1932

Abstract

Recent experimental progress introduced devices that can combine topological superconductivity with Coulomb-blockade effects. Experiments with these devices have already provided additional evidence for Majorana zero modes in proximity-coupled semiconductor wires. They also stimulated numerous ideas for how to exploit interactions between Majorana zero modes generated by Coulomb charging effects in networks of Majorana wires. Coulomb effects promise to become a powerful tool in the quest for a topological quantum computer as well as for driving topological superconductors into topologically ordered insulating states. Here, we present a focused review of these recent developments, including discussions of recent experiments, designs of topological qubits, Majorana-based implementations of universal quantum computation, and topological quantum error correction. Motivated by the analogy between a qubit and a spin-1/2 degree of freedom, we also review how coupling between Cooper-pair boxes leads to emergent topologically ordered insulating phases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013618
2020-03-10
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031218-013618.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013618&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kitaev AY 2003. Ann. Phys. 303:2–30
    [Google Scholar]
  2. 2. 
    Moore G, Read N 1991. Nucl. Phys. B 360:362–96
    [Google Scholar]
  3. 3. 
    Nayak C, Wilczek F 1996. Nucl. Phys. B 479:529–53
    [Google Scholar]
  4. 4. 
    Ivanov DA 2001. Phys. Rev. Lett. 86:268–71
    [Google Scholar]
  5. 5. 
    Stern A, von Oppen F, Mariani E 2004. Phys. Rev. B 70:205338
    [Google Scholar]
  6. 6. 
    Kitaev AY 2001. Phys. Uspekhi 44:131
    [Google Scholar]
  7. 7. 
    Fu L 2010. Phys. Rev. Lett. 104:056402
    [Google Scholar]
  8. 8. 
    Lutchyn RM, Sau JD, Das Sarma S 2010. Phys. Rev. Lett. 105:077001
    [Google Scholar]
  9. 9. 
    Oreg Y, Refael G, von Oppen F 2010. Phys. Rev. Lett. 105:177002
    [Google Scholar]
  10. 10. 
    Plugge S, Rasmussen A, Egger R, Flensberg K 2017. New J. Phys. 19:012001
    [Google Scholar]
  11. 11. 
    Karzig T, Knapp C, Lutchyn RM, Bonderson P, Hastings MB et al. 2017. Phys. Rev. B 95:235305
    [Google Scholar]
  12. 12. 
    Kitaev AY 2006. Ann. Phys. 321:2–111
    [Google Scholar]
  13. 13. 
    Balents L, Fisher MPA, Nayak C 1999. Phys. Rev. B 60:1654–67
    [Google Scholar]
  14. 14. 
    Senthil T, Fisher MPA 2000. Phys. Rev. B 62:7850–81
    [Google Scholar]
  15. 15. 
    Wang C, Potter AC, Senthil T 2013. Phys. Rev. B 88:115137
    [Google Scholar]
  16. 16. 
    Terhal BM 2015. Rev. Mod. Phys. 87:307–46
    [Google Scholar]
  17. 17. 
    Krogstrup P, Ziino NLB, Chang W, Albrecht SM, Madsen MH et al. 2015. Nat. Mat. 14:400–6
    [Google Scholar]
  18. 18. 
    Albrecht S, Higginbotham A, Madsen M, Kuemmeth F, Jespersen T et al. 2016. Nature 531:206–9
    [Google Scholar]
  19. 19. 
    Rahmani A, Franz M 2019. Rep. Prog. Phys. 82:084501
    [Google Scholar]
  20. 20. 
    Gangadharaiah S, Braunecker B, Simon P, Loss D 2011. Phys. Rev. Lett. 107:036801
    [Google Scholar]
  21. 21. 
    Sela E, Altland A, Rosch A 2011. Phys. Rev. B 84:085114
    [Google Scholar]
  22. 22. 
    Stoudenmire EM, Alicea J, Starykh OA, Fisher MP 2011. Phys. Rev. B 84:014503
    [Google Scholar]
  23. 23. 
