1932

Abstract

We review the physics of pair-density wave (PDW) superconductors. We begin with a macroscopic description that emphasizes order induced by PDW states, such as charge-density wave, and discuss related vestigial states that emerge as a consequence of partial melting of the PDW order. We review and critically discuss the mounting experimental evidence for such PDW order in the cuprate superconductors, the status of the theoretical microscopic description of such order, and the current debate on whether the PDW is a mother order or another competing order in the cuprates. In addition, we give an overview of the weak coupling version of PDW order, Fulde–Ferrell–Larkin–Ovchinnikov states, in the context of cold atom systems, unconventional superconductors, and noncentrosymmetric and Weyl materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050711
2020-03-10
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050711.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050711&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Larkin AI, Ovchinnikov YN 1965.Sov. Phys. J. Exp. Theor. Phys. 20:762
  2. 2. 
    Fulde P, Ferrell RA 1964. Phys. Rev. 135:A550–63
    [Google Scholar]
  3. 3. 
    Himeda A, Kato T, Ogata M 2002. Phys. Rev. Lett. 88:117001
    [Google Scholar]
  4. 4. 
    Berg E, Fradkin E, Kim EA, Kivelson SA, Oganesyan V et al. 2007. Phys. Rev. Lett. 99:127003
    [Google Scholar]
  5. 5. 
    Agterberg DF, Tsunetsugu H 2008. Nat. Phys. 4:639–42
    [Google Scholar]
  6. 6. 
    Berg E, Fradkin E, Kivelson SA, Tranquada JM 2009. New J. Phys. 11:115004
    [Google Scholar]
  7. 7. 
    Lee PA 2014. Phys. Rev. X 4:031017
    [Google Scholar]
  8. 8. 
    Casalbuoni R, Nardulli G 2004. Rev. Mod. Phys. 76:263–320
    [Google Scholar]
  9. 9. 
    Kinnunen JJ, Baarsma JE, Martikainen JP, Törma P 2018. Rep. Prog. Phys. 81:046401
    [Google Scholar]
  10. 10. 
    Berg E, Fradkin E, Kivelson SA 2009. Nat. Phys. 5:830–33
    [Google Scholar]
  11. 11. 
    Agterberg DF, Garaud J 2015. Phys. Rev. B 91:104512
    [Google Scholar]
  12. 12. 
    Wang Y, Edkins SD, Hamidian MH, Davis JCS, Fradkin E, Kivelson SA 2018. Phys. Rev. B 97:174510
    [Google Scholar]
  13. 13. 
    Dai Z, Zhang YH, Senthil T, Lee PA 2018. Phys. Rev. B 97:174511
    [Google Scholar]
  14. 14. 
    Edkins SD, Kostin A, Fujita K, Mackenzie AP, Eisaki H et al. 2019. Science 364:976–80
    [Google Scholar]
  15. 15. 
    Fradkin E, Kivelson SA, Tranquada JM 2015. Rev. Mod. Phys. 87:457–82
    [Google Scholar]
  16. 16. 
    Agterberg DF, Sigrist M, Tsunetsugu H 2009. Phys. Rev. Lett. 102:207004
    [Google Scholar]
  17. 17. 
    Radzihovsky L, Vishwanath A 2009. Phys. Rev. Lett. 103:010404
    [Google Scholar]
  18. 18. 
    Radzihovsky L 2011. Phys. Rev. A 84:023677
    [Google Scholar]
  19. 19. 
    Barci DG, Fradkin E 2011. Phys. Rev. B 83:100509
    [Google Scholar]
  20. 20. 
    Mross DF, Senthil T 2015. Phys. Rev. X 5:031008
    [Google Scholar]
  21. 21. 
    Berezinskii V 1972. Sov. Phys. J. Exp. Theor. Phys. 34:610–16
    [Google Scholar]
  22. 22. 
    Kosterlitz J, Thouless D 1973. J. Phys. C 6:1181–204
    [Google Scholar]
  23. 23. 
    Jose J, Kadanoff L, Kirkpatrick S, Nelson D 1977. Phys. Rev. B 16:1217–41
    [Google Scholar]
  24. 24. 
    Chen HD, Vafek O, Yazdani A, Zhang SC 2004. Phys. Rev. Lett. 93:187002
    [Google Scholar]
  25. 25. 
    Nie L, Tarjus G, Kivelson SA 2014. PNAS 111:7980–85
    [Google Scholar]
  26. 26. 
    Chan C 2016. Phys. Rev. B 93:184514
    [Google Scholar]
  27. 27. 
    He R, Hashimoto M, Karapetyan H, Koralek J, Hinton J et al. 2011. Science 331:1579–83
    [Google Scholar]
  28. 28. 
