1932

Abstract

Fluid turbulence is commonly associated with stronger drag, greater heat transfer, and more efficient mixing than in laminar flows. In many natural and industrial settings, turbulent liquid flows contain suspensions of dispersed bubbles and light particles. Recently, much attention has been devoted to understanding the behavior and underlying physics of such flows by use of both experiments and high-resolution direct numerical simulations. This review summarizes our present understanding of various phenomenological aspects of bubbly and buoyant particle–laden turbulent flows. We begin by discussing different dynamical regimes, including those of crossing trajectories and wake-induced oscillations of rising particles, and regimes in which bubbles and particles preferentially accumulate near walls or within vortical structures. We then address how certain paradigmatic turbulent flows, such as homogeneous isotropic turbulence, channel flow, Taylor–Couette turbulence, and thermally driven turbulence, are modified by the presence of these dispersed bubbles and buoyant particles. We end with a list of summary points and future research questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050637
2020-03-10
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050637.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050637&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sengupta A, Carrara F, Stocker R 2017. Nature 543:555–58
    [Google Scholar]
  2. 2. 
    Calzavarini E, Huang YX, Schmitt FG, Wang LP 2018. Phys. Rev. Fluids 3:054604
    [Google Scholar]
  3. 3. 
    Thorpe SA, Hall AJ 1987. Nature 328:48–51
    [Google Scholar]
  4. 4. 
    Ceccio SL 2010. Annu. Rev. Fluid Mech. 42:183–203
    [Google Scholar]
  5. 5. 
    Gvozdić B, Alméras E, Mathai V, Zhu X, van Gils DP et al. 2018. J. Fluid Mech. 845:226–44
    [Google Scholar]
  6. 6. 
    Alméras E, Risso F, Roig V, Cazin S, Plais C, Augier F 2015. J. Fluid Mech. 776:458–54
    [Google Scholar]
  7. 7. 
    Toschi F, Bodenschatz E 2009. Annu. Rev. Fluid Mech. 41:375–404
    [Google Scholar]
  8. 8. 
    Voth GA, Soldati A 2017. Annu. Rev. Fluid Mech. 49:249–76
    [Google Scholar]
  9. 9. 
    Crowe C, Troutt T, Chung J 1996. Annu. Rev. Fluid Mech. 28:11–43
    [Google Scholar]
  10. 10. 
    Maxey M 2017. Annu. Rev. Fluid Mech. 49:171–93
    [Google Scholar]
  11. 11. 
    Elghobashi S 2019. Annu. Rev. Fluid Mech. 51:217–44
    [Google Scholar]
  12. 12. 
    Prosperetti A 2015. J. Fluid Mech. 768:1–4
    [Google Scholar]
  13. 13. 
    Elghobashi S 1994. Appl. Sci. Res. 52:309–29
    [Google Scholar]
  14. 14. 
    Lohse D 2018. Phys. Rev. Fluids 3:110504
    [Google Scholar]
  15. 15. 
    Balachandar S, Eaton JK 2010. Annu. Rev. Fluid Mech. 42:111–33
    [Google Scholar]
  16. 16. 
    Prosperetti A 2017. Annu. Rev. Fluid Mech. 49:221–48
    [Google Scholar]
  17. 17. 
    Veldhuis C, Biesheuvel A, van Wijngaarden L, Lohse D 2004. Nonlinearity 18:C1
    [Google Scholar]
  18. 18. 
    Ern P, Risso F, Fabre D, Magnaudet J 2012. Annu. Rev. Fluid Mech. 44:97–121
    [Google Scholar]
  19. 19. 
    Jha NK, Govardhan R 2015. J. Fluid Mech. 773:460–97
    [Google Scholar]
  20. 20. 
    Mazzitelli IM, Lohse D, Toschi F 2003. Phys. Fluids 15:L5–8
    [Google Scholar]
  21. 21. 
    Mazzitelli IM, Lohse D, Toschi F 2003. J. Fluid Mech. 488:283–313
    [Google Scholar]
  22. 22. 
    Maxey MR, Riley JJ 1983. Phys. Fluids 26:883–89
    [Google Scholar]
  23. 23. 
    Pope SB 2000. Turbulent Flow Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  24. 24. 
    Auton T, Hunt J, Prud'Homme M 1988. J. Fluid Mech. 197:241–57
    [Google Scholar]
  25. 25. 
    Rensen J, Bosman D, Magnaudet J, Ohl CD, Prosperetti A et al. 2001. Phys. Rev. Lett. 86:4819–22
    [Google Scholar]
  26. 26. 
