1932

Abstract

Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054102
2018-03-10
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-054102.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054102&mimeType=html&fmt=ahah

Literature Cited

  1. Chaikin PM, Lubensky TC. 1.  2000. Principles of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  2. Poulin P, Holger S, Lubensky TC, Weitz DA. 2.  1997. Science 275:1770–73 [Google Scholar]
  3. Manoharan VN. 3.  2015. Science 349:1253751 [Google Scholar]
  4. Anderson VJ, Lekkerkerker HNW. 4.  2002. Nature 416:811–15 [Google Scholar]
  5. Lekkerkerker HNW, Tuinier R. 5.  2011. Colloids and the Depletion Interaction Dordrecht, Neth.: Springer [Google Scholar]
  6. Sacanna S, Irvine WTM, Chaikin PM, Pine DJ. 6.  2010. Nature 464:575–78 [Google Scholar]
  7. Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL. 7.  et al. 2010. Nat. Mater. 9:913–17 [Google Scholar]
  8. Ruhwandl RW, Terentjev EM. 8.  1997. Phys. Rev. E 55:2958–61 [Google Scholar]
  9. Gu Y, Abbott NL. 9.  2000. Phys. Rev. Lett. 85:4719–22 [Google Scholar]
  10. Ramaswamy S, Nityananda R, Raghunathan VA, Prost J. 10.  1996. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 288:175–80 [Google Scholar]
  11. Loudet JC, Poulin P. 11.  2001. Phys. Rev. Lett. 87:165503 [Google Scholar]
  12. Stark H. 12.  2001. Phys. Rep. 351:387–474 [Google Scholar]
  13. Lubensky TC, Pettey D, Currier N, Stark H. 13.  1998. Phys. Rev. E 57:610–25 [Google Scholar]
  14. Nelson DR. 14.  2002. Nano Lett 2:1125–29 [Google Scholar]
  15. Lagerwall JPF, Scalia G. 15. , eds. 2016. Liquid Crystals with Nano and Microparticles Singapore: World Sci. [Google Scholar]
  16. Liu Q, Ackerman PJ, Lubensky TC, Smalyukh II. 16.  2016. PNAS 113:10479–84 [Google Scholar]
  17. Ramdane OO, Auroy P, Forget S, Raspaud E, Martinot-Lagarde P, Dozov I. 17.  2000. Phys. Rev. Lett. 84:3871–74 [Google Scholar]
  18. de Gennes PG, Prost J. 18.  1993. The Physics of Liquid Crystals New York: Oxford Univ. Press. , 2nd ed.. [Google Scholar]
  19. Jackson JD. 19.  1962. Classical Electrodynamics New York: John Wiley & Sons [Google Scholar]
  20. Pergamenshchik VM, Uzunova VA. 20.  2011. Phys. Rev. E 83:021701 [Google Scholar]
  21. Lev BI, Chernyshuk SB, Tomchuk PM, Yokoyama H. 21.  2002. Phys. Rev. E 65:021709 [Google Scholar]
  22. Tovkach OM, Chernyshuk SB, Lev BI. 22.  2012. Phys. Rev. E 86:061703 [Google Scholar]
  23. Martinez A, Lee T, Asavei T, Rubinsztein-Dunlop H, Smalyukh II. 23.  2012. Soft Matter 8:2432–37 [Google Scholar]
  24. Senyuk B, Puls O, Tovkach OM, Chernyshuk SB, Smalyukh II. 24.  2016. Nat. Commun. 7:10659 [Google Scholar]
  25. Chernyshuk SB, Tovkach OM, Lev BI. 25.  2014. Phys. Rev. E 89:032505 [Google Scholar]
  26. Ruhwandl RW, Terentjev EM. 26.  1997. Phys. Rev. E 56:5561–65 [Google Scholar]
  27. Loudet JC, Barois P, Poulin P. 27.  2000. Nature 407:611–13 [Google Scholar]
  28. Lapointe CP, Mason TG, Smalyukh II. 28.  2009. Science 326:1083–86 [Google Scholar]
  29. Muševič I, Škarabot M, Babič D, Osterman N, Poberaj I. 29.  et al. 2004. Phys. Rev. Lett. 93:187801 [Google Scholar]