    Baruch S, Orgad D 2008. Phys. Rev. B 77:174502
    [Google Scholar]
  29. 29. 
    Harrison N, Sebastian S 2011. Phys. Rev. Lett. 106:226402
    [Google Scholar]
  30. 30. 
    Wang Y, Agterberg DF, Chubukov A 2015. Phys. Rev. Lett. 114:197001
    [Google Scholar]
  31. 31. 
    Tu WL, Lee TK 2019. Sci. Rep. 9:1719
    [Google Scholar]
  32. 32. 
    Moodenbaugh AR, Xu Y, Suenaga M, Folkerts TJ, Shelton RN 1988. Phys. Rev. B 38:4596–600
    [Google Scholar]
  33. 33. 
    Fujita M, Goka H, Yamada K, Tranquada JM, Regnault LP 2004. Phys. Rev. B 70:104517
    [Google Scholar]
  34. 34. 
    Hücker M, v. Zimmermann M, Gu GD, Xu ZJ, Wen JS et al. 2011. Phys. Rev. B 83:104506
    [Google Scholar]
  35. 35. 
    Axe JD, Moudden AH, Hohlwein D, Cox DE, Mohanty KM et al. 1989. Phys. Rev. Lett. 62:2751–54
    [Google Scholar]
  36. 36. 
    Axe JD, Crawford MK 1994. J. Low Temp. Phys. 95:271–84
    [Google Scholar]
  37. 37. 
    Li Q, Hücker M, Gu GD, Tsvelik AM, Tranquada JM 2007. Phys. Rev. Lett. 99:067001
    [Google Scholar]
  38. 38. 
    Tranquada JM, Gu GD, Hücker M, Jie Q, Kang HJ et al. 2008. Phys. Rev. B 78:174529
    [Google Scholar]
  39. 39. 
    Li Q, Hücker M, Gu GD, Tsvelik AM, Tranquada JM 2007. Phys. Rev. Lett. 99:067001
    [Google Scholar]
  40. 40. 
    Tranquada JM, Sternlieb BJ, Axe JD, Nakamura Y, Uchida S 1995. Nature 375:561–63
    [Google Scholar]
  41. 41. 
    Tajima S, Noda T, Eisaki H, Uchida S 2001. Phys. Rev. Lett. 86:500–3
    [Google Scholar]
  42. 42. 
    Basov DN, Timusk T 2005. Rev. Mod. Phys. 77:721–79
    [Google Scholar]
  43. 43. 
    Croft TP, Lester C, Senn MS, Bombardi A, Hayden SM 2014. Phys. Rev. B 89:224513
    [Google Scholar]
  44. 44. 
    Thampy V, Dean MPM, Christensen NB, Steinke L, Islam Z et al. 2014. Phys. Rev. B 90:100510
    [Google Scholar]
  45. 45. 
    Suzuki T, Goto T, Chiba K, Shinoda T, Fukase T et al. 1998. Phys. Rev. B 57:R3229–32
    [Google Scholar]
  46. 46. 
    Kimura H, Matsushita H, Hirota K, Endoh Y, Yamada K et al. 2000. Phys. Rev. B 61:14366–69
    [Google Scholar]
  47. 47. 
    Lake B, Rønnow HM, Christensen NB, Aeppli G, Lefmann K et al. 2002. Nature 415:299–301
    [Google Scholar]
  48. 48. 
    Schafgans AA, LaForge AD, Dordevic SV, Qazilbash MM, Padilla WJ et al. 2010. Phys. Rev. Lett. 104:157002
    [Google Scholar]
  49. 49. 
    Wen J, Jie Q, Li Q, Hücker M, v. Zimmermann M et al. 2012. Phys. Rev. B 85:134513
    [Google Scholar]
  50. 50. 
    Stegen Z, Han SJ, Wu J, Pramanik AK, Hücker M et al. 2013. Phys. Rev. B 87:064509
    [Google Scholar]
  51. 51. 
    Zhong R, Schneeloch JA, Chi H, Li Q, Gu G, Tranquada JM 2018. Phys. Rev. B 97:134520
    [Google Scholar]
  52. 52. 
    He RH, Tanaka K, Mo SK, Sasagawa T, Fujita M et al. 2009. Nat. Phys. 5:119–23
    [Google Scholar]
  53. 53. 
    Valla T, Federov AV, Lee J, Davis JC, Gu GD 2006. Science 314:1914–16
    [Google Scholar]
  54. 54. 
    Razzoli E, Drachuck G, Keren A, Radovic M, Plumb NC et al. 2013. Phys. Rev. Lett. 110:047004
    [Google Scholar]
  55. 55. 
    Loder F, Graser S, Schmid M, Kampf AP, Kopp T 2011. Phys. Rev. Lett. 107:187001
    [Google Scholar]
  56. 56. 
