1932

Abstract

Metallic quantum critical phenomena are believed to play a key role in many strongly correlated materials, including high-temperature superconductors. Theoretically, the problem of quantum criticality in the presence of a Fermi surface has proven to be highly challenging. However, it has recently been realized that many models used to describe such systems are amenable to numerically exact solution by quantum Monte Carlo (QMC) techniques, without suffering from the fermion sign problem. In this review, we examine the status of the understanding of metallic quantum criticality and the recent progress made by QMC simulations. We focus on the cases of spin-density wave and Ising nematic criticality. We describe the results obtained so far and their implications for superconductivity, non-Fermi liquid behavior, and transport near metallic quantum critical points. Some of the outstanding puzzles and future directions are highlighted.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013339
2019-03-10
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/10/1/annurev-conmatphys-031218-013339.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013339&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Mathur N, Grosche F, Julian S, Walker I, Freye D et al. 1998. Nature 394:39
    [Google Scholar]
  2. 2.  Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T et al. 2002. Phys. Rev. Lett. 89:056402
    [Google Scholar]
  3. 3.  Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y et al. 2003. Nature 424:524
    [Google Scholar]
  4. 4.  Paglione J, Tanatar MA, Hawthorn DG, Boaknin E, Hill RW et al. 2003. Phys. Rev. Lett. 91:246405
    [Google Scholar]
  5. 5.  Bianchi A, Movshovich R, Vekhter I, Pagliuso P, Sarrao J 2003. Phys. Rev. Lett. 91:257001
    [Google Scholar]
  6. 6.  Park T, Ronning F, Yuan HQ, Salamon MB, Movshovich R et al. 2006. Nature 440:65–68
    [Google Scholar]
  7. 7.  Gegenwart P, Si Q, Steglich F 2008. Nat. Phys. 4:186–97
    [Google Scholar]
  8. 8.  Nakatsuji S, Kuga K, Machida Y, Tayama T, Sakakibara T et al. 2008. Nat. Phys. 4:603
    [Google Scholar]
  9. 9.  Matsumoto Y, Nakatsuji S, Kuga K, Karaki Y, Horie N et al. 2011. Science 331:316–19
    [Google Scholar]
  10. 10.  Landaeta JF, Subero D, Catalá D, Taylor SV, Kimura N et al. 2018. Phys. Rev. B 97:104513
    [Google Scholar]
  11. 11.  Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y et al. 2012. Science 336:1554–57
    [Google Scholar]
  12. 12.  Shibauchi T, Carrington A, Matsuda Y 2014. Annu. Rev. Condens. Matter Phys. 5:113–35
    [Google Scholar]
  13. 13.  Chu JH, Kuo HH, Analytis JG, Fisher IR 2012. Science 337:710–12
    [Google Scholar]
  14. 14.  Kuo HH, Chu JH, Palmstrom JC, Kivelson SA, Fisher IR 2016. Science 352:958–62
    [Google Scholar]
  15. 15.  Gallais Y, Fernandes RM, Paul I, Chauvière L, Yang YX et al. 2013. Phys. Rev. Lett. 111:267001
    [Google Scholar]
  16. 16.  Thorsmølle VK, Khodas M, Yin ZP, Zhang C, Carr SV et al. 2016. Phys. Rev. B 93:054515
    [Google Scholar]
  17. 17.  Böhmer AE, Burger P, Hardy F, Wolf T, Schweiss P et al. 2014. Phys. Rev. Lett. 112:047001
    [Google Scholar]