  30. Škarabot M, Ravnik M, Babič D, Osterman N, Poberaj I. 30.  et al. 2006. Phys. Rev. E 73:021705 [Google Scholar]
  31. Fukuda J, Stark H, Yoneya M, Yokoyama H. 31.  2004. Phys. Rev. E 69:041706 [Google Scholar]
  32. Takahashi K, Ichikawa M, Kimura Y. 32.  2008. J. Phys. Condens. Matter 20:075106 [Google Scholar]
  33. Mundoor H, Senyuk B, Smalyukh II. 33.  2016. Science 352:69–73 [Google Scholar]
  34. Wood TA, Lintuvuori JS, Schofield AB, Marenduzzo D, Poon WCK. 34.  2011. Science 334:79–83 [Google Scholar]
  35. Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL. 35.  et al. 2010. Nat. Mater. 9:913–17 [Google Scholar]
  36. Senyuk B, Liu Q, Bililign E, Nystrom PD, Smalyukh II. 36.  2015. Phys. Rev. E 91:040501 [Google Scholar]
  37. Smalyukh II, Kuzmin AN, Kachynski AV, Prasad PN, Lavrentovich OD. 37.  2005. Appl. Phys. Lett. 86:021913 [Google Scholar]
  38. Ravnik M, Alexander GP, Yeomans JM, Žumer S. 38.  2011. PNAS 108:5188–92 [Google Scholar]
  39. Gharbi MA, Manet S, Lhermitte J, Brown S, Milette J. 39.  et al. 2016. ACS Nano 10:3410–15 [Google Scholar]
  40. Trivedi RP, Klevets II, Senyuk B, Lee B, Smalyukh II. 40.  2012. PNAS 109:4744–49 [Google Scholar]
  41. Araki T, Tanaka H. 41.  2006. Phys. Rev. Lett. 97:127801 [Google Scholar]
  42. Blanc C. 42.  2016. Science 352:40–41 [Google Scholar]
  43. Mundoor H, Smalyukh II. 43.  2015. Small 11:5572–80 [Google Scholar]
  44. Nych A, Ognysta U, Škarabot M, Ravnik M, Žumer S, Muševič I. 44.  2013. Nat. Commun. 4:1489 [Google Scholar]
  45. Varney MCM, Zhang Q, Senyuk B, Smalyukh II. 45.  2016. Phys. Rev. E 94:042709 [Google Scholar]
  46. Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S. 46.  2006. Science 313:954–58 [Google Scholar]
  47. Ognysta U, Nych A, Nazarenko V, Škarabot M, Muševič I. 47.  2009. Langmuir 25:12092–100 [Google Scholar]
  48. Ognysta UM, Nych AB, Uzunova VA, Pergamenschik VM, Nazarenko VG. 48.  et al. 2011. Phys. Rev. E 83:041709 [Google Scholar]
  49. Brochard F, de Gennes PG. 49.  1970. J. Phys. 31:691–708 [Google Scholar]
  50. Rault J, Cladis PE, Burger JP. 50.  1970. Phys. Lett. A 32:199–200 [Google Scholar]
  51. Chen S-H, Amer NM. 51.  1983. Phys. Rev. Lett. 51:2298–301 [Google Scholar]
  52. Mertelj A, Lisjak D, Drofenik M, Čopič M. 52.  2013. Nature 504:237–41 [Google Scholar]
  53. Zhang Q, Ackerman PJ, Liu Q, Smalyukh II. 53.  2015. Phys. Rev. Lett. 115:097802 [Google Scholar]
  54. Mertelj A, Osterman N, Lisjak D, Čopič M. 54.  2014. Soft Matter 10:9065–72 [Google Scholar]
  55. Liu Q, Cui Y, Gardner D, Li X, He S, Smalyukh II. 55.  2010. Nano Lett 10:1347–53 [Google Scholar]
  56. Liu Q, Senyuk B, Tang J, Lee T, Qian J. 56.  et al. 2012. Phys. Rev. Lett. 109:088301 [Google Scholar]
  57. Hashemi SM, Ejtehadi MR. 57.  2015. Phys. Rev. E 91:012503 [Google Scholar]
  58. Evans JS, Beier CN, Smalyukh II. 58.  2011. J. Appl. Phys. 110:033535 [Google Scholar]
  59. Hess AJ, Liu Q, Smalyukh II. 59.  2015. Appl. Phys. Lett. 107:071906 [Google Scholar]
  60. Silvestre NM, Tasinkevych M. 60.  2017. Phys. Rev. E 95:012606 [Google Scholar]
  61. Jiang L, Mundoor H, Liu Q, Smalyukh II. 61.  2016. ACS Nano 10:7064–72 [Google Scholar]