    Calzavarini E, Volk R, Leveque E, Pinton JF, Toschi F 2012. Physica D 241:237–44
    [Google Scholar]
  27. 27. 
    Calzavarini E, Volk R, Bourgoin M, Leveque E, Pinton JF, Toschi F 2009. J. Fluid Mech. 630:179–89
    [Google Scholar]
  28. 28. 
    Homann H, Bec J 2010. J. Fluid Mech. 651:81–91
    [Google Scholar]
  29. 29. 
    Leal L 1980. Annu. Rev. Fluid Mech. 12:435–76
    [Google Scholar]
  30. 30. 
    Mougin G, Magnaudet J 2001. Phys. Rev. Lett. 88:014502
    [Google Scholar]
  31. 31. 
    Hunt JCR, Perkins R, Fung J 1994. Multiph. Sci. Technol. 8:595–643
    [Google Scholar]
  32. 32. 
    Mathai V, Calzavarini E, Brons J, Sun C, Lohse D 2016. Phys. Rev. Lett. 117:024501
    [Google Scholar]
  33. 33. 
    Douady S, Couder Y, Brachet ME 1991. Phys. Rev. Lett. 67:983–86
    [Google Scholar]
  34. 34. 
    La Porta A, Voth GA, Crawford AM, Alexander J, Bodenschatz E 2001. Nature 409:1017–19
    [Google Scholar]
  35. 35. 
    Wang LP, Maxey MR 1993. Appl. Sci. Res. 51:291–96
    [Google Scholar]
  36. 36. 
    Spelt P, Biesheuvel A 1997. J. Fluid Mech. 336:221–44
    [Google Scholar]
  37. 37. 
    Calzavarini E, Kerscher M, Lohse D, Toschi F 2008. J. Fluid Mech. 607:13–24
    [Google Scholar]
  38. 38. 
    Calzavarini E, Cencini M, Lohse D, Toschi F 2008. Phys. Rev. Lett. 101:084504
    [Google Scholar]
  39. 39. 
    Monchaux R, Bourgoin M, Cartellier A 2010. Phys. Fluids 22:103304
    [Google Scholar]
  40. 40. 
    Tagawa Y, Mercado JM, Prakash VN, Calzavarini E, Sun C, Lohse D 2012. J. Fluid Mech. 693:201–15
    [Google Scholar]
  41. 41. 
    Fiabane L, Zimmermann R, Volk R, Pinton JF, Bourgoin M 2012. Phys. Rev. E 86:035301
    [Google Scholar]
  42. 42. 
    Obligado M, Teitelbaum T, Cartellier A, Mininni P, Bourgoin M 2014. J. Turbul. 15:293–310
    [Google Scholar]
  43. 43. 
    Volk R, Calzavarini E, Verhille G, Lohse D, Mordant N et al. 2008. Physica D 237:2084–89
    [Google Scholar]
  44. 44. 
    Volk R, Mordant N, Verhille G, Pinton JF 2008. Europhys. Lett. 81:34002
    [Google Scholar]
  45. 45. 
    Voth GA, La Porta A, Crawford AM, Alexander J, Bodenschatz E 2002. J. Fluid Mech. 469:121–60
    [Google Scholar]
  46. 46. 
    Csanady G 1963. J. Atmos. Sci. 20:201–8
    [Google Scholar]
  47. 47. 
    Maxey M 1987. J. Fluid Mech. 174:441–65
    [Google Scholar]
  48. 48. 
    Parishani H, Ayala O, Rosa B, Wang LP, Grabowski W 2015. Phys. Fluids 27:033304
    [Google Scholar]
  49. 49. 
    Bodenschatz E, Malinowski SP, Shaw RA, Stratmann F 2010. Science 327:970–71
    [Google Scholar]
  50. 50. 
    Magnaudet J, Eames I 2000. Annu. Rev. Fluid Mech. 32:659–708
    [Google Scholar]
  51. 51. 
    Mathai V, Huisman SG, Sun C, Lohse D, Bourgoin M 2018. Phys. Rev. Lett. 121:054501
    [Google Scholar]
  52. 52. 
    Sridhar G, Katz J 1995. Phys. Fluids 7:389–99
    [Google Scholar]
  53. 53. 
    Tio KK, Liñán A, Lasheras JC, Gañán-Calvo AM 1993. J. Fluid Mech. 254:671–99
    [Google Scholar]
  54. 54. 