  18. 18.  Motoyama E, Yu G, Vishik I, Vajk O, Mang P, Greven M 2007. Nature 445:186
    [Google Scholar]
  19. 19.  Armitage N, Fournier P, Greene R 2010. Rev. Mod. Phys. 82:2421
    [Google Scholar]
  20. 20.  Daou R, Cyr-Choinière O, Laliberté F, LeBoeuf D, Doiron-Leyraud N et al. 2009. Phys. Rev. B 79:180505
    [Google Scholar]
  21. 21.  Ramshaw BJ, Sebastian SE, McDonald RD, Day J, Tan BS et al. 2015. Science 348:317–20
    [Google Scholar]
  22. 22.  Daou R, Doiron-Leyraud N, LeBoeuf D, Li SY, Laliberte F et al. 2009. Nat. Phys. 5:31–34
    [Google Scholar]
  23. 23.  Wölfle P, Abrahams E 2011. Phys. Rev. B 84:041101
    [Google Scholar]
  24. 24.  Hertz JA 1976. Phys. Rev. B 14:1165–84
    [Google Scholar]
  25. 25.  Moriya T 1985. Spin Fluctuations in Itinerant Electron Magnetism Berlin: Springer
    [Google Scholar]
  26. 26.  Millis AJ 1993. Phys. Rev. B 48:7183–96
    [Google Scholar]
  27. 27.  Vojta M, Zhang Y, Sachdev S 2000. Phys. Rev. B 62:6721–44
    [Google Scholar]
  28. 28.  Assaad FF, Herbut IF 2013. Phys. Rev. X 3:031010
    [Google Scholar]
  29. 29.  Li ZX, Jiang YF, Jian SK, Yao H 2017. Nat. Commun. 8:314
    [Google Scholar]
  30. 30.  Altshuler B, Ioffe L, Millis A 1994. Phys. Rev. B 50:14048
    [Google Scholar]
  31. 31.  Nayak C, Wilczek F 1994. Nuclear Phys. B 430:534–62
    [Google Scholar]
  32. 32.  Nayak C, Wilczek F 1994. Nuclear Phys. B 417:359–73
    [Google Scholar]
  33. 33.  Altshuler BL, Ioffe LB, Millis AJ 1995. Phys. Rev. B 52:5563–72
    [Google Scholar]
  34. 34.  Chakravarty S, Norton R, Syljuasen O 1995. Phys. Rev. Lett. 74:1423–26
    [Google Scholar]
  35. 35.  Castellani C, DiCastro C, Grilli M 1995. Phys. Rev. Lett. 75:4650–53
    [Google Scholar]
  36. 36.  Abanov A, Chubukov AV 1999. Phys. Rev. Lett. 83:1652–55
    [Google Scholar]
  37. 37.  Abanov A, Chubukov A 2000. Phys. Rev. Lett. 84:5608
    [Google Scholar]
  38. 38.  Abanov A, Chubukov A, Schmalian J 2003. Adv. Phys. 52:119
    [Google Scholar]
  39. 39.  Metzner W, Rohe D, Andergassen S 2003. Phys. Rev. Lett.91
    [Google Scholar]
  40. 40.  Abanov A, Chubukov A 2004. Phys. Rev. Lett. 93:255702
    [Google Scholar]
  41. 41.  Pankov S, Florens S, Georges A, Kotliar G, Sachdev S 2004. Phys. Rev. B 69:054426
    [Google Scholar]
  42. 42.  Lawler MJ, Barci DG, Fernández V, Fradkin E, Oxman L 2006. Phys. Rev. B 73:085101
    [Google Scholar]
  43. 43.  Rech J, Pepin C, Chubukov AV 2006. Phys. Rev. B 74:195126
    [Google Scholar]
  44. 44.  v. Löhneysen H, Rosch A, Vojta M, Wölfle P 2007. Rev. Mod. Phys. 79:1015
    [Google Scholar]
  45. 44a.  Aji V, Varma CM 2007. Phys. Rev. Lett. 99:067003
    [Google Scholar]
  46. 45.  Lee SS 2009. Phys. Rev. B 80:165102
    [Google Scholar]
  47. 46.  Zacharias M, Woelfle P, Garst M 2009. Phys. Rev. B80
    [Google Scholar]
  48. 47.  Metlitski M, Sachdev S 2010. Phys. Rev. B 82:075127
    [Google Scholar]
  49. 48.  Metlitski M, Sachdev S 2010. Phys. Rev. B 82:075128
    [Google Scholar]
  50. 49.  Mross DF, McGreevy J, Liu H, Senthil T 2010. Phys. Rev. B 82:045121
    [Google Scholar]
  51. 50.  Maslov DL, Chubukov AV 2010. Phys. Rev. B 81:045110
    [Google Scholar]