  62. Eskandari E, Silvestre NM, da Gama MMT, Ejtehadi MR. 62.  2014. Soft Matter 10:9681–87 [Google Scholar]
  63. Sheetah GH, Liu Q, Smalyukh II. 63.  2016. Opt. Lett. 41:4899–902 [Google Scholar]
  64. Zhang Y, Liu Q, Mundoor H, Yuan Y, Smalyukh II. 64.  2015. ACS Nano 9:3097–108 [Google Scholar]
  65. Sengupta A, Herminghaus S, Bahr C. 65.  2011. Mol. Cryst. Liq. Cryst. 547:203–12 [Google Scholar]
  66. Yuan Y, Smalyukh II. 66.  2015. Opt. Lett. 40:5630–33 [Google Scholar]
  67. Liu Q, Campbell M, Evans JS, Smalyukh II. 67.  2014. Adv. Mater. 26:7178–84 [Google Scholar]
  68. Burylov SV, Raikher YL. 68.  1994. Phys. Rev. E 50:358–67 [Google Scholar]
  69. Liu Q, Tang J, Zhang Y, Martinez A, Wang S. 69.  et al. 2014. Phys. Rev. E 89:052505 [Google Scholar]
  70. Trivedi RP, Lee T, Bertness T, Smalyukh II. 70.  2010. Opt. Express 18:27658–69 [Google Scholar]
  71. Burylov SV, Zakhlevnykh AN. 71.  2013. Phys. Rev. E 88:012511 [Google Scholar]
  72. Lapointe CP, Hopkins S, Mason TG, Smalyukh II. 72.  2010. Phys. Rev. Lett. 105:178301 [Google Scholar]
  73. Gardner DF, Evans JS, Smalyukh II. 73.  2011. Mol. Cryst. Liq. Cryst. 545:1227–45 [Google Scholar]
  74. Conradi M, Zorko M, Muševič I. 74.  2010. Opt. Express 18:500–6 [Google Scholar]
  75. Tkalec U, Muševič I. 75.  2013. Soft Matter 9:8140–50 [Google Scholar]
  76. Lapointe CP, Mason TG, Smalyukh II. 76.  2011. Opt. Express 19:18182–89 [Google Scholar]
  77. Engström D, Trivedi RP, Persson M, Goksör M, Bertness KA, Smalyukh II. 77.  2011. Soft Matter 7:6304–12 [Google Scholar]
  78. Tamura Y, Kimura Y. 78.  2016. Appl. Phys. Lett. 108:011903 [Google Scholar]
  79. Senyuk B, Evans JS, Ackerman PJ, Lee T, Manna P. 79.  et al. 2012. Nano Lett 12:955–63 [Google Scholar]
  80. Liu Q, Yuan Y, Smalyukh II. 80.  2014. Nano Lett 14:4071–77 [Google Scholar]
  81. Matthias H, Kitzerow H-S. 81.  2009. Mol. Cryst. Liq. Cryst. 508:127–36 [Google Scholar]
  82. Senyuk B, Glugla D, Smalyukh II. 82.  2013. Phys. Rev. E 88:062507 [Google Scholar]
  83. Twombly CW, Evans JS, Smalyukh II. 83.  2013. Opt. Express 21:1324–34 [Google Scholar]
  84. Hashemi SM, Jagodič U, Mozaffari MR, Ejtehadi MR, Muševič I, Ravnik M. 84.  2017. Nat. Commun. 8:14026 [Google Scholar]
  85. Senyuk B, Smalyukh II. 85.  2012. Soft Matter 8:8729–34 [Google Scholar]
  86. Stratford K, Henrich O, Lintuvuori JS, Cates ME, Marenduzzo D. 86.  2014. Nat. Commun. 5:3954 [Google Scholar]
  87. Engström D, Varney MCM, Persson M, Trivedi RP, Bertness KA. 87.  et al. 2012. Opt. Express 20:7741–48 [Google Scholar]
  88. Trivedi RP, Engström D, Smalyukh II. 88.  2011. J. Opt. 13:044001 [Google Scholar]
  89. Freiser MJ. 89.  1970. Phys. Rev. Lett. 24:1041–43 [Google Scholar]
  90. Milnor JW. 90.  1965. Topology from the Differentiable Viewpoint Charlottesville: Univ. Va. Press [Google Scholar]
  91. Senyuk B, Liu Q, He S, Kamien RD, Kusner RB. 91.  et al. 2013. Nature 493:200–5 [Google Scholar]
  92. Liu Q, Senyuk B, Tasinkevych M, Smalyukh II. 92.  2013. PNAS 110:9231–36 [Google Scholar]
  93. Martinez A, Ravnik M, Lucero B, Visvanathan R, Žumer S, Smalyukh II. 93.  2014. Nat. Mater. 13:258–63 [Google Scholar]