    Aliseda A, Lasheras J 2011. Phys. Fluids 23:093301
    [Google Scholar]
  55. 55. 
    Deane GB, Stokes MD 2002. Nature 418:839–44
    [Google Scholar]
  56. 56. 
    Duineveld P 1995. J. Fluid Mech. 292:325–32
    [Google Scholar]
  57. 57. 
    Ryskin G, Leal LG 1984. J. Fluid Mech. 148:19–35
    [Google Scholar]
  58. 58. 
    Naso A, Prosperetti A 2010. New J. Phys. 12:033040
    [Google Scholar]
  59. 59. 
    Chouippe A, Uhlmann M 2015. Phys. Fluids 27:123301
    [Google Scholar]
  60. 60. 
    Loisy A, Naso A 2017. Phys. Rev. Fluids 2:014606
    [Google Scholar]
  61. 61. 
    Naso A, Pumir A 2005. Phys. Rev. E 72:056318
    [Google Scholar]
  62. 62. 
    Xu H, Pumir A, Falkovich G, Bodenschatz E, Shats M et al. 2014. PNAS 111:7558–63
    [Google Scholar]
  63. 63. 
    Mougin G, Magnaudet J 2006. J. Fluid Mech. 567:185–94
    [Google Scholar]
  64. 64. 
    Mathai V, Neut MWM, van der Poel EP, Sun C 2016. Exp. Fluids 57:1–10
    [Google Scholar]
  65. 65. 
    Mathai V, Zhu X, Sun C, Lohse D 2018. Nat. Commun. 9:1792
    [Google Scholar]
  66. 66. 
    Brücker C 1999. Phys. Fluids 11:1781–96
    [Google Scholar]
  67. 67. 
    Mathai V, Zhu X, Sun C, Lohse D 2017. Phys. Rev. Lett. 119:054501
    [Google Scholar]
  68. 68. 
    Risso F 2017. Annu. Rev. Fluid Mech. 50:25–48
    [Google Scholar]
  69. 69. 
    Ford B, Loth E 1998. Phys. Fluids 10:178–88
    [Google Scholar]
  70. 70. 
    Lamb H 1993. Hydrodynamics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  71. 71. 
    Galper A, Miloh T 1995. J. Fluid Mech. 295:91–120
    [Google Scholar]
  72. 72. 
    Mougin G, Magnaudet J 2002. Int. J. Multiph. Flow 28:1837–51
    [Google Scholar]
  73. 73. 
    Auguste F, Magnaudet J 2018. J. Fluid Mech. 841:228–66
    [Google Scholar]
  74. 74. 
    Cano-Lozano JC, Martinez-Bazan C, Magnaudet J, Tchoufag J 2016. Phys. Rev. Fluids 1:053604
    [Google Scholar]
  75. 75. 
    Wu M, Gharib M 2002. Phys. Fluids 14:L49–52
    [Google Scholar]
  76. 76. 
    Mazzitelli IM, Lohse D 2004. New J. Phys. 6:203
    [Google Scholar]
  77. 77. 
    Ravelet F, Colin C, Risso F 2011. Phys. Fluids 23:103301
    [Google Scholar]
  78. 78. 
    Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A et al. 2011. Rev. Sci. Instrum. 82:033906
    [Google Scholar]
  79. 79. 
    Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF 2011. Phys. Rev. Lett. 106:154501
    [Google Scholar]
  80. 80. 
    Bellani G, Variano EA 2012. New J. Phys. 14:125009
    [Google Scholar]
  81. 81. 
    Faxén H 1922. Ann. Phys. 373:89–119
    [Google Scholar]
  82. 82. 
    Mathai V, Prakash VN, Brons J, Sun C, Lohse D 2015. Phys. Rev. Lett. 115:124501
    [Google Scholar]
  83. 83. 
    Govardhan RN, Williamson CHK 2005. J. Fluid Mech. 531:11–47
    [Google Scholar]
  84. 84. 
    Zhang W, Stone H 1998. J. Fluid Mech. 367:329–58
    [Google Scholar]
  85. 85. 
    Zenit R, Magnaudet J 2008. Phys. Fluids 20:061702
    [Google Scholar]
  86. 86. 
    Loth E, Dorgan AJ 2009. Environ. Fluid Mech. 9:187–206
    [Google Scholar]
  87. 87. 
    Loth E 2008. AIAA J. 46:801–9
    [Google Scholar]
  88. 88. 
    Loth E 2008. Int. J. Multiph. Flow 34:523–46
    [Google Scholar]
  89. 89. 
