Higgs mode as it is a condensed-matter analog of a Higgs boson in particle physics. Higgs mode is a scalar excitation of the order parameter, distinct from charge or spin fluctuations, and thus does not couple to electromagnetic fields linearly. This is why the Higgs mode in superconductors has evaded experimental observations for over a half century after the initial theoretical prediction, except for a charge-density-wave coexisting system. With the advance of nonlinear and time-resolved terahertz spectroscopy techniques, however, it has become possible to study the Higgs mode through the nonlinear light–Higgs coupling. In this review, we overview recent progress in the study of the Higgs mode in superconductors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050813
2020-03-10
2024-05-29
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050813.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050813&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nambu Y. 2011. BCS: 50 Years LN Cooper, D Feldman Singapore: World Sci.
  2. 2. 
    Ginzburg VL, Landau LD. 1950. Zh. Eksp. Teor. Fiz. 20:1064–82
  3. 3. 
    Bogoliubov NN. 1958. J. Exp. Theoret. Phys. 34:58–65
  4. 4. 
    Anderson PW. 1958. Phys. Rev. 110:827–35
  5. 5. 
    Anderson PW. 1958. Phys. Rev. 112:1900–16
  6. 6. 
    Nambu Y. 1960. Phys. Rev. 117:648–63
  7. 7. 
    Goldstone J. 1961. Nuovo Cim 19:154–64
  8. 8. 
    Goldstone J, Salam A, Weinberg S 1962. Phys. Rev. 127:965–70
  9. 9. 
    Anderson PW. 1963. Phys. Rev. 130:439–42
  10. 10. 
    Englert F, Brout R. 1964. Phys. Rev. Lett. 13:321–23
  11. 11. 
    Higgs PW. 1964. Phys. Lett. 12:132–33
  12. 12. 
    Higgs PW. 1964. Phys. Rev. Lett. 13:508–9
  13. 13. 
    Guralnik GS, Hagen CR, Kibble TWB 1964. Phys. Rev. Lett. 13:585–87
  14. 14. 
    Anderson PW. 2015. Nat. Phys. 11:93
  15. 15. 
    Bardeen J, Cooper LN, Schrieffer JR 1957. Phys. Rev. 108:1175–204
  16. 15a. 
    Schmid A 1968. Phys. Kond. Mater 8:129–40
  17. 16. 
    Volkov AF, Kogan SM. 1974. Sov. Phys. J. Exp. Theoret. Phys. 38:1018–21
  18. 17. 
    Kulik IO, Entin-Wohlman O, Orbach R 1981. J. Low Temp. Phys. 43:591–620
  19. 18. 
    Littlewood PB, Varma CM. 1981. Phys. Rev. Lett. 47:811–14
  20. 19. 
    Littlewood PB, Varma CM. 1982. Phys. Rev. B 26:4883–93
  21. 20. 
    Nambu Y, Jona-Lasinio G. 1961. Phys. Rev. 122:345–58
  22. 21. 
    Nambu Y. 1985. Physica 15D:147–51
  23. 22. 
    Volovik GE, Zubkov MA. 2014. J. Low Temp. Phys. 175:486–97
  24. 23. 
    ATLAS Collab 2012. Phys. Lett. B 716:1–29
  25. 24. 
    CMS Collab 2012. Phys. Lett. B 716:30–61
  26. 25. 
    Sooryakumar R, Klein MV. 1980. Phys. Rev. Lett. 45:660–62
  27. 26. 
    Sooryakumar R, Klein MV. 1981. Phys. Rev. B 23:3213–21
  28. 27. 
    Varma C. 2002. J. Low Temp. Phys. 126:901–9
  29. 28. 
    Méasson MA, Gallais Y, Cazayous M, Clair B, Rodière P et al. 2014. Phys. Rev. B 89:060503(R)
  30. 29. 
    Cea T, Benfatto L. 2014. Phys. Rev. B 90:224515
  31. 30. 
    Grasset R, Cea T, Gallais Y, Cazayous M, Sacuto A et al. 2018. Phys. Rev. B 97:094502
  32. 31. 
    Barankov RA, Levitov LS, Spivak BZ 2004. Phys. Rev. Lett. 93:160401
  33. 32. 
    Yuzbashyan EA, Altshuler BL, Kuznetsov VB, Enolskii VZ 2005. Phys. Rev. B 72:220503
  34. 33. 