  94. Martinez A, Hermosillo L, Tasinkevych M, Smalyukh II. 94.  2015. PNAS 112:4546–51 [Google Scholar]
  95. Senyuk B, Behabtu N, Martinez A, Lee T, Tsentalovich DE. 95.  et al. 2015. Nat. Commun. 6:7157 [Google Scholar]
  96. Park S, Liu Q, Smalyukh II. 96.  2016. Phys. Rev. Lett. 117:277801 [Google Scholar]
  97. Machon T, Alexander GP. 97.  2013. PNAS 110:14174–79 [Google Scholar]
  98. Hung FR, Guzmán O, Gettelfinger BT, Abbott NL, de Pablo JJ. 98.  2006. Phys. Rev. E 74:011711 [Google Scholar]
  99. Hung FR. 99.  2009. Phys. Rev. E 79:021705 [Google Scholar]
  100. Senyuk B, Liu Q, Yuan Y, Smalyukh II. 100.  2016. Phys. Rev. E 93:062704 [Google Scholar]
  101. Gharbi MA, Cavallaro MJ, Wu G, Beller DA, Kamien RD. 101.  et al. 2013. Liq. Cryst. 40:1619–27 [Google Scholar]
  102. Senyuk B, Pandey MB, Liu Q, Tasinkevych M, Smalyukh II. 102.  2015. Soft Matter 11:8758–67 [Google Scholar]
  103. Beller DA, Gharbi MA, Liu IB. 103.  2015. Soft Matter 11:1078–86 [Google Scholar]
  104. Ravnik M, Čopar S, Žumer S. 104.  2015. J. Phys. Condens. Matter 27:354111 [Google Scholar]
  105. Evans JS, Sun Y, Senyuk B, Keller P, Pergamenshchik VM. 105.  et al. 2013. Phys. Rev. Lett. 110:187802 [Google Scholar]
  106. Tasinkevych M, Mondiot F, Mondain-Monval O, Loudet JC. 106.  2014. Soft Matter 10:2047–58 [Google Scholar]
  107. Rasna MV, Zuhail KP, Ramudu UV, Chandrasekar R, Dontabhaktuni J, Dhara S. 107.  2015. Soft Matter 11:7674–79 [Google Scholar]
  108. Varney MCM, Zhang Q, Smalyukh II. 108.  2015. Phys. Rev. E 91:052503 [Google Scholar]
  109. Antipova A, Denniston C. 109.  2016. Soft Matter 12:1279–94 [Google Scholar]
  110. Senyuk B, Varney MCM, Lopez J, Wang S, Wu N, Smalyukh II. 110.  2014. Soft Matter 10:6014–23 [Google Scholar]
  111. Dontabhaktuni J, Ravnik M, Žumer S. 111.  2014. PNAS 111:2464–69 [Google Scholar]
  112. Silvestre N, Liu Q, Senyuk B, Smalyukh II, Tasinkevych M. 112.  2014. Phys. Rev. Lett. 112:225501 [Google Scholar]
  113. Peng C, Turiv T, Zhang R, Guo Y, Shiyanovskii SV. 113.  et al. 2017. J. Phys. Condens. Matter 29:014005 [Google Scholar]
  114. Trivedi RP, Tasinkevych M, Smalyukh II. 114.  2016. Phys. Rev. E 94:062703 [Google Scholar]
  115. Copar S, Porenta T, Ackerman PJ, Pandey MB, Varney MCM. 115.  et al. 2014. Sci. Rep. 4:7337 [Google Scholar]
  116. Pandey MB, Porenta T, Brewer J, Burkart A, Čopar S. 116.  et al. 2014. Phys. Rev. E 89:060502R) [Google Scholar]
  117. Zerrouki D, Baudry J, Pine D, Chaikin P, Bibette J. 117.  2008. Nature 455:380–82 [Google Scholar]
  118. Uzunova VA, Pergamenshchik VM. 118.  2011. Phys. Rev. E 84:031702 [Google Scholar]
  119. Jampani VSR, Škarabot M, Čopar S, Žumer S, Muševič I. 119.  2013. Phys. Rev. Lett. 110:177801 [Google Scholar]
  120. Gvozdovskyy I, Jampani VSR, Škarabot M, Muševič I. 120.  2013. Eur. Phys. J. E 36:97 [Google Scholar]
  121. Varney MCM, Jenness N, Smalyukh II. 121.  2014. Phys. Rev. E 89:022505 [Google Scholar]
  122. Jampani VSR, Škarabot M, Ravnik M, Čopar S, Žumer S, Muševič I. 122.  2011. Phys. Rev. E 84:031703 [Google Scholar]