    Van Nierop EA, Luther S, Bluemink JJ, Magnaudet J, Prosperetti A, Lohse D 2007. J. Fluid Mech. 571:439–54
    [Google Scholar]
  90. 90. 
    Legendre D, Magnaudet J 1998. J. Fluid Mech. 368:81–126
    [Google Scholar]
  91. 91. 
    Legendre D, Magnaudet J 1997. Phys. Fluids 9:3572–74
    [Google Scholar]
  92. 92. 
    Takemura F, Takagi S, Magnaudet J, Matsumoto Y 2002. J. Fluid Mech. 461:277–300
    [Google Scholar]
  93. 93. 
    So S, Morikita H, Takagi S, Matsumoto Y 2002. Exp. Fluids 33:135–42
    [Google Scholar]
  94. 94. 
    Kitagawa A, Sugiyama K, Murai Y 2004. Int. J. Multiph. Flow 30:1213–34
    [Google Scholar]
  95. 95. 
    van Sint Annaland M, Dijkhuizen W, Deen N, Kuipers J 2006. AIChE J. 52:99–110
    [Google Scholar]
  96. 96. 
    Zhang D, Deen N, Kuipers J 2006. Chem. Eng. Sci. 61:7593–608
    [Google Scholar]
  97. 97. 
    Nakoryakov V, Kashinsky O, Burdukov A, Odnoral V 1981. Int. J. Multiph. Flow 7:63–81
    [Google Scholar]
  98. 98. 
    Kashinsky O, Randin V 1999. Int. J. Multiph. Flow 25:109–38
    [Google Scholar]
  99. 99. 
    Drew DA, Lahey RT Jr 1993. Particulate Two-Phase Flow MC Roco509–66 Boston: Butterworth-Heinemann
    [Google Scholar]
  100. 100. 
    Lu J, Biswas S, Tryggvason G 2006. Int. J. Multiph. Flow 32:643–60
    [Google Scholar]
  101. 101. 
    Tryggvason G, Lu J 2015. Mech. Eng. Rev. 2:1–14
    [Google Scholar]
  102. 102. 
    Dabiri S, Lu J, Tryggvason G 2013. Phys. Fluids 25:102110
    [Google Scholar]
  103. 103. 
    Tomiyama A, Tamai H, Zun I, Hosokawa S 2002. Chem. Eng. Sci. 57:1849–58
    [Google Scholar]
  104. 104. 
    Batchelor GK 1953. The Theory of Homogeneous Turbulence Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  105. 105. 
    Lance M, Bataille J 1991. J. Fluid Mech. 222:95–118
    [Google Scholar]
  106. 106. 
    Martínez-Mercado J, Palacios-Morales CA, Zenit R 2007. Phys. Fluids 19:103302
    [Google Scholar]
  107. 107. 
    Roghair I, Mercado JM, Annaland MVS, Kuipers H, Sun C, Lohse D 2011. Int. J. Multiph. Flow 37:1093–98
    [Google Scholar]
  108. 108. 
    Riboux G, Legendre D, Risso F 2013. J. Fluid Mech. 719:362–87
    [Google Scholar]
  109. 108a. 
    Pandey V, Ramadugu R, Perlekar P 2019. arXiv:1910.01936
  110. 108b. 
    Prakash VN, Mercado JM, van Wijngaarden L, Mancilla E, Tagawa Y et al 2016. Fluid Mech. 791:174–90
    [Google Scholar]
  111. 109. 
    Mazzitelli IM, Lohse D 2009. Phys. Rev. E 79:066317
    [Google Scholar]
  112. 110. 
    Rensen J, Luther S, Lohse D 2005. J. Fluid Mech. 538:153–87
    [Google Scholar]
  113. 111. 
    Van Wijngaarden L 1998. Theor. Comput. Fluid Dyn. 10:449–58
    [Google Scholar]
  114. 112. 
    Alméras E, Mathai V, Lohse D, Sun C 2017. J. Fluid Mech. 825:1091–112
    [Google Scholar]
  115. 113. 
    du Cluzeau A, Bois G, Toutant A 2019. J. Fluid Mech. 866:132–68
    [Google Scholar]
  116. 114. 
    Jeong J, Hussain F 1995. J. Fluid Mech. 285:69–94
    [Google Scholar]
  117. 115. 
    Alméras E, Mathai V, Sun C, Lohse D 2019. Int. J. Multiph. Flow 114:316–22
    [Google Scholar]
  118. 116. 