    Homes CC, Hücker M, Li Q, Xu ZJ, Wen JS et al. 2012. Phys. Rev. B 85:134510
    [Google Scholar]
  57. 57. 
    Li Y, Terzic J, Baity PG, Popović D, Gu GD et al. 2018. Sci. Adv. 5:eaav7686
    [Google Scholar]
  58. 58. 
    Rajasekaran S, Okamoto J, Mathey L, Fechner M, Thampy V et al. 2018. Science 359:575–79
    [Google Scholar]
  59. 59. 
    Yuli O, Asulin I, Millo O, Koren G 2007. Phys. Rev. B 75:184521
    [Google Scholar]
  60. 60. 
    Yang KY, Chen WQ, Rice TM, Sigrist M, Zhang FC 2009. New J. Phys. 11:055053
    [Google Scholar]
  61. 61. 
    Yuli O, Asulin I, Koren G, Millo O 2010. Phys. Rev. B 81:024516
    [Google Scholar]
  62. 62. 
    Yang K 2013. J. Supercond. Nov. Magn. 26:2741–42
    [Google Scholar]
  63. 63. 
    Shi Z, Baity PG, Terzic J, Sasagawa T, Popović D 2019. arXiv:1907.11708
  64. 64. 
    Buzdin A, Koshelev AE 2003. Phys. Rev. B 67:220504
    [Google Scholar]
  65. 65. 
    Moshe M, Mints RG 2007. Phys. Rev. B 76:054518
    [Google Scholar]
  66. 66. 
    Stoutimore MJA, Rossolenko AN, Bolginov VV, Oboznov VA, Rusanov AY et al. 2018. Phys. Rev. Lett. 121:177702
    [Google Scholar]
  67. 67. 
    Schneider CW, Hammerl G, Logvenov G, Kopp T, Kirtley JR et al. 2004. Europhys. Lett. 68:86
    [Google Scholar]
  68. 68. 
    Hamilton DR, Gu GD, Fradkin E, Van Harlingen DJ 2018.Phys. Rev. B In press. arXiv:1811.02048
  69. 69. 
    Fujita K, Hamidian M, Firmo I, Mukhopadhyay S, Kim CK 2015.Strongly Correlated Systems, Springer Series in Solid-State Sciences, Vol. 180 A Avella, F Mancini73–109 Berlin, Heidelberg: Springer
  70. 70. 
    Hoffman JE, Hudson EW, Lang KM, Madhavan V, Eisaki H et al. 2002. Science 295:466–69
    [Google Scholar]
  71. 71. 
    Matsuba K, Yoshizawa S, Mochizuki Y, Mochiku T, Hirata K, Nishida N 2007. J. Phys. Soc. Jpn. 76:063704
    [Google Scholar]
  72. 72. 
    Yoshizawa S, Koseki T, Matsuba K, Mochiku T, Hirata K, Nishida N 2013. J. Phys. Soc. Jpn. 82:083706
    [Google Scholar]
  73. 73. 
    Machida T, Kohsaka Y, Matsuoka K, Iwaya K, Hanaguri T, Tamegai T 2016. Nat. Commun. 7:1–6
    [Google Scholar]
  74. 74. 
    Pan SH, Hudson EW, Davis JC 1998. Appl. Phys. Lett. 73:2992–94
    [Google Scholar]
  75. 75. 
    Naaman O, Teizer W, Dynes RC 2001. Phys. Rev. Lett. 87:097004
    [Google Scholar]
  76. 76. 
    Rodrigo JG, Suderow H, Vieira S 2004. Eur. Phys. J. B 40:483–88
    [Google Scholar]
  77. 77. 
    Proslier Th, Kohen A, Noat Y, Cren T, Roditchev D, Sacks W 2006. Europhys. Lett. 73:962–68
    [Google Scholar]
  78. 78. 
    Randeria MT, Feldman BE, Drozdov IK, Yazdani A 2016. Phys. Rev. B 93:161115
    [Google Scholar]
  79. 79. 
    Hamidian M, Edkins S, Joo SH, Kostin A, Eisaki H et al. 2016. Nature 532:343–47
    [Google Scholar]
  80. 80. 
    Hanaguri T, Lupien C, Kohsaka Y, Lee DH, Azuma M et al. 2004. Nature 430:1001–5
    [Google Scholar]
  81. 81. 
    McElroy K, Lee DH, Hoffman JE, Lang KM, Lee J et al. 2005. Phys. Rev. Lett. 94:197005
    [Google Scholar]
  82. 82. 
    Kohsaka Y, Taylor C, Fujita K, Schmidt A, Lupien C et al. 2007. Science 315:1380–85
    [Google Scholar]
  83. 83. 