    Béri B, Cooper NR 2012. Phys. Rev. Lett. 109:156803
    [Google Scholar]
  24. 24. 
    Nayak C, Simon S, Stern A, Freedman M, Sarma S 2008. Rev. Mod. Phys. 80:1083–159
    [Google Scholar]
  25. 25. 
    Alicea J 2012. Rep. Prog. Phys. 75:076501
    [Google Scholar]
  26. 26. 
    Beenakker CWJ 2013. Annu. Rev. Condens. Matter Phys. 4:113–36
    [Google Scholar]
  27. 27. 
    Aguado R 2017. Riv. Nuovo Cimento 40:523–93
    [Google Scholar]
  28. 28. 
    von Oppen F, Peng Y, Pientka F 2017. Topological Aspects of Condensed Matter Physics C Chamon, M Goerbig, R Moessner, L Cugliandolo387–449 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  29. 29. 
    Lutchyn R, Bakkers E, Kouwenhoven L, Krogstrup P, Marcus C, Oreg Y 2018. Nat. Rev. Mat. 3:52–68
    [Google Scholar]
  30. 30. 
    Haim A, Oreg Y 2019. Phys. Rep. 825:1–48
    [Google Scholar]
  31. 31. 
    van Heck B, Akhmerov AR, Hassler F, Burrello M, Beenakker CWJ 2012. New J. Phys. 14:035019
    [Google Scholar]
  32. 32. 
    Aasen D, Hell M, Mishmash RV, Higginbotham A, Danon J et al. 2016. Phys. Rev. X 6:031016
    [Google Scholar]
  33. 33. 
    Mourik V, Zuo K, Frolov S, Plissard S, Bakkers E, Kouwenhoven L 2012. Science 336:1003–7
    [Google Scholar]
  34. 34. 
    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012. Nat. Phys. 8:887–95
    [Google Scholar]
  35. 35. 
    Churchill HOH, Fatemi V, Grove-Rasmussen K, Deng MT, Caroff P et al. 2013. Phys. Rev. B 87:241401
    [Google Scholar]
  36. 36. 
    Deng S, Viola L, Ortiz G 2012. Phys. Rev. Lett. 108:036803
    [Google Scholar]
  37. 37. 
    Law KT, Lee PA, Ng TK 2009. Phys. Rev. Lett. 103:237001
    [Google Scholar]
  38. 38. 
    Flensberg K 2010. Phys. Rev. B 82:180516
    [Google Scholar]
  39. 39. 
    Zhang H, Liu CX, Gazibegovic S, Xu D, Logan JA et al. 2018. Nature 556:74–79
    [Google Scholar]
  40. 40. 
    Nichele F, Drachmann ACC, Whiticar AM, O'Farrell ECT, Suominen HJ et al. 2017. Phys. Rev. Lett. 119:136803
    [Google Scholar]
  41. 41. 
    Vaitiekėnas S, Deng M-T, Krogstrup P, Marcus CM 2018. arXiv:1809.05513
  42. 42. 
    Lutchyn RM, Winkler GW, van Heck B, Karzig T, Flensberg K 2018. arXiv:1809.05512
  43. 43. 
    Pientka F, Keselman A, Berg E, Yacoby A, Stern A, Halperin BI 2017. Phys. Rev. X 7:021032
    [Google Scholar]
  44. 44. 
    Fornieri A, Whiticar AM, Setiawan F, Portolés Marín E, Drachmann ACC et al. 2019. Nature 569:89–92
    [Google Scholar]
  45. 45. 
    Ren H, Pientka F, Hart S, Pierce A, Kosowsky M et al. 2019. Nature 569:93–98
    [Google Scholar]
  46. 46. 
    Nadj-Perge S, Drozdov IK, Li J, Chen H, Jeon S et al. 2014. Science 346:602–7
    [Google Scholar]
  47. 47. 
    Ruby M, Pientka F, Peng Y, von Oppen F, Heinrich BW, Franke KJ 2015. Phys. Rev. Lett. 115:197204
    [Google Scholar]
  48. 48. 