    Riboux G, Risso F, Legendre D 2010. J. Fluid Mech. 643:509–39
    [Google Scholar]
  119. 117. 
    Pumir A 1996. Phys. Fluids 8:3112–27
    [Google Scholar]
  120. 118. 
    Champagne F, Harris V, Corrsin S 1970. J. Fluid Mech. 41:81–139
    [Google Scholar]
  121. 119. 
    Gualtieri P, Battista F, Casciola C 2015. J. Phys. Conf. Ser. 656:012018
    [Google Scholar]
  122. 120. 
    Rosti ME, Ge Z, Jain SS, Dodd MS, Brandt L 2019. J. Fluid Mech. 876:962–84
    [Google Scholar]
  123. 121. 
    Kawamura T, Nakatani T 2006. Proceedings of the ASME 2006 2nd Joint US–European Fluids Engineering Summer Meeting Collocated with the 14th International Conference on Nuclear Engineering1571–78 New York: ASME
    [Google Scholar]
  124. 122. 
    Madavan N, Deutsch S, Merkle C 1984. Phys. Fluids 27:356–63
    [Google Scholar]
  125. 123. 
    Madavan N, Deutsch S, Merkle C 1985. J. Fluid Mech. 156:237–56
    [Google Scholar]
  126. 124. 
    Gutierrez-Torres C, Hassan Y, Jimenez-Bernal JA 2008. J. Fluids Eng. 130:111304
    [Google Scholar]
  127. 125. 
    Sanders WC, Winkel ES, Dowling DR, Perlin M, Ceccio SL 2006. J. Fluid Mech. 552:353–80
    [Google Scholar]
  128. 126. 
    Xu J, Maxey MR, Karniadakis GE 2002. J. Fluid Mech. 468:271–81
    [Google Scholar]
  129. 127. 
    Ferrante A, Elghobashi S 2004. J. Fluid Mech. 503:345–55
    [Google Scholar]
  130. 128. 
    Lu J, Fernández A, Tryggvason G 2005. Phys. Fluids 17:095102
    [Google Scholar]
  131. 129. 
    Murai Y 2014. Exp. Fluids 55:1–10
    [Google Scholar]
  132. 130. 
    Rawat S, Chouippe A, Zamansky R, Legendre D, Climent E 2019. Comput. Fluids 178:73–87
    [Google Scholar]
  133. 131. 
    Serizawa A, Kataoka I, Michiyoshi I 1975. Int. J. Multiph. Flow 2:235–46
    [Google Scholar]
  134. 132. 
    Antal S, Lahey R Jr., Flaherty J. 1991. Int. J. Multiph. Flow 17:635–52
    [Google Scholar]
  135. 133. 
    Unverdi S, Trygvasson G 1992. J. Comput. Phys. 100:25–37
    [Google Scholar]
  136. 134. 
    Lu J, Tryggvason G 2008. Phys. Fluids 20:040701
    [Google Scholar]
  137. 135. 
    Tryggvason G, Scardovelli R, Zaleski S 2011. Direct Numerical Simulations of Gas–Liquid Multiphase Flows Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  138. 136. 
    Lu J, Tryggvason G 2006. Phys. Fluids 18:103302
    [Google Scholar]
  139. 137. 
    Dabiri S, Bhuvankar P 2016. Phys. Fluids 28:062101
    [Google Scholar]
  140. 138. 
    Lu J, Muradoglu M, Tryggvason G 2017. Int. J. Multiph. Flow 95:135–43
    [Google Scholar]
  141. 139. 
    Clift R, Grace J, Weber M 1978. Bubbles, Drops, and Particles New York: Academic
    [Google Scholar]
  142. 140. 
    Takagi S, Matsumoto Y 2011. Annu. Rev. Fluid Mech. 43:615–36
    [Google Scholar]
  143. 141. 
    Guet S, Ooms G 2006. Annu. Rev. Fluid Mech. 38:225–49
    [Google Scholar]
  144. 142. 
    Besagni G, Inzoli F 2016. Chem. Eng. Sci. 146:259–90
    [Google Scholar]
  145. 143. 
    Grossmann S, Lohse D, Sun C 2016. Annu. Rev. Fluid Mech. 48:53–80
    [Google Scholar]
  146. 144. 
    Verschoof RA, Van Der Veen RC, Sun C, Lohse D 2016. Phys. Rev. Lett. 117:104502
    [Google Scholar]
  147. 145. 
    Murai Y, Oiwa H, Takeda Y 2005. J. Phys. Conf. Ser. 14:143–56
    [Google Scholar]
  148. 146. 