    Mesaros A, Fujita K, Edkins SD, Hamidian MH, Eisaki H et al. 2016. PNAS 113:12661–66
    [Google Scholar]
  84. 84. 
    Zhang Y, Mesaros A, Fujita K, Edkins SD, Hamidian MH et al. 2019. Nature 570:484–90
    [Google Scholar]
  85. 85. 
    Hamidian MH, Edkins SD, Kim CK, Davis JC, Mackenzie AP et al. 2015. Nat. Phys. 12:150–56
    [Google Scholar]
  86. 86. 
    Fujita K, Hamidian MH, Edkins SD, Kim CK, Kohsaka Y et al. 2014. PNAS 111:E3026–32
    [Google Scholar]
  87. 87. 
    Agosta C 2018. Crystals 8:285
    [Google Scholar]
  88. 88. 
    Matsuda Y, Shimahara H 2007. J. Phys. Soc. Jpn. 76:051005
    [Google Scholar]
  89. 89. 
    Kenzelmann M 2017. Rep. Prog. Phys. 80:034501
    [Google Scholar]
  90. 90. 
    Bergk B, Demuer A, Sheikin I, Wang Y, Wosnitza J et al. 2011. Phys. Rev. B 83:064506
    [Google Scholar]
  91. 91. 
    Tsuchiya S, Yamada JI, Sugii K, Graf D, Brooks J et al. 2015. J. Phys. Soc. Jpn. 84:034703
    [Google Scholar]
  92. 92. 
    Lortz R, Wang Y, Demuer A, Bottger PHM, Bergk B et al. 2007. Phys. Rev. Lett. 99:187002
    [Google Scholar]
  93. 93. 
    Agosta C, Fortune N, Hannahs S, Gu S, Liang L et al. 2017. Phys. Rev. Lett. 118:267001
    [Google Scholar]
  94. 94. 
    Wright JA, Green E, Kuhns P, Reyes A, Brooks J 2011.Phys. Rev. Lett. 107:087002
  95. 95. 
    Mayaffre H, Kramer S, Horvatic M, Berthier C, Miyagawa K et al. 2014. Nat. Phys. 10:928–32
    [Google Scholar]
  96. 96. 
    Agosta C, Jin J, Coniglio WA, Smith BE, Cho K et al. 2012. Phys. Rev. B 85:214514
    [Google Scholar]
  97. 97. 
    Tanatar M, Ishiguro T, Tanaka H, Kobayashi H 2002. Phys. Rev. B 66:134503
    [Google Scholar]
  98. 98. 
    Coniglio W, Winter L, Cho K, Agosta C, Fravel B, Montgomery LK 2011. Phys. Rev. B 83:224507
    [Google Scholar]
  99. 99. 
    Koutroulakis G, Kuhne H, Schlueter J, Wosnitza J, Brown S 2016. Phys. Rev. Lett. 116:067003
    [Google Scholar]
  100. 100. 
    Cho K, Smith BE, Coniglio WA, Winter LE, Agosta CC, Schlueter JA 2009. Phys. Rev. B 79: 220507(R)
    [Google Scholar]
  101. 101. 
    Yonezawa S, Kusaba S, Maeno Y, Auban-Senzier P, Pasquier C, Jrome D 2008. Phys. Rev. Lett. 100:117002
    [Google Scholar]
  102. 102. 
    Gurevich A 2010. Phys. Rev. B 82:184504
    [Google Scholar]
  103. 103. 
    Cho CW, Yang J, Yuan N, Shen J, Wolf T, Lortz R 2017. Phys. Rev. Lett. 119:217002
    [Google Scholar]
  104. 104. 
    Gloos K, Modler R, Schimanski H, Bredl CD, Geibel C et al. 1993. Phys. Rev. Lett. 70:501–4
    [Google Scholar]
  105. 105. 
    Modler R, Gegenwart P, Lang M, Deppe M, Weiden M et al. 1996. Phys. Rev. Lett. 76:1292–95
    [Google Scholar]
  106. 106. 
    Yamashita A, Ishii K, Yokoo T, Akimitsu J, Hedo M et al. 1997. Phys. Rev. Lett. 79:3771–74
    [Google Scholar]
  107. 107. 
    Radovan HA, Fortune NA, Murphy TP, Hannahs ST, Palm EC et al. 2003. Nature 425:51–55
    [Google Scholar]
  108. 108. 
    Bianchi A, Movshovich R, Capan C, Pagliuso PG, Sarrao JL 2003. Phys. Rev. Lett. 91:187004
    [Google Scholar]
  109. 109. 
    Kenzelmann M, Strassle T, Niedermayer C, Sigrist M, Padmanabhan B et al. 2008. Science 321:1652–54
    [Google Scholar]
  110. 110. 