  52. 51.  Dalidovich D, Lee SS 2013. Phys. Rev. B 88:245106
    [Google Scholar]
  53. 52.  Efetov K, Meier H, Pépin C 2013. Nat. Phys. 9:442
    [Google Scholar]
  54. 53.  Abrahams E, Schmalian J, Wölfle P 2014. Phys. Rev. B 90:045105
    [Google Scholar]
  55. 54.  Fitzpatrick AL, Kachru S, Kaplan J, Raghu S 2014. Phys. Rev. B 89:165114
    [Google Scholar]
  56. 55.  Meier H, Pépin C, Einenkel M, Efetov K 2014. Phys. Rev. B 89:195115
    [Google Scholar]
  57. 56.  Holder T, Metzner W 2015. Phys. Rev. B 92:041112
    [Google Scholar]
  58. 57.  Wang Y, Chubukov AV 2015. Phys. Rev. B 92:125108
    [Google Scholar]
  59. 58.  Raghu S, Torroba G, Wang H 2015. Phys. Rev. B 92:205104
    [Google Scholar]
  60. 59.  Varma C 2015. Phys. Rev. Lett. 115:186405
    [Google Scholar]
  61. 59a.  Varma CM 2016. Rep. Progr. Phys. 79:8082501
    [Google Scholar]
  62. 60.  Schlief A, Lunts P, Lee SS 2017. Phys. Rev. X 7:021010
    [Google Scholar]
  63. 61.  Lee S-S 2018. Annu. Rev. Condens. Matter Phys. 9:227–44
    [Google Scholar]
  64. 62.  Meszena B, Säterskog P, Bagrov A, Schalm K 2016. Phys. Rev. B 94:115134
    [Google Scholar]
  65. 63.  Säterskog P 2018. SciPost Phys. 4:015
    [Google Scholar]
  66. 64.  Berg E, Metlitski MA, Sachdev S 2012. Science 338:1606–9
    [Google Scholar]
  67. 65.  Schattner Y, Lederer S, Kivelson SA, Berg E 2016. Phys. Rev. X 6:031028
    [Google Scholar]
  68. 66.  Li ZX, Wang F, Yao H, Lee DH 2016. Sci. Bull. 61:925–30
    [Google Scholar]
  69. 67.  Schattner Y, Gerlach MH, Trebst S, Berg E 2016. Phys. Rev. Lett. 117:097002
    [Google Scholar]
  70. 68.  Gerlach MH, Schattner Y, Berg E, Trebst S 2017. Phys. Rev. B 95:035124
    [Google Scholar]
  71. 69.  Lederer S, Schattner Y, Berg E, Kivelson SA 2017. PNAS 114:4905–10
    [Google Scholar]
  72. 70.  Wang X, Wang Y, Schattner Y, Berg E, Fernandes RM 2018. Phys. Rev. Lett. 120:247002
    [Google Scholar]
  73. 71.  Wang X, Schattner Y, Berg E, Fernandes RM 2017. Phys. Rev. B 95:174520
    [Google Scholar]
  74. 72.  Xu XY, Sun K, Schattner Y, Berg E, Meng ZY 2017. Phys. Rev. X 7:031058
    [Google Scholar]
  75. 73.  Li ZX, Wang F, Yao H, Lee DH 2017. Phys. Rev. B 95:214505
    [Google Scholar]
  76. 74.  Gazit S, Randeria M, Vishwanath A 2017. Nat. Phys. 13:484–90
    [Google Scholar]
  77. 75.  Loh EY, Gubernatis JE, Scalettar RT, White SR, Scalapino DJ, Sugar RL 1990. Phys. Rev. B 41:9301–7
    [Google Scholar]
  78. 76.  Fitzpatrick AL, Kachru S, Kaplan J, Raghu S, Torroba G, Wang H 2015. Phys. Rev. B 92:045118
    [Google Scholar]
  79. 77.  Lunts P, Schlief A, Lee SS 2017. Phys. Rev. B 95:245109
    [Google Scholar]
  80. 78.  Scalapino D, Loh E Jr., Hirsch J 1986. Phys. Rev. B 34:8190
    [Google Scholar]
  81. 78a.  Miyake K, Schmitt-Rink S, Varma CM 1986. Phys. Rev. B 34:6554(R)
    [Google Scholar]
  82. 79.  Monthoux P, Balatsky A, Pines D 1991. Phys. Rev. Lett. 67:3448
    [Google Scholar]
  83. 80.  Abanov A, Chubukov AV, Schmalian J 2001. Europhys. Lett. 55:369–75
    [Google Scholar]
  84. 81.  Metlitski MA, Sachdev S 2010. New J. Phys. 12:105007
    [Google Scholar]
  85. 82.  Metlitski MA, Mross DF, Sachdev S, Senthil T 2015. Phys. Rev. B 91:115111