    Murai Y, Oiwa H, Takeda Y 2008. Phys. Fluids 20:034101
    [Google Scholar]
  149. 147. 
    van den Berg TH, Luther S, Lathrop DP, Lohse D 2005. Phys. Rev. Lett. 94:044501
    [Google Scholar]
  150. 148. 
    van Gils DP, Narezo Guzman D, Sun C, Lohse D 2013. J. Fluid Mech. 722:317–47
    [Google Scholar]
  151. 149. 
    Chouippe A, Climent E, Legendre D, Gabillet C 2014. Phys. Fluids 26:043304
    [Google Scholar]
  152. 150. 
    Fokoua GN, Gabillet C, Aubert A, Colin C 2015. Phys. Fluids 27:034105
    [Google Scholar]
  153. 151. 
    Sugiyama K, Calzavarini E, Lohse D 2008. J. Fluid Mech. 608:21–41
    [Google Scholar]
  154. 152. 
    Spandan V, Ostilla-Mónico R, Verzicco R, Lohse D 2016. J. Fluid Mech. 798:411–35
    [Google Scholar]
  155. 153. 
    Zhu X, Ostilla-Mónico R, Verzicco R, Lohse D 2016. J. Fluid Mech. 794:746–74
    [Google Scholar]
  156. 154. 
    Marcus PS 1984. J. Fluid Mech. 146:65–113
    [Google Scholar]
  157. 155. 
    Fardin M, Perge C, Taberlet N 2014. Soft Matter 10:3523–35
    [Google Scholar]
  158. 156. 
    Andereck CD, Liu SS, Swinney HL 1986. J. Fluid Mech. 164:155–83
    [Google Scholar]
  159. 157. 
    Spandan V, Verzicco R, Lohse D 2018. J. Fluid Mech. 849:R3
    [Google Scholar]
  160. 158. 
    Benzi R, Ching ES 2018. Annu. Rev. Condens. Matter Phys. 9:163–81
    [Google Scholar]
  161. 159. 
    Procaccia I, L'vov VS, Benzi R 2008. Rev. Mod. Phys. 80:225–47
    [Google Scholar]
  162. 160. 
    White CM, Mungal MG 2008. Annu. Rev. Fluid Mech. 40:235–56
    [Google Scholar]
  163. 161. 
    Eckhardt B, Grossmann S, Lohse D 2007. Europhys. Lett. 78:24001
    [Google Scholar]
  164. 162. 
    Deckwer WD 1980. Chem. Eng. Sci. 35:1341–46
    [Google Scholar]
  165. 163. 
    Wang Z, Mathai V, Sun C 2019. Nat. Commun. 10:3333
    [Google Scholar]
  166. 164. 
    Alards KM, Kunnen RP, Clercx HJ, Toschi F 2019. arXiv:1907.00049 [cond-mat.soft]
  167. 165. 
    Zhong JQ, Funfschilling D, Ahlers G 2009. Phys. Rev. Lett. 102:124501
    [Google Scholar]
  168. 166. 
    Lakkaraju R, Stevens RJ, Oresta P, Verzicco R, Lohse D, Prosperetti A 2013. PNAS 110:9237–42
    [Google Scholar]
  169. 167. 
    Sekoguchi K, Nakazatomi M, Sato Y, Tanaka O 1980. Bull. JSME 23:1625–31
    [Google Scholar]
  170. 168. 
    Sato Y, Sadatomi M, Sekoguchi K 1981. Int. J. Multiph. Flow 7:167–77
    [Google Scholar]
  171. 169. 
    Sato Y, Sadatomi M, Sekoguchi K 1981. Int. J. Multiph. Flow 7:179–90
    [Google Scholar]
  172. 170. 
    Dabiri S, Tryggvason G 2015. Chem. Eng. Sci. 122:106–13
    [Google Scholar]
  173. 171. 
    Kitagawa A, Kosuge K, Uchida K, Hagiwara Y 2008. Exp. Fluids 45:473–84
    [Google Scholar]
  174. 172. 
    Kitagawa A, Uchida K, Hagiwara Y 2009. Int. J. Heat Fluid Flow 30:778–88
    [Google Scholar]
  175. 173. 
    Kitagawa A, Murai Y 2013. Chem. Eng. Sci. 99:215–24
    [Google Scholar]
  176. 174. 
    Deen NG, Kuipers J 2013. Chem. Eng. Sci. 102:268–82
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031119-050637
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050637
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error