    Bloch I, Dalibard J, Zwerger W 2008. Rev. Mod. Phys. 80:885–964
    [Google Scholar]
  111. 111. 
    Ketterle W, Zwierlein M 2008. Riv. Nuovo Cimento 164:247–422
    [Google Scholar]
  112. 112. 
    Gurarie V, Radzihovsky L 2007. Ann. Phys. 322:2–119
    [Google Scholar]
  113. 113. 
    Giorgini S, Pitaevskii LP, Stringari S 2008. Rev. Mod. Phys. 80:1215–74
    [Google Scholar]
  114. 114. 
    Radzihovsky L, Sheehy D 2010. Rep. Prog. Phys. 73:076501
    [Google Scholar]
  115. 115. 
    Regal CA, Greiner M, Jin DS 2004. Phys. Rev. Lett. 92:040403
    [Google Scholar]
  116. 116. 
    Zwierlein MW, Stan CA, Schunck CH, Raupach SMF, Kerman AJ, Ketterle W 2004. Phys. Rev. Lett. 92:120403
    [Google Scholar]
  117. 117. 
    Kinast J, Hemmer SL, Gehm ME, Turlapov A, Thomas JE 2004. Phys. Rev. Lett. 92:150402
    [Google Scholar]
  118. 118. 
    Eagles DM 1969. Phys. Rev. 186:456–63
    [Google Scholar]
  119. 119. 
    Leggett A 1980.Modern Trends in the Theory of Condensed Matter, ed. A Pkalski, J Przystawa, Vol. 115, Lect. Notes Phys., Proceedings of the 16th Karpacz Winter School of Theoretical Physics, Karpacz, Poland, Feb. 19–Mar. 3, 1979, pp. 13–27 Berlin, Heidelberg: Springer
  120. 120. 
    Nozieres P, Schmitt-Rink S 1985. J. Low Temp. Phys. 59:195–211
    [Google Scholar]
  121. 121. 
    Zwierlein MW, Schirotzek A, Schunck CH, Ketterle W 2006. Science 311:492–96
    [Google Scholar]
  122. 122. 
    Partridge GB, Li W, Kamar RI, Liao Ya, Hulet RG 2006. Science 314:54
    [Google Scholar]
  123. 123. 
    Shin Y, Zwierlein MW, Schunck CH, Schirotzek A, Ketterle W 2006. Phys. Rev. Lett. 97:030401
    [Google Scholar]
  124. 124. 
    Nascimbène S, Navon N, Chevy F, Salomon C 2010. New J. Phys. 12:103026
    [Google Scholar]
  125. 125. 
    Combescot R 2001. Europhys. Lett. 55:150–56
    [Google Scholar]
  126. 126. 
    Liu WV, Wilczek F 2003. Phys. Rev. Lett. 90:047002
    [Google Scholar]
  127. 127. 
    Bedaque PF, Caldas H, Rupak G 2003. Phys. Rev. Lett. 91:247002
    [Google Scholar]
  128. 128. 
    Caldas H 2004. Phys. Rev. A 69:063602
    [Google Scholar]
  129. 129. 
    Castorina P, Grasso M, Oertel M, Urban M, Zappalà D 2005. Phys. Rev. A 72:025601
    [Google Scholar]
  130. 130. 
    Sedrakian A, Mur-Petit J, Polls A, Müther H 2005. Phys. Rev. A 72:013613
    [Google Scholar]
  131. 131. 
    Sheehy DE, Radzihovsky L 2006. Phys. Rev. Lett. 96:060401
    [Google Scholar]
  132. 132. 
    Pao CH, Wu ST, Yip SK 2006. Phys. Rev. B 73:132506
    [Google Scholar]
  133. 133. 
    Son DT, Stephanov MA 2006. Phys. Rev. A 74:013614
    [Google Scholar]
  134. 134. 
    Bulgac A, Forbes MM, Schwenk A 2006. Phys. Rev. Lett. 97:020402
    [Google Scholar]
  135. 135. 
    Sheehy DE, Radzihovsky L 2007. Ann. Phys. 322:1790–924
    [Google Scholar]
  136. 136. 
    Parish MM, Marchetti FM, Lamacraft A, Simons BD 2007. Nat. Phys. 3:124–28
    [Google Scholar]
  137. 137. 
    Radzihovsky L, Vishwanath A 2009. Phys. Rev. Lett. 103:010404
    [Google Scholar]
  138. 138. 
    Radzihovsky L 2011. Phys. Rev. A 84:023611
    [Google Scholar]
  139. 139. 
    Liao Ya, Rittner ASC, Paprotta T, Li W, Partridge GB et al. 2010. Nature 467:567
    [Google Scholar]
  140. 140. 