    Pawlak R, Kisiel M, Klinovaja J, Meier T, Kawai S et al. 2016. NPJ Quant. Inf. 2:16035
    [Google Scholar]
  49. 49. 
    Feldman BE, Randeria MT, Li J, Jeon S, Xie Y et al. 2017. Nat. Phys. 13:286–91
    [Google Scholar]
  50. 50. 
    Kim H, Palacio-Morales A, Posske T, Rózsa L, Palotás K et al. 2018. Sci. Adv. 4:eaar5251
    [Google Scholar]
  51. 51. 
    Shabani J, Kjaergaard M, Suominen HJ, Kim Y, Nichele F et al. 2016. Phys. Rev. B 93:155402
    [Google Scholar]
  52. 52. 
    Chang W, Albrecht SM, Jespersen TS, Kuemmeth F, Krogstrup P et al. 2015. Nat. Nanotech. 10:232–36
    [Google Scholar]
  53. 53. 
    Reeg C, Loss D, Klinovaja J 2017. Phys. Rev. B 96:125426
    [Google Scholar]
  54. 54. 
    Reeg C, Loss D, Klinovaja J 2018. Phys. Rev. B 97:165425
    [Google Scholar]
  55. 55. 
    Winkler GW, Antipov AE, van Heck B, Soluyanov AA, Glazman LI et al. 2019. Phys. Rev. B 99:245408
    [Google Scholar]
  56. 56. 
    Kiendl T, von Oppen F, Brouwer PW 2019. Phys. Rev. B 100:035426
    [Google Scholar]
  57. 57. 
    van Heck B, Lutchyn RM, Glazman LI 2016. Phys. Rev. B 93:235431
    [Google Scholar]
  58. 58. 
    Drukier C, Zirnstein HG, Rosenow B, Stern A, Oreg Y 2018. Phys. Rev. B 98:161401
    [Google Scholar]
  59. 59. 
    Whiticar AM, Fornieri A, O'Farrell ECT, Drachmann ACC, Wang T 2019. arXiv:1902.07085
  60. 60. 
    Albrecht SM, Hansen EB, Higginbotham AP, Kuemmeth F, Jespersen TS et al. 2017. Phys. Rev. Lett. 118:137701
    [Google Scholar]
  61. 61. 
    Galindo A, Pascual P 1990. Quantum Mechanics I Berlin/New York: Springer-Verlag
    [Google Scholar]
  62. 62. 
    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher MP 2011. Nat. Phys. 7:412–17
    [Google Scholar]
  63. 63. 
    Halperin B, Oreg Y, Stern A, Refael G, Alicea J, von Oppen F 2012. Phys. Rev. B 85:144501
    [Google Scholar]
  64. 64. 
    Sau JD, Clarke DJ, Tewari S 2011. Phys. Rev. B 84:094505
    [Google Scholar]
  65. 65. 
    Litinski D, von Oppen F 2018. Phys. Rev. B 97:205404
    [Google Scholar]
  66. 66. 
    Gottesman D 1999. Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics SP Corney, R Delbourgo, PD Jarvis32–43 Cambridge, MA: International
    [Google Scholar]
  67. 67. 
    Zilberberg O, Braunecker B, Loss D 2008. Phys. Rev. A 77:012327
    [Google Scholar]
  68. 68. 
    Bravyi S, Kitaev A 2005. Phys. Rev. A 71:022316
    [Google Scholar]
  69. 69. 
    Karzig T, Oreg Y, Refael G, Freedman MH 2016. Phys. Rev. X 6:031019
    [Google Scholar]
  70. 70. 
    Karzig T, Oreg Y, Refael G, Freedman MH 2019. Phys. Rev. B 99:144521
    [Google Scholar]
  71. 71. 
    Vijay S, Hsieh TH, Fu L 2015. Phys. Rev. X 5:041038
    [Google Scholar]
  72. 72. 
    Landau L, Plugge S, Sela E, Altland A, Albrecht S, Egger R 2016. Phys. Rev. Lett. 116:050501
    [Google Scholar]
  73. 73. 