  123. Lintuvuori JS, Stratford K, Cates ME, Marenduzzo D. 123.  2010. Phys. Rev. Lett. 105:178302 [Google Scholar]
  124. Varney MCM, Zhang Q, Tasinkevych M, Silvestre N, Bertness KA, Smalyukh II. 124.  2014. Phys. Rev. E 89:052505 [Google Scholar]
  125. Nych A, Ognysta U, Muševič I, Seč D, Ravnik M. 125.  et al. 2014. Phys. Rev. E 89:062502 [Google Scholar]
  126. Ackerman PJ, Smalyukh II. 126.  2017. Nat. Mater. 16:426–32 [Google Scholar]
  127. Boles MA, Engel M, Talapin DV. 127.  2016. Chem. Rev. 116:11220–89 [Google Scholar]
  128. Ackerman PJ, Mundoor H, Smalyukh II, van de Lagemaat J. 128.  2015. ACS Nano 9:12392–400 [Google Scholar]
  129. Mundoor H, Lee H, Gann DG, Ackerman PJ, Senyuk B. 129.  et al. 2014. J. Appl. Phys. 116:063511 [Google Scholar]
  130. Rovner JB, Reich DH, Leheny RL. 130.  2013. Langmuir 29:2104–7 [Google Scholar]
  131. Noël CM, Bossis G, Chaze A-M, Giulieri F, Lacis S. 131.  2006. Phys. Rev. Lett. 96:217801 [Google Scholar]
  132. Gharbi MA, Nobili M, In M, Prévot G, Galatola P. 132.  et al. 2011. Soft Matter 7:1467–71 [Google Scholar]
  133. Kim S-J, Kim J-H. 133.  2014. Soft Matter 10:2664–70 [Google Scholar]
  134. Lev BI, Fukuda J, Tovkach OM, Chernyshuk SB. 134.  2014. Phys. Rev. E 89:012509 [Google Scholar]
  135. Tovkach OM, Chernyshuk SB, Lev BI. 135.  2015. Phys. Rev. E 92:042505 [Google Scholar]
  136. Mozaffari MR, Babadi M, Fukuda J, Ejtehadi MR. 136.  2011. Soft Matter 7:1107–13 [Google Scholar]
  137. Chernyshuk SB. 137.  2014. Eur. Phys. J. E 37:6 [Google Scholar]
  138. Lee B-K, Kim S-J, Lev B, Kim J-H. 138.  2017. Phys. Rev. E 95:012709 [Google Scholar]
  139. Trushkevych O, Ackerman P, Crossland WA, Smalyukh II. 139.  2010. Appl. Phys. Lett. 97:201906 [Google Scholar]
  140. Nayek P, Karan S, Kundu S, Lee SH, Gupta SD. 140.  et al. 2012. J. Phys. D Appl. Phys. 45:235303 [Google Scholar]
  141. Sun Y, Evans JS, Lee T, Senyuk BI, Keller P. 141.  et al. 2012. Appl. Phys. Lett. 100:241901 [Google Scholar]
  142. Kalakonda P, Basu R, Nemitz IR, Rosenblatt C, Iannacchione GS. 142.  2014. J. Chem. Phys. 140:104908 [Google Scholar]
  143. Evans JS, Ackerman PJ, Broer DJ, van de Lagemaat J, Smalyukh II. 143.  2013. Phys. Rev. E 87:032503 [Google Scholar]
  144. Lukach A, Thérein-Aubin H, Querejeta-Fernández A, Pitch N, Chauve G. 144.  et al. 2015. Langmuir 31:5033–41 [Google Scholar]
  145. Smalyukh II, Butler J, Shrout JD, Parsek MR, Wong GCL. 145.  2008. Phys. Rev. E 78:030701R) [Google Scholar]
  146. Lavrentovich OD. 146.  2016. Curr. Opin. Colloid Interface Sci. 21:97–109 [Google Scholar]
  147. Mushenheim PC, Trivedi RR, Tuson HH, Weibel DB, Abbott NL. 147.  2014. Soft Matter 10:79–86 [Google Scholar]
  148. Trivedi RR, Maeda R, Abbott NL, Spagnolie SE, Weibel DB. 148.  2015. Soft Matter 11:8404–8 [Google Scholar]
  149. Genkin MM, Sokolov A, Lavrentovich OD, Aranson IS. 149.  2017. Phys. Rev. X 7:011029 [Google Scholar]
  150. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J. 150.  et al. 2013. Rev. Mod. Phys. 85:1143–89 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-054102
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054102
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error