    Revelle MC, Fry JA, Olsen BA, Hulet RG 2016. Phys. Rev. Lett. 117:235301
    [Google Scholar]
  141. 141. 
    Parish MM, Baur SK, Mueller EJ, Huse DA 2007. Phys. Rev. Lett. 99:250403
    [Google Scholar]
  142. 142. 
    Zhang SC 1998. J. Phys. Chem. Solids 59:1774–79
    [Google Scholar]
  143. 143. 
    Raczkowski M, Capello M, Poilblanc D, Frésard R, Oleś AM 2007. Phys. Rev. B 76:140505
    [Google Scholar]
  144. 144. 
    Capello M, Raczkowski M, Poilblanc D 2008. Phys. Rev. B 77:224502
    [Google Scholar]
  145. 145. 
    Loder F, Kampf AP, Kopp T 2010. Phys. Rev. B 81:020511
    [Google Scholar]
  146. 146. 
    Wårdh J, Granath M 2017. Phys. Rev. B 96:224503
    [Google Scholar]
  147. 147. 
    Wårdh J, Andersen BM, Granath M 2018. Phys. Rev. B 98:224501
    [Google Scholar]
  148. 148. 
    Lee SS, Lee PA, Senthil T 2007. Phys. Rev. Lett. 98:067006
    [Google Scholar]
  149. 149. 
    Soto-Garrido R, Fradkin E 2014. Phys. Rev. B 89:165126
    [Google Scholar]
  150. 150. 
    Wu C, Sun K, Fradkin E, Zhang SC 2007. Phys. Rev. B 75:115103
    [Google Scholar]
  151. 151. 
    Soto-Garrido R, Cho GY, Fradkin E 2015. Phys. Rev. B 91:195102
    [Google Scholar]
  152. 152. 
    Granath M, Oganesyan V, Kivelson SA, Fradkin E, Emery VJ 2001. Phys. Rev. Lett. 87:167011
    [Google Scholar]
  153. 153. 
    Sikkema AE, Affleck I, White SR 1997. Phys. Rev. Lett. 79:929–32
    [Google Scholar]
  154. 154. 
    Zachar O, Tsvelik AM 2001. Phys. Rev. B 64:033103
    [Google Scholar]
  155. 155. 
    Zachar O 2001. Phys. Rev. B 63:205104
    [Google Scholar]
  156. 156. 
    Berg E, Fradkin E, Kivelson SA 2010. Phys. Rev. Lett. 105:146403
    [Google Scholar]
  157. 157. 
    Cho GY, Soto-Garrido R, Fradkin E 2014. Phys. Rev. Lett. 113:256405
    [Google Scholar]
  158. 158. 
    Jaefari A, Fradkin E 2012. Phys. Rev. B 85:035104
    [Google Scholar]
  159. 159. 
    Huang EW, Mendl CB, Jiang HC, Moritz B, Devereaux TP 2018. NPJ Quantum Mater. 3:22
    [Google Scholar]
  160. 160. 
    Verstraete F, Murg V, Cirac J 2008. Adv. Phys. 57:143–224
    [Google Scholar]
  161. 161. 
    Corboz P, White SR, Vidal G, Troyer M 2011. Phys. Rev. B 84:041108
    [Google Scholar]
  162. 162. 
    Corboz P, Rice TM, Troyer M 2014. Phys. Rev. Lett. 113:046402
    [Google Scholar]
  163. 163. 
    Dodaro JF, Jiang HC, Kivelson SA 2017. Phys. Rev. B 95:155116
    [Google Scholar]
  164. 164. 
    Jiang HC, Weng ZY, Kivelson SA 2018. Phys. Rev. B 98:140505
    [Google Scholar]
  165. 165. 
    Jiang HC, Devereaux T 2018. Superconductivity in the Hubbard model and its interplay with charge stripes and next-nearest hopping . arXiv:1806.01465
    [Google Scholar]
  166. 166. 
    Xu XY, Law KT, Lee PA 2019. Phys. Rev. Lett. 122:167001
    [Google Scholar]
  167. 167. 
    Hartnoll SA, Lucas A, Sachdev S 2019. Holographic Quantum Matter Cambridge, MA: MIT Press
    [Google Scholar]
  168. 168. 
    Flauger R, Pajer E, Papanikolaou S 2011. Phys. Rev. D 83:064009
    [Google Scholar]
  169. 169. 
    Cremonini S, Li L, Ren J 2017. J. High Energy Phys. 2017:81
    [Google Scholar]
  170. 170. 
    Cremonini S, Li L, Ren J 2017. Phys. Rev. D 95:041901
    [Google Scholar]
  171. 171. 
    Cai RG, Li L, Wang YQ, Zaanen J 2017. Phys. Rev. Lett. 119:181601
    [Google Scholar]
  172. 172. 
