1932

Abstract

Liquid crystal elastomers and glasses suffer huge length changes on heating, illumination, exposure to humidity, etc. A challenge is to program these changes to give a complex mechanical response for micromachines and soft robotics. Also desirable can be strong response, where bend is avoided in favor of stretch and compression, even in the slender shells that are our subject.

A new mechanics paradigm arises from such materials—spatially programmed anisotropy allows a spatially varying metric to develop upon stimulation, with evolving Gaussian curvature, topography changes, and superstrong actuation. We call this metric mechanics or topographical mechanics. Thus programmed, liquid crystalline solids meet the above aims.

A frontier is the complete programming and control of topography, driving both Gaussian and mean curvature evolution. That, and smart shells, which sense and self-regulate, and exotic new realizations of anisotropic responsive structures, are our concluding themes.

Keyword(s): actuationcurvaturephotoresponsive
Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050738
2020-03-10
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050738.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050738&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bhattacharya K, James RD. 2005. Science 307:53–54
    [Google Scholar]
  2. 2. 
    White TJ, Broer DJ 2015. Nat. Mater. 14:1087–98
    [Google Scholar]
  3. 3. 
    Warner M, Terentjev EM. 2007. Liquid Crystal Elastomers, Vol. 120 Oxford, UK Oxford Univ. Press: Paperback ed. https://global.oup.com/academic/product/liquid-crystal-elastomers-9780199214860?lang=en&cc=gb#
    [Google Scholar]
  4. 4. 
    Warner M, Terentjev EM. 2007. See Reference 3, 1–8
  5. 5. 
    van Oosten CL, Harris KD, Bastiaansen C, Broer DJ 2007. Eur. Phys. J. E 23:329–36
    [Google Scholar]
  6. 6. 
    Liu D, Broer DJ. 2015. Nat. Commun. 8:8334
    [Google Scholar]
  7. 7. 
    Finkelmann H, Nishikawa E, Pereira GG, Warner M 2001. Phys. Rev. Lett. 87:015501
    [Google Scholar]
  8. 8. 
    Hogan PM, Tajbakhsh AR, Terentjev EM 2002. Phys. Rev. E 65:041720
    [Google Scholar]
  9. 9. 
    Cviklinski J, Tajbakhsh AR, Terentjev EM 2002. Eur. Phys. J. E 9:427–34
    [Google Scholar]
  10. 10. 
    Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M 2004. Nat. Mater. 3:307–10
    [Google Scholar]
  11. 11. 
    Yu Y, Nakano M, Ikeda T 2003. Nature 425:145
    [Google Scholar]
  12. 12. 
    Harris KD, Cuypers R, Scheibe P, van Oosten CL, Bastiaansen CWM et al. 2005. J. Mat. Chem. 15:5043–48
    [Google Scholar]
  13. 13. 
    White TJ ed. 2017. Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light Into Work Hoboken, NJ: John Wiley & Sons. , 1st ed..
    [Google Scholar]
  14. 14. 
    Harvey CLM, Terentjev EM. 2007. Eur. Phys. J. E 23:185–89
    [Google Scholar]
  15. 15. 
    Ahn SK, Ware TH, Lee KM, Tondiglia VP, White TJ 2016. Adv. Funct. Mater. 26:5819–26
    [Google Scholar]
  16. 16. 
    Corbett D, Warner M. 2007. Phys. Rev. Lett. 99:174302