    Barankov RA, Levitov LS. 2006. Phys. Rev. Lett. 96:230403
  35. 34. 
    Yuzbashyan EA, Tsyplyatyev O, Altshuler BL 2006. Phys. Rev. Lett. 96:097005
  36. 35. 
    Yuzbashyan EA, Dzero M. 2006. Phys. Rev. Lett. 96:230404
  37. 36. 
    Gurarie V. 2009. Phys. Rev. Lett. 103:075301
  38. 37. 
    Tsuji N, Eckstein M, Werner P 2013. Phys. Rev. Lett. 110:136404
  39. 38. 
    Papenkort T, Axt VM, Kuhn T 2007. Phys. Rev. B 76:224522
  40. 39. 
    Papenkort T, Kuhn T, Axt VM 2008. Phys. Rev. B 78:132505
  41. 40. 
    Schnyder AP, Manske D, Avella A 2011. Phys. Rev. B 84:214513
  42. 41. 
    Krull H, Manske D, Uhrig GS, Schnyder AP 2014. Phys. Rev. B 90:014515
  43. 42. 
    Tsuji N, Aoki H. 2015. Phys. Rev. B 92:064508
  44. 43. 
    Kemper AF, Sentef MA, Moritz B, Freericks JK, Devereaux TP 2015. Phys. Rev. B 92:224517
  45. 44. 
    Chou Y-Z, Liao Y, Foster MS 2017. Phys. Rev. B 95:104507
  46. 45. 
    Matsunaga R, Hamada YI, Makise K, Uzawa Y, Terai H et al. 2013. Phys. Rev. Lett. 111:057002
  47. 46. 
    Matsunaga R, Tsuji N, Fujita H, Sugioka A, Makise K et al. 2014. Science 345:1145–49
  48. 47. 
    Cea T, Castellani C, Benfatto L 2016. Phys. Rev. B 93:180507(R)
  49. 48. 
    Tsuji N, Murakami Y, Aoki H 2016. Phys. Rev. B 94:224519
  50. 49. 
    Matsunaga R, Tsuji N, Makise K, Terai H, Aoki H, Shimano R 2017. Phys. Rev. B 96:020505(R)
  51. 50. 
    Cea T, Barone P, Castellani C, Benfatto L 2018. Phys. Rev. B 97:094516
  52. 51. 
    Jujo T. 2015. J. Phys. Soc. Jpn. 84:114711
  53. 52. 
    Jujo T. 2018. J. Phys. Soc. Jpn. 87:024704
  54. 53. 
    Murotani Y, Shimano R. 2019. Phys. Rev. B 99:224510
  55. 54. 
    Silaev M. 2019. Phys. Rev. B 99:224511
  56. 55. 
    Katsumi K, Tsuji N, Hamada YI, Matsunaga R, Schneeloch J et al. 2018. Phys. Rev. Lett. 120:117001
  57. 56. 
    Chu H, Kim M-J, Katsumi K, Kovalev S, Dawson RD et al. 2019. arXiv1901.06675
  58. 57. 
    Moor A, Volkov AF, Efetov KB 2017. Phys. Rev. Lett. 118:047001
  59. 58. 
    Nakamura S, Iida Y, Murotani Y, Matsunaga R, Terai H, Shimano R 2019. Phys. Rev. Lett. 122:257001
  60. 59. 
    Vollhardt D, Wölfle P. 1990. The Superfluid Phases of Helium 3 London: Taylor & Francis
  61. 60. 
    Endres M, Fukuhara T, Pekker D, Cheneau M, Schauβ P et al. 2012. Nature 487:454–58
  62. 61. 
    Behrle A, Harrison T, Kombe J, Gao K, Link M et al. 2018. Nat. Phys. 14:781–85
  63. 62. 
    Rüegg C, Normand B, Matsumoto M, Furrer A, McMorrow DF et al. 2008. Phys. Rev. Lett. 100:205701
  64. 63. 
    Pekker D, Varma CM. 2015. Annu. Rev. Condens. Matter Phys. 6:269–97
  65. 64. 
    Abraham E, Tsuneto T. 1966. Phys. Rev. 152:416–32
  66. 65. 
    Schmid A. 1966. Phys. Kond. Mater. 5:302–17
  67. 66. 