    Chandrasekhar BS 1962. Appl. Phys. Lett. 1:7
    [Google Scholar]
  173. 173. 
    Clogston AM 1962. Phys. Rev. Lett. 9:266–67
    [Google Scholar]
  174. 174. 
    Sarma G 2002. J. Phys. Chem. Solids 24:1029–32
    [Google Scholar]
  175. 175. 
    Carlson J, Reddy S 2005. Phys. Rev. Lett. 95:060401
    [Google Scholar]
  176. 176. 
    Regal CA, Jin DS 2003. Phys. Rev. Lett. 90:230404
    [Google Scholar]
  177. 177. 
    Nikolić P, Sachdev S 2007. Phys. Rev. A 75:033608
    [Google Scholar]
  178. 178. 
    Veillette MY, Sheehy DE, Radzihovsky L 2007. Phys. Rev. A 75:043614
    [Google Scholar]
  179. 179. 
    Nishida Y, Son DT 2006. Phys. Rev. Lett. 97:050403
    [Google Scholar]
  180. 180. 
    Alford M, Bowers JA, Rajagopal K 2001. Phys. Rev. D 63:074016
    [Google Scholar]
  181. 181. 
    Bowers JA, Rajagopal K 2002. Phys. Rev. D 66:065002
    [Google Scholar]
  182. 182. 
    Machida K, Nakanishi H 1984. Phys. Rev. B 30:122–33
    [Google Scholar]
  183. 183. 
    Burkhardt H, Rainer D 1994. Ann. Phys. 506:181–94
    [Google Scholar]
  184. 184. 
    Matsuo S, Higashitani S, Nagato Y, Nagai K 1998. J. Phys. Soc. Jpn. 67:280–89
    [Google Scholar]
  185. 185. 
    Yoshida N, Yip SK 2007. Phys. Rev. A 75:063601
    [Google Scholar]
  186. 186. 
    Mora C, Combescot R 2005. Phys. Rev. B 71:214504
    [Google Scholar]
  187. 187. 
    Sheehy DE, Radzihovsky L 2007. Phys. Rev. B 75:136501
    [Google Scholar]
  188. 188. 
    Su WP, Schrieffer JR, Heeger AJ 1979. Phys. Rev. Lett. 42:1698–701
    [Google Scholar]
  189. 189. 
    Orso G 2007. Phys. Rev. Lett. 98:070402
    [Google Scholar]
  190. 190. 
    Hu H, Liu XJ, Drummond PD 2007. Phys. Rev. Lett. 98:070403
    [Google Scholar]
  191. 191. 
    Yang K 2001. Phys. Rev. B 63:140511
    [Google Scholar]
  192. 192. 
    Zhao E, Liu WV 2008. Phys. Rev. A 78:063605
    [Google Scholar]
  193. 193. 
    Radzihovsky L 2012. Phys. C: Supercond. 481:189–206
    [Google Scholar]
  194. 194. 
    Shimahara H 1998. J. Phys. Soc. Jpn. 67:1872–75
    [Google Scholar]
  195. 195. 
    de Gennes PG, Prost J 1993. The Physics of Liquid Crystals Oxford, UK: Oxford Univ. Press. 2nd ed.
    [Google Scholar]
  196. 196. 
    Chaikin PM, Lubensky TC 1995. Principles of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  197. 197. 
    Grinstein G, Pelcovits RA 1981. Phys. Rev. Lett. 47:856–59
    [Google Scholar]
  198. 198. 
    Samokhin K 2010. Phys. Rev. B 81:224507
    [Google Scholar]
  199. 199. 
    Samokhin K 2011. Phys. Rev. B 83:094514
    [Google Scholar]
  200. 200. 
    Agterberg DF, Kaur RP 2007. Phys. Rev. B 75:064511
    [Google Scholar]
  201. 201. 
    Dimitrova O, Feigel'man MV 2007. Phys. Rev. B 76:014522
    [Google Scholar]
  202. 202. 
    Gor'kov LP, Rashba EI 2001. Phys. Rev. Lett. 87:037004
    [Google Scholar]
  203. 203. 
    Frigeri PA, Agterberg DF, Koga A, Sigrist M 2004. Phys. Rev. Lett. 92:097001
    [Google Scholar]
  204. 204. 
    Cho GY, Bardarson JH, Lu YM, Moore JE 2012. Phys. Rev. B 86:214514
    [Google Scholar]
  205. 205. 
    Barzykin V, Gor'kov LP 2002. Phys. Rev. Lett. 89:227002
    [Google Scholar]
  206. 206. 
    Mineev V, Samokhin K 1994. Zh. Eksp. Teor. Fiz. 105:747–63
    [Google Scholar]
  207. 207. 