    [Google Scholar]
  17. 17. 
    White T, Serak S, Tabiryan N, Vaia R, Bunning T 2009. J. Mater. Chem. 19:1045–192
    [Google Scholar]
  18. 18. 
    Wang DH, Lee KM, Yu Z, Koerner H, Vaia RA et al. 2011. Macromolecules 44:3840–46
    [Google Scholar]
  19. 19. 
    Lee KM, White TJ. 2012. Macromolecules 45:7163–70
    [Google Scholar]
  20. 20. 
    Dawson NJ, Kuzyk MG, Neal J, Luchette P, Palffy-Muhoray P 2011. J. Opt. Soc. Am. B 28:1916–21
    [Google Scholar]
  21. 21. 
    Dawson NJ, Kuzyk MG, Neal J, Luchette P, Palffy-Muhoray P 2011. J. Opt. Soc. Am. B 28:2134–41
    [Google Scholar]
  22. 22. 
    Liu D, Bastiaansen C, den Toonder JMJ, Broer DJ 2012. Macromolecules 45:8005–12
    [Google Scholar]
  23. 23. 
    Liu D, Broer D. 2017. Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work, ed. TJ White303–26 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  24. 24. 
    Atkins R, Fox N. 1980. An Introduction to the Theory of Elasticity London: Longman
    [Google Scholar]
  25. 25. 
    Marder M, Deegan R, Sharon E 2007. Phys. Today 60:33–38
    [Google Scholar]
  26. 26. 
    Modes C, Warner M. 2016. Phys. Today 69:32–38
    [Google Scholar]
  27. 27. 
    Modes CD, Bhattacharya K, Warner M 2010. Phys. Rev. E 81:060701(R)
    [Google Scholar]
  28. 28. 
    Modes C, Bhattacharya K, Warner M 2011. Proc. R. Soc. A: Math. Phys. Eng. Sci. 467:1121–40
    [Google Scholar]
  29. 29. 
    Dervaux J, Ben Amar M 2008. Phys. Rev. Lett. 101:068101
    [Google Scholar]
  30. 30. 
    de Haan LT, Sánchez-Somolinos C, Bastiaansen CM, Schenning AP, Broer DJ 2012. Angew. Chem. Int. Ed. 51:12469–72
    [Google Scholar]
  31. 31. 
    McConney ME, Martinez A, Tondiglia VP, Lee KM, Langley D et al. 2013. Adv. Mater. 25:5880–85
    [Google Scholar]
  32. 32. 
    Ware TH, McConney ME, Wie JJ, Tondiglia VP, White TJ 2015. Science 347:982–84
    [Google Scholar]
  33. 33. 
    Guin TH, Settle MJ, Kowalski BA, Auguste AD, Beblo RV et al. 2019. Nat. Commun. 9:2531 https://creativecommons.org/licenses/by/4.0/
    [Google Scholar]
  34. 34. 
    Muller M, Ben Amar M, Guven J 2008. Phys. Rev. Lett. 101:156104
    [Google Scholar]
  35. 35. 
    Modes CD, Warner M. 2011. Phys. Rev. E 84:021711
    [Google Scholar]
  36. 36. 
    Ware TH, Perry ZP, Middleton CM, Iacono ST, White TJ 2015. ACS Macro Lett 4:942–46
    [Google Scholar]
  37. 37. 
    Aharoni H, Sharon E, Kupferman R 2014. Phys. Rev. Lett. 113:257801
    [Google Scholar]
  38. 38. 
    Zakharov AP, Pismen LM. 2015. Eur. Phys. J. E 38:75
    [Google Scholar]
  39. 39. 
    Konya A, Gimenez-Pinto V, Selinger RLB 2016. Front. Mater. 3:241–7
    [Google Scholar]
  40. 40. 
    Efrati E, Sharon E, Kupferman R 2009. J. Mech. Phys. Solids 57:762–75
    [Google Scholar]
  41. 41. 
    Sharon E, Efrati E. 2010. Soft Matter 6:5693–704
    [Google Scholar]
  42. 42. 
    Sharon E, Roman B, Marder M, Shin GS, Swinney HL 2002. Nature 419:579–80
    [Google Scholar]
  43. 43. 
    Klein Y, Efrati E, Sharon E 2007. Science 315:1116–20
    [Google Scholar]
  44. 44. 