    Caroli C, Maki K. 1967. Phys. Rev. 159:306–15
  68. 67. 
    Ebisawa H, Fukuyama H. 1971. Prog. Theoret. Phys. 46:1042–53
  69. 68. 
    Sá de Melo CAR, Randeria M, Engelbrecht JR 1993. Phys. Rev. Lett. 71:3202–5
  70. 69. 
    Tsuchiya S, Yamamoto D, Yoshii R, Nitta M 2018. Phys. Rev. B 98:094503
  71. 70. 
    Gor'kov LP, Eliashberg GM. 1968. Sov. Phys. J. Exp. Theoret. Phys. 27:328–34
  72. 71. 
    Gulian AM, Zharkov GF. 1999. Nonequilibrium Electrons and Phonons in Superconductors New York: Kluwer Acad./Plenum Publ.
  73. 72. 
    Kopnin N. 2001. Theory of Nonequilibrium Superconductivity Oxford, UK: Oxford Univ. Press
  74. 73. 
    Schrieffer JR. 1999. Theory of Superconductivity Boca Raton: CRC Press
  75. 74. 
    Kihlstrom KE, Simon RW, Wolf SA 1985. Phys. Rev. B 32:1843–45(R)
  76. 75. 
    Brorson SD, Kazeroonian A, Moodera JS, Face DW, Cheng TK et al. 1990. Phys. Rev. Lett. 64:2172–75
  77. 76. 
    Chockalingam SP, Chand M, Jesudasan J, Tripathi V, Raychaudhuri P 2008. Phys. Rev. B 77:214503
  78. 77. 
    Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T, Werner P 2014. Rev. Mod. Phys. 86:779–837
  79. 78. 
    Murakami Y, Werner P, Tsuji N, Aoki H 2016. Phys. Rev. B 93:094509
  80. 79. 
    Murakami Y, Werner P, Tsuji N, Aoki H 2016. Phys. Rev. B 94:115126
  81. 80. 
    Nosarzewski B, Moritz B, Freericks JK, Kemper AF, Devereaux TP 2017. Phys. Rev. B 96:184518
  82. 81. 
    Kumar A, Kemper AF. 2019. arXiv1902.09549
  83. 82. 
    Yu T, Wu MW. 2017. Phys. Rev. B 96:155311
  84. 83. 
    Yu T, Wu MW. 2017. Phys. Rev. B 96:155312
  85. 84. 
    Yang F, Wu MW. 2018. Phys. Rev. B 98:094507
  86. 85. 
    Yang F, Wu MW. 2019. Phys. Rev. B 100104513
  87. 86. 
    Leggett AJ. 1966. Prog. Theor. Phys. 36:901–30
  88. 87. 
    Akbari A, Schnyder AP, Manske D, Eremin I 2013. Europhys. Lett. 101:17002
  89. 88. 
    Krull H, Bittner N, Uhrig GS, Manske D, Schnyder AP 2016. Nat. Commun. 7:11921
  90. 89. 
    Cea T, Benfatto L. 2016. Phys. Rev. B 94:064512
  91. 90. 
    Murotani Y, Tsuji N, Aoki H 2017. Phys. Rev. B 95:104503
  92. 91. 
    Barlas Y, Varma CM. 2013. Phys. Rev. B 87:054503
  93. 92. 
    Peronaci F, Schiró M, Capone M 2015. Phys. Rev. Lett. 115:257001
  94. 93. 
    Foster MS, Dzero M, Gurarie V, Yuzbashyan EA 2013. Phys. Rev. B 88:104511
  95. 94. 
    Fauseweh B, Schwarz L, Tsuji N, Cheng N, Bittner N et al. 2017. arXiv1712.07989
  96. 95. 
    Grasset R, Gallais Y, Sacuto A, Cazayous M, Mañas-Valero S et al. 2019. Phys. Rev. Lett. 122:127001
  97. 96. 
    Hebling J, Yeh KL, Hoffmann MC, Bartal B, Nelson KA 2008. J. Opt. Soc. Am. B 25:B6–19
  98. 97. 
    Watanabe S, Minami N, Shimano R 2011. Opt. Express 19:1528–38
  99. 98. 
    Shimano R, Watanabe S, Matsunaga R 2012. J. Infrared Millim. Terahertz Waves 33:861–69
  100. 99. 