    Agterberg D 2002. Physica C 387:13–16
    [Google Scholar]
  208. 208. 
    Mineev V, Samokhin K 2008. Phys. Rev. B 78:144503
    [Google Scholar]
  209. 209. 
    Smidman M, Salamon M, Yuan H, Agterberg D 2017. Rep. Prog. Phys. 80:036501
    [Google Scholar]
  210. 210. 
    Hart S, Ren H, Kosowsky M, Ben-Shach G, Leubner P et al. 2016. Nat. Phys. 13:87
    [Google Scholar]
  211. 211. 
    Michaeli K, Potter AC, Lee PA 2012. Phys. Rev. Lett. 108:117003
    [Google Scholar]
  212. 212. 
    Fu L, Kane CL 2008. Phys. Rev. Lett. 100:096407
    [Google Scholar]
  213. 213. 
    Santos L, Neupert T, Chamon C, Mudry C 2010. Phys. Rev. B 81:184502
    [Google Scholar]
  214. 214. 
    Chen AQ, Park MJ, Gill ST, Xiao Y, Reig-i-Plessis D et al. 2018. Nat. Commun. 9:3478
    [Google Scholar]
  215. 215. 
    Bednik G, Zyuzin AA, Burkov AA 2015. Phys. Rev. B 92:035153
    [Google Scholar]
  216. 216. 
    Li Y, Haldane FDM 2018. Phys. Rev. Lett. 120:067003
    [Google Scholar]
  217. 217. 
    Wang Y, Ye P 2016. Phys. Rev. B 94:075115
    [Google Scholar]
  218. 218. 
    He RH, Tanaka K, Mo SK, Sasagawa T, Fujita M et al. 2008. Nat. Phys. 5:119–23
    [Google Scholar]
  219. 219. 
    Vishik IM, Lee WS, He RH, Hashimoto M, Hussain Z et al. 2010. New J. Phys. 12:105008
    [Google Scholar]
  220. 220. 
    Lee WS, Vishik IM, Tanaka K, Lu DH, Sasagawa T et al. 2007. Nature 450:81–84
    [Google Scholar]
  221. 221. 
    Renner C, Revaz B, Genoud JY, Kadowaki K, Fischer Ø 1998. Phys. Rev. Lett. 80:149–52
    [Google Scholar]
  222. 222. 
    Berg E, Altman E 2007. Phys. Rev. Lett. 99:247001
    [Google Scholar]
  223. 223. 
    Parham S, Li H, Nummy TJ, Waugh JA, Zhou XQ et al. 2017. Phys. Rev. X 7:041013
    [Google Scholar]
  224. 224. 
    Hashimoto M, Nowadnick EA, He RH, Vishik IM, Moritz B et al. 2014. Nat. Mater. 14:37–42
    [Google Scholar]
  225. 225. 
    Dai Z, Lee PA 2017. Phys. Rev. B 95:014506
    [Google Scholar]
  226. 226. 
    Kapitulnik A, Kivelson SA, Spivak B 2019. Rev. Mod. Phys. 91:011002
    [Google Scholar]
  227. 227. 
    Zelli M, Kallin C, Berlinsky AJ 2012. Phys. Rev. B 86:104507
    [Google Scholar]
  228. 228. 
    Wang L, Vafek O 2013. Phys. Rev. B 88:024506
    [Google Scholar]
  229. 229. 
    Norman MR, Davis JCS 2018. PNAS 115:5389–91
    [Google Scholar]
  230. 230. 
    Kacmarcik J, Vinograd I, Michon B, Rydh A, Demuer A et al. 2018. Phys. Rev. Lett. 121:167002
    [Google Scholar]
  231. 231. 
    Li L, Wang Y, Komiya S, Ono S, Ando Y et al. 2010. Phys. Rev. B 81:054510
    [Google Scholar]
  232. 232. 
    Yu F, Hirschberger M, Loew G, Lawson B, Asaba T et al. 2016. PNAS 113:12667–72
    [Google Scholar]
  233. 233. 
    Lee PA 2019. Phys. Rev. B 99:035132
    [Google Scholar]
  234. 234. 
    Blackburn E 2013. Presented at the 2019 Gordon Res. Conf., Les Diablerets, Switzerland
  235. 235. 
    Peng YY, Salluzzo M, Sun X, Ponti A, Betto D et al. 2016. Phys. Rev. B 94:184511
    [Google Scholar]
  236. 236. 
    Chaix L, Ghiringhelli G, Peng YY, Hashimoto M, Moritz B et al. 2017. Nat. Phys. 13:952–56
    [Google Scholar]
  237. 237. 
    Stengen Z, Han SJ, Wu J, Pramanik AK, Hücker M et al. 2013. Phys. Rev. B 87:064509
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031119-050711
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050711
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error