    [Google Scholar]
  86. 83.  Wang Y, Abanov A, Altshuler BL, Yuzbashyan EA, Chubukov AV 2016. Phys. Rev. Lett. 117:157001
    [Google Scholar]
  87. 84.  Lederer S, Schattner Y, Berg E, Kivelson SA 2015. Phys. Rev. Lett. 114:097001
    [Google Scholar]
  88. 85.  Maier TA, Scalapino DJ 2014. Phys. Rev. B 90:174510
    [Google Scholar]
  89. 86.  Chubukov AV, Pépin C, Rech J 2004. Phys. Rev. Lett. 92:147003
    [Google Scholar]
  90. 87.  Wang Y, Agterberg DF, Chubukov A 2015. Phys. Rev. Lett. 114:197001
    [Google Scholar]
  91. 88.  Gubernatis J, Kawashima N, Werner P 2016. Quantum Monte Carlo Methods: Algorithms for Lattice Models Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  92. 89.  Landau DP, Binder K 2000. A Guide to Monte Carlo Simulations in Statistical Physics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  93. 90.  Troyer M, Wiese UJ 2005. Phys. Rev. Lett. 94:170201
    [Google Scholar]
  94. 91.  Lang GH, Johnson CW, Koonin SE, Ormand WE 1993. Phys. Rev. C 48:1518–45
    [Google Scholar]
  95. 92.  Wu C, Zhang SC 2005. Phys. Rev. B 71:155115
    [Google Scholar]
  96. 93.  Chandrasekharan S 2010. Phys. Rev. D 82:025007
    [Google Scholar]
  97. 94.  Huffman EF, Chandrasekharan S 2014. Phys. Rev. B 89:111101
    [Google Scholar]
  98. 95.  Li ZX, Jiang YF, Yao H 2015. Phys. Rev. B 91:241117
    [Google Scholar]
  99. 96.  Li ZX, Jiang YF, Yao H 2016. Phys. Rev. Lett. 117:267002
    [Google Scholar]
  100. 97.  Wei Z, Wu C, Li Y, Zhang S, Xiang T 2016. Phys. Rev. Lett. 116:250601
    [Google Scholar]
  101. 98.  Wang L, Liu YH, Iazzi M, Troyer M, Harcos G 2015. Phys. Rev. Lett. 115:250601
    [Google Scholar]
  102. 99.  Wei ZC 2017. arXiv:1712.09412
    [Google Scholar]
  103. 100.  Blankenbecler R, Scalapino DJ, Sugar RL 1981. Phys. Rev. D 24:2278
    [Google Scholar]
  104. 101.  Scalettar RT, Loh EY, Gubernatis JE, Moreo A, White SR et al. 1989. Phys. Rev. Lett. 62:1407
    [Google Scholar]
  105. 102.  Assaad FF 2002. Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms J Grotendorst, D Marx, A Muramatsu99156 Julich, Germ.: John von Neumann Institute for Computing
    [Google Scholar]
  106. 103.  Assaad FF 2002. Phys. Rev. B 65:115104
    [Google Scholar]
  107. 104.  Liu J, Shen H, Qi Y, Meng ZY, Fu L 2017. Phys. Rev. B 95:241104
    [Google Scholar]
  108. 105.  Liu ZH, Xu XY, Qi Y, Sun K, Meng ZY 2018. Phys. Rev. B 98:045116
    [Google Scholar]
  109. 106.  Xu XY, Qi Y, Liu J, Fu L, Meng ZY 2017. Phys. Rev. B 96:041119
    [Google Scholar]
  110. 107.  Liu ZH, Xu XY, Qi Y, Sun K, Meng ZY 2018. arXiv:1801.00127
  111. 108.  Bauer C, Schattner Y, Berg E, Trebst S 2018. preparation
  112. 109.  Punk M 2016. Phys. Rev. B 94:195113
    [Google Scholar]
  113. 110.  Klein A, Chubukov A 2017. Phys. Rev. B 96:041125
    [Google Scholar]
  114. 111.  Trivedi N, Randeria M 1995. Phys. Rev. Lett. 75:312–15
    [Google Scholar]
  115. 112.  Gubernatis J, Jarrell M, Silver R, Sivia D 1991. Phys. Rev. B 44:6011
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031218-013339
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013339
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error