    Litinski D, von Oppen F 2017. Phys. Rev. B 96:205413
    [Google Scholar]
  74. 74. 
    Schön G, Zaikin AD 1990. Phys. Rep. 98:237–412
    [Google Scholar]
  75. 75. 
    Ebisu H, Sagi E, Oreg Y 2019. Phys. Rev. Lett. 123:026401
    [Google Scholar]
  76. 76. 
    Barkeshli M, Sau JD 2015. arXiv:1509.07135
  77. 77. 
    Thomson A, Pientka F 2018. arXiv:1807.09291
  78. 78. 
    Schrieffer JR, Wolff PA 1966. Phys. Rev. 149:491–92
    [Google Scholar]
  79. 79. 
    Auerbach A 1994. Interacting Electrons and Quantum Magnetism New York: Springer-Verlag
    [Google Scholar]
  80. 80. 
    Sagi E, Ebisu H, Tanaka Y, Stern A, Oreg Y 2019. Phys. Rev. B 99:075107
    [Google Scholar]
  81. 81. 
    Mussardo G 2017. Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  82. 82. 
    Yao H, Kivelson SA 2007. Phys. Rev. Lett. 99:247203
    [Google Scholar]
  83. 83. 
    Plugge S, Landau LA, Sela E, Altland A, Flensberg K, Egger R 2016. Phys. Rev. B 94:174514
    [Google Scholar]
  84. 84. 
    Wille C, Egger R, Eisert J, Altland A 2019. Phys. Rev. B 99:115117
    [Google Scholar]
  85. 85. 
    You Y, von Oppen F 2019. Phys. Rev. Research 1:013011
    [Google Scholar]
  86. 86. 
    You Y, Litinski D, von Oppen F 2019. Phys. Rev. B 100:054513
    [Google Scholar]
  87. 87. 
    Goldstein G, Chamon C 2011. Phys. Rev. B 84:205109
    [Google Scholar]
  88. 88. 
    Rainis D, Loss D 2012. Phys. Rev. B 85:174533
    [Google Scholar]
  89. 89. 
    Knapp C, Karzig T, Lutchyn RM, Nayak C 2018. Phys. Rev. B 97:125404
    [Google Scholar]
  90. 90. 
    Lai HL, Yang PY, Huang YW, Zhang WM 2018. Phys. Rev. B 97:054508
    [Google Scholar]
  91. 91. 
    Kitaev AY 1997.Quantum Communication, Computing, and Measurement O Hirota, AS Holevo, CM Caves181–88 New York: Springer Sci. Bus. Media
  92. 92. 
    Bravyi SB, Kitaev AY 1998. arXiv:9811052
  93. 93. 
    Dennis E, Kitaev A, Landahl A, Preskill J 2002. J. Math. Phys. 43:4452–505
    [Google Scholar]
  94. 94. 
    Wen XG 2003. Phys. Rev. Lett. 90:016803
    [Google Scholar]
  95. 95. 
    Fowler AG, Mariantoni M, Martinis JM, Cleland AN 2012. Phys. Rev. A 86:032324
    [Google Scholar]
  96. 96. 
    Litinski D, Kesselring MS, Eisert J, von Oppen F 2017. Phys. Rev. X 7:031048
    [Google Scholar]
  97. 97. 
    Bombin H, Martin-Delgado MA 2006. Phys. Rev. Lett. 97:180501
    [Google Scholar]
  98. 98. 
    Landahl AJ, Anderson JT, Rice PR 2011. arXiv:1108.5738
  99. 99. 
    Litinski D, von Oppen F 2018. Quantum 2:62
    [Google Scholar]
  100. 100. 
    Bravyi S, Terhal BM, Leemhuis B 2010. New J. Phys. 12:083039
    [Google Scholar]
  101. 101. 
    Hastings MB 2017. Quantum Inf. Comput. 17:1191–205
    [Google Scholar]
  102. 102. 
    Horsman C, Fowler AG, Devitt S, Meter RV 2012. New J. Phys. 14:123011
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031218-013618
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013618
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error