    Matsunaga R, Shimano R. 2012. Phys. Rev. Lett. 109:187002
  101. 100. 
    Matsunaga R, Shimano R. 2017. Phys. Scr. 92:024003
  102. 101. 
    Beck M, Klammer M, Lang S, Leiderer P, Kabanov VV et al. 2011. Phys. Rev. Lett. 107:177007
  103. 102. 
    Mansart B, Lorenzana J, Mann A, Odeh A, Scarongella M et al. 2013. PNAS 110:4539–44
  104. 103. 
    Gor'kov LP, Eliashberg GM. 1969. Sov. Phys. J. Exp. Theoret. Phys. 29:698–703
  105. 104. 
    Amato JC, McLean WL. 1976. Phys. Rev. Lett. 37:930–33
  106. 105. 
    Entin-Wohlman O. 1978. Phys. Rev. B 18:4762–67
  107. 106. 
    Bardasis A, Schrieffer JR. 1961. Phys. Rev. 121:1050–62
  108. 107. 
    Mattis DC, Bardeen J. 1958. Phys. Rev. 111:412–17
  109. 108. 
    Zimmermann W, Brandt EH, Bauer M, Seider E, Genzel L 1991. Phys. C: Supercondens. 183:99–104
  110. 109. 
    Podolsky D, Auerbach A, Arovas DP 2011. Phys. Rev. B 84:174522
  111. 110. 
    Gazit S, Podolsky D, Auerbach A 2013. Phys. Rev. Lett. 110:140401
  112. 111. 
    Sachdev S. 1999. Phys. Rev. B 59:14054–73
  113. 112. 
    Zwerger W. 2004. Phys. Rev. Lett. 92:027203
  114. 113. 
    Sherman D, Pracht US, Gorshunov B, Poran S, Jesudasan J et al. 2015. Nat. Phys. 11:188–92
  115. 114. 
    Cea T, Bucheli D, Seibold G, Benfatto L, Lorenzana J, Castellani C 2014. Phys. Rev. B 89:174506
  116. 115. 
    Cea T, Castellani C, Seibold G, Benfatto L 2015. Phys. Rev. Lett. 115:157002
  117. 116. 
    Pracht US, Cea T, Bachar N, Deutscher G, Farber E et al. 2017. Phys. Rev. B 96:094514
  118. 117. 
    Seibold G, Benfatto L, Castellani C 2017. Phys. Rev. B 96:144507
  119. 118. 
    Cheng B, Wu L, Laurita NJ, Singh H, Chand M et al. 2016. Phys. Rev. B 93:180511
  120. 119. 
    Maiti S, Hirschfeld PJ. 2015. Phys. Rev. B 92:094506
  121. 120. 
    Müller MA, Shen P, Dzero M, Eremin I 2018. Phys. Rev. B 98:024522
  122. 121. 
    Blumberg G, Mialitsin A, Dennis BS, Klein MV, Zhigadlo ND, Karpinski J 2007. Phys. Rev. Lett. 99:227002
  123. 122. 
    Giorgianni F, Cea T, Vicario C, Hauri CP, Withanage WK et al. 2019. Nat. Phys. 15:341–46
  124. 123. 
    Scott RG, Dalfovo F, Pitaevskii LP, Stringari S 2012. Phys. Rev. A 86:053604
  125. 124. 
    Yuzbashyan EA, Dzero M, Gurarie V, Foster MS 2015. Phys. Rev. A 91:033628
  126. 125. 
    Tokimoto J, Tsuchiya S, Nikuni T 2019. J. Phys. Soc. Jpn. 88:023601
  127. 126. 
    Wölfle P. 1977. Physica B 90:96–106
  128. 127. 
    Fausti D, Tobey RI, Dean N, Kaiser S, Dienst A et al. 2011. Science 331:189–91
  129. 128. 
    Kaiser S, Hunt CR, Nicoletti D, Hu W, Gierz I et al. 2014. Phys. Rev. B 89:184516
  130. 129. 
    Hu W, Kaiser S, Nicoletti D, Hunt CR, Gierz I et al. 2014. Nat. Mater. 13:705–11
  131. 130. 
    Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A et al. 2016. Nature 530:461–64
/content/journals/10.1146/annurev-conmatphys-031119-050813
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050813
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error