    Sharon E, Roman B, Swinney HL 2007. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 75:046211
    [Google Scholar]
  45. 45. 
    Kim J, Hanna JA, Byun M, Santangelo CD, Hayward RC 2012. Science 335:1201–5
    [Google Scholar]
  46. 46. 
    Mostajeran C, Warner M, Ware TH, White TJ 2016. Proc. R. Soc. A: Math. Phys. Eng. Sci. 472:20160112
    [Google Scholar]
  47. 47. 
    Mostajeran C. 2015. Phys. Rev. E 91:062405
    [Google Scholar]
  48. 48. 
    Warner M, Mostajeran C. 2018. Proc. R. Soc. A: Math. Phys. Eng. Sci. 474:20170566
    [Google Scholar]
  49. 49. 
    Mostajeran C, Warner M, Modes CD 2017. Soft Matter 13:8858–63
    [Google Scholar]
  50. 50. 
    Kowalski BA, Mostajeran C, Godman N, Warner M, White TJ 2018. Phys. Rev. E 97:012504
    [Google Scholar]
  51. 51. 
    Ambulo CP, Burroughs JJ, Boothby JM, Kim H, Shankar MR, Ware TH 2017. Appl. Mater. Interfaces 9:37332–39
    [Google Scholar]
  52. 52. 
    López-Valdeolivas M, Liu D, Broer DJ, Sánchez-Somolinos 2018. Macromol. Rapid Commun. 39:1700710
    [Google Scholar]
  53. 53. 
    Kotikian A, Truby RL, Boley JW, White TJ, Lewis JA 2018. Adv. Mater. 30:1706164
    [Google Scholar]
  54. 54. 
    Plucinsky P, Lemm M, Bhattacharya K 2016. Phys. Rev. E 94:010701(R)
    [Google Scholar]
  55. 55. 
    Aharoni H, Xia Y, Zhang X, Kamien RD, Yang S 2018. PNAS 115:7206–11
    [Google Scholar]
  56. 56. 
    Griniasty I, Aharoni H, Efrati E 2019. Phys. Rev. Lett. 123:127801
    [Google Scholar]
  57. 57. 
    Gladman SA, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA 2016. Nat. Mater. 15:413–19
    [Google Scholar]
  58. 58. 
    Siéfert E, Reyssat E, Bico J, Roman B 2019. Nat. Mater. 18:24–28
    [Google Scholar]
  59. 59. 
    Hajiesmaili E, Clarke DR. 2019. Nat. Commun. 10:183
    [Google Scholar]
  60. 60. 
    Mailen RW, Wagner CH, Bang RS, Zikry M, Dickey MD, Genzer J 2019. Smart Mater. Syst 28:4045011
    [Google Scholar]
  61. 61. 
    Warner M. 2019. J. Phys. Commun. 3:065005
    [Google Scholar]
  62. 62. 
    Gu J, Breen DE, Hu J, Zhu L, Tao Y et al. 2019. CHI Conference on Human Factors in Computing Systems Proceedings, Glasgow, Scotland, May 4–9 Paper No. 37. https://doi.org/10.1145/3290605.3300267
    [Crossref] [Google Scholar]
  63. 63. 
    Zeng H, Wani OM, Wasylczyk P, Kaczmarek R, Priimägi A 2017. Adv. Mater. 26:1701814
    [Google Scholar]
  64. 64. 
    Wani OM, Zeng H, Priimägi A 2017. Nat. Commun. 8:15546
    [Google Scholar]
  65. 65. 
    Lahikainen M, Zeng H, Priimägi A 2018. Nat. Commun. 9:4148
    [Google Scholar]
  66. 66. 
    Wani OM, Verpaalen R, Zeng H, Priimägi A, Schenning APHJ 2019. Adv. Mater. 31:1805985
    [Google Scholar]
  67. 67. 
    Wang X, Guest SD, Kamien RD 2019. arXiv1902.10835
  68. 68. 
    Modes CD, Warner M. 2012. Emerging Liquid Crystal Technologies VII L-C Chien Proc. SPIE Conf. Ser 827982790Q
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031119-050738
